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We discuss and test empirically the effects of six dimensions along which existing decision
tree induction algorithms differ. These are: Node type (univariate versus multivariate),
branching factor (two or more), grouping of classes into two if the tree is binary, error
(impurity) measure, and the methods for minimization to find the best split vector and
threshold. We then propose a new decision tree induction method that we name linear
discriminant trees (LDT) which uses the best combination of these criteria in terms of
accuracy, simplicity and learning time. This tree induction method can be univariate
or multivariate. The method has a supervised outer optimization layer for converting a
K > 2-class problem into a sequence of two-class problems and each two-class problem
is solved analytically using Fisher’s Linear Discriminant Analysis (LDA). On twenty
datasets from the UCI repository, we compare the linear discriminant trees with the
univariate decision tree methods C4.5 and C5.0, multivariate decision tree methods
CART, OC1, QUEST, neural trees and LMDT. Our proposed linear discriminant trees
learn fast, are accurate, and the trees generated are small.

Keywords: Decision trees; linear discriminant analysis; neural networks; multivariate
analysis.

1. Introduction

A decision tree is made up of internal decision nodes and terminal leaves. When

used for classification, the leaves carry the label of one of K classes, C1, . . . , CK . The

input vector is composed of d attributes, x = [x1, . . . , xd]
T , which may be numeric

(ordered) or discrete (unordered). The decision nodes check for a particular input

condition. Given an input to classify, starting from the root node, one applies the

condition at each internal node and takes one of the branches depending on the

outcome. This process is repeated recursively until a leaf node is hit at which point

the label of the leaf constitutes the output.

In the case of a binary tree, a decision node m implements a boolean function

fm(x|Φ) > 0 (1)
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parameterized by Φ, with two outcomes, true and false, labeling the two branches,

left and right. Each fm(x) defines a discriminant in the d-dimensional input space

dividing it into two. Different decision tree methods assume different models for fm

and the model class defines the shape of the discriminant. The multivariate linear

model is

fm(x|wm, wm0) =

d∑

j=1

wmjxj + wm0 = w
T
mx + wm0 (2)

where wm defines the split direction and wm0 is the threshold once x are projected

onto wm.

A discrete attribute should be represented numerically, e.g. by 1-of-N encoding,

before it can be used for a multivariate test. Similarly, a missing attribute should

be filled in, for example, with the most likely value or the average, before it can be

used at a node.

A special, simpler case of the multivariate linear model is the univariate model

where a single input attribute is used:

fm(x|j, wm0) = xj + wm0. (3)

If the multivariate linear model is not complex enough, one can use a multivari-

ate nonlinear model. Among the various ways in which one can write a nonlinear

model, one possibility is to write it as a linear sum of nonlinear basis functions

fm(x|wm0) =

J∑

j=1

wmjφ(x|vmj) + wm0 (4)

where φ(·) are the nonlinear basis functions parameterized by vmj . This can be

implemented as a multilayer perceptron where J is the number of hidden units,

φ(·) is the sigmoid function at the hidden units, and vmj , wmj are the first and

second layer weights, respectively.

1.1. Tuning node complexity

What any classifier, and in this case the decision tree, does is approximate the

real (unknown) discriminant. With univariate nodes, we are limited to a piecewise

approximation using axis-aligned hyperplanes. With multivariate linear nodes, we

can use arbitrary hyperplanes and approximate the discriminant better.

The branching factor, i.e. the number of children of an internal node, has a

similar effect in that it defines the number of discriminants that a node defines. A

binary decision node, with a branching factor of two, defines one discriminant and

separates the data into two. Thus with binary decision nodes, a K-class problem

is converted into a sequence of 2-class problems. A K-way node separates the data

into K parts at one time.

Thus there is a dependency between the complexity of a node, the branching

factor, and the size of the tree. With complex nodes and large number of branches,
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the tree may be quite small but difficult to interpret. A tree with simple nodes and

low branching factor may be large but interpretable (e.g. can be converted to simple

IF-THEN rules); such a tree also better matches the underlying divide-and-conquer

methodology of a tree.

A complex model with a larger number of parameters requires a larger training

dataset and risks overfitting on a small amount of data. Hence one should be careful

in tuning the complexity of a node with the properties of the data at hand. For

example, using multivariate linear nodes, we are assuming that the input space

can be divided using hyperplanes into localized regions (volumes) where classes, or

groups of classes are linearly separable.

1.2. Training the tree from data

Given a training set X , finding the smallest decision tree that classifies X correctly

is NP-hard.14 For large training sets and input dimensions, even for the univariate

case, one cannot exhaustively search through the complete space of possible decision

trees. Decision tree algorithms are thus greedy in that at each step, we decide on

one decision node, and then continue recursively with the partition induced by the

node. We look for fm that best splits the data hitting node m, starting with the

complete dataset in deciding on the root node. Example measures used to quantify

the goodness of a split are entropy16 and the Gini index.2 Murthy et al.14 described

some other impurity indices. Our results and those of previous researchers indicate

that there is no significant difference between these impurity measures.15

It has been shown that for the multivariate linear case the problem of finding

the optimal split at a single node when optimality is measured in terms of mis-

classification errors is NP-hard.14 The problem of finding the best split is then an

optimization problem to find the best (wm, wm0) pair that minimizes impurity (or

some other error function). As one cannot do an exhaustive search over all possible

values in the multivariate case, one resorts to an iterative local search algorithm,

which does not guarantee optimality and may get stuck in local optima:

(1) Linear Discriminant Analysis was first used in Friedman6 for constructing deci-

sion trees. The algorithm has binary splits at each node, where a split is like in

C4.5, i.e. xi < w0 but xi can be an original variable, transgenerated, or adap-

tive. Linear discriminant analysis is applied to construct an adaptive variable.

Kolmogorof–Smirnoff distance is used as the error measure. When there are

more than K > 2 classes, it converts the problem into K different subprob-

lems, where each subproblem separates one class from others.

(2) In CART (Classification and Regression Trees),2 parameter adaptation is

through backfitting: at each step, all the coefficients wmj except one is fixed

and that coefficient is tuned for possible improvement in terms of impurity. One

cycles through all j until there is no further improvement.
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(3) In FACT (Fast Algorithm for Classification Trees),12 with K classes a node

can have K branches. Each branch has its modified linear discriminant func-

tion calculated using Linear Discriminant Analysis (LDA) and an instance is

channeled to the ith branch to minimize an estimated expected risk.

(4) In Neural Trees,8 each decision node uses a multilayer perceptron which imple-

ments multivariate nonlinear decision trees [Eq. (4)]. The nodes are binary and

K classes are grouped into two using the supervised exchange heuristic which

we discuss in Sec. 3. Backpropagation is used to learn parameters. To be able to

compare with other multivariate linear methods, in our simulations, we replace

the multilayer perceptron with a single layer, linear perceptron, and name such

a tree ID-LP.

(5) In OC1 (Oblique Classifier),14 an extension to CART is made to get out of

the local optima. A small random vector is added to wm once there is con-

vergence through backfitting. Adding a vector perturbs all coefficients together

and makes a conjugate jump in the coefficient space. Another extension pro-

posed is to run the method several (20–50) times and choose the best solution

in terms of impurity.

(6) In LMDT (Linear Machine Decision Trees),4 with K classes, as in FACT, a

node is allowed to have K branches. For each class, i.e. branch, there is a vector

of parameters, and the node implements a K-way split. There is an iterative

algorithm that adjusts the parameters of classes to minimize the number of

misclassifications, rather than an impurity measure as entropy or Gini.

(7) QUEST (Quick Unbiased Efficient Statistical Tree)11 is a revised version of

FACT and uses binary splits at each decision node. It solves the problem of

dividing K classes into two classes by using unsupervised 2-means clustering

on the class means of the data. QUEST also differs from FACT in the way that

it does not assume equal variances and uses Quadratic Discriminant Analysis

(QDA) to find the two roots for the split point and uses the appropriate one.

(8) LTREE (Linear Tree)7 is a multivariate decision tree algorithm with binary

splits. LTREE uses linear discriminant analysis to construct new features, which

are linear combinations of the original features. For all constructed features,

the best split is found using C4.5’s exhaustive search technique. Best of these is

selected to create the two children of the current node. These new constructed

features can also be used down the tree in the children of that node. Extensions

of this algorithm uses quadratic discriminant QTREE and logistic discriminant

LGTREE for constructing new features.

(9) CRUISE10 (Classification Rule With Unbiased Interaction Selection and Esti-

mation) is a multivariate algorithm with K-way nodes. Like FACT, CRUISE

finds K−1 splits using linear discriminant analysis. The departure from FACT

occurs when the split assigns the same class to all its K children. Because such

a split is not useful, the best next class is chosen. Another departure occurs

while assigning a class to a leaf: when there are two or more classes which

have the same number of instances in that leaf, FACT selects randomly one
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Table 1. Multivariate decision tree construction algorithms classified according
to six dimensions, which are node type (univariate, linear multivariate, nonlinear
multivariate), branching factor, grouping algorithm for grouping K > 2 classes into
two, error measure minimized, minimization method to find the direction vector w,
and minimization method to find the split point w0.

Algorithm Node Br Group Error Search w Search w0

C4.5 Uni 2 — Impurity — Exhaustive
Friedman’s Uni/Lin 2 — Kolm-Smir Analytical Analytical
CART Lin 2 — Impurity Backfitting Exhaustive
FACT Uni/Lin K — Fisher’s Analytical Analytical
ID-LP/MLP Lin/Non 2 Sup MSE Gradient Gradient
OC1 Lin 2 — Info Gain Hill climb Exhaustive
LMDT Lin K — Misclass Thermal Thermal
QUEST Uni/Lin 2 Unsup Fisher’s Analytical Analytical
Ltree Lin 2 — Info Gain Analytical Exhaustive
Cruise Uni/Lin K — Fisher’s Analytical Analytical
LDT Uni/Lin 2 Sup Fisher’s Analytical Analytical

of them but CRUISE selects the class which has not been assigned to any

leaf node.

Because the univariate is a special case of the multivariate, most of these mul-

tivariate algorithms have their univariate versions, sometimes with slight modifica-

tions. In Table 1, we compare the algorithms in terms of the six dimensions along

which these algorithms differ. These are: Node type (univariate versus multivari-

ate), branching factor (two or K, number of classes), grouping of classes into two

if the tree is binary, error (impurity) measure, and the methods for minimization

to find the best split vector and split point.

1.3. Feature extraction

The complexity of the search and the risk of overfitting can be reduced by decreasing

dimensionality through feature extraction at each node. This is different from the

usual approach in pattern recognition where feature extraction is done as a separate

process before the classifier is trained. In tree induction, it is integrated into the

training of the classifier and is done separately for each subproblem (decision node).

This makes sense as in the localized region bounded by the discriminants defined

by the nodes preceding that node in the tree, certain dimensions may not vary

significantly and the subset of the data reaching that node may effectively lie in a

lower-dimensional subspace, or certain dimensions which are not significant globally

may be quite important locally or vice versa.

In the case of a univariate node (which is feature extraction from d to one

dimension), there are d possible wm that can be used and N − 1 possible wj0, so

one can do an exhaustive search over the d × (N − 1) possible (wm, wm0). This is

done in the C4.5 algorithm.17 In its predecessor ID3 algorithm,16 the features are
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symbolic and there is only one way to split at a feature and thus there are only

d possibilities.

In a multivariate node, one can do feature selection and by reducing dimension-

ality, the complexity of search is reduced by setting the coefficients, wmj , of the

discarded dimensions to zero. One can do sequential backward search for feature

selection and get rid of features whose loss do not increase impurity significantly;

the other method is sequential forward search where one adds features one by one

until their addition does not significantly decrease impurity.2,4

1.4. Pruning

A greedy algorithm is a local search method where at each step, one tries to make

the best decision and proceeds to the next decision, never backtracking and reeval-

uating a decision after it has been made. Similarly in decision tree induction, once

a decision node is fixed, it cannot be changed after its children have been created.

This may cause suboptimal trees where, for example, subtrees are replicated. The

only exception is the pruning of the tree.

In pruning, we consider replacing a subtree with a leaf node labeled with the

class most heavily represented among the instances that are covered by the subtree.

If there is overfitting, we expect the more complex subtree to learn the noise and

perform worse than the simple leaf. If this is indeed the case on a validation set

different from the training set, then the subtree is replaced by the leaf. Otherwise

it is kept. It makes sense to start with the smaller subtrees closer to leaves and

proceed up towards the root.

This process is called post-pruning to differentiate it from pre-pruning. In post-

pruning, the tree is constructed until there is no misclassification error and then

pruned simpler. In pre-pruning, the tree is not fully constructed until zero training

error but is kept simple by early termination. At any node, if the dataset reaching

that node is small, even if it is not pure, it is not further split and a leaf node is

created instead of growing a subtree. Pre-pruning is faster. Post-pruning may be

more accurate but is slower.

Pruning uses validation to finetune model complexity. Another possibility is to

use Minimum Description Length to balance the complexity of the tree with the

complexity of the data it describes.18

1.5. Organization of the paper

This paper is organized as follows. Our proposed method linear discriminant trees

(LDT) is proposed in Sec. 2. Section 3 discusses two supervised methods by which

K > 2 classes can be divided into two so that the binary classifier through a

two-class discriminant analysis can be employed. Dataset details and comparison

criteria are given in Sec. 4. Section 5 compares the univariate version of LDT with

C4.5 and the univariate version of QUEST. Results with the multivariate version

of LDT are given in Sec. 6. In Sec. 7, we discuss the effect of univariate versus
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multivariate nodes in a tree. In Sec. 8, we compare our proposed method LDT with

C4.5, CART, OC1, LMDT, neural tree ID-LP, and QUEST in terms of accuracy,

tree size and learning time. We conclude and discuss future work in Sec. 9.

2. Linear Discriminant Trees

We hereby propose linear discriminant trees which use a statistical approach to

quickly determine the set of coefficients in a linear decision node. Finding the best

split with Fisher’s Linear Discriminant Analysis (LDA)5 is done as a nested opti-

mization problem, as in neural trees.8 In the inner optimization problem, Fisher’s

linear discriminant replaces the neural network for finding a good split for the given

two distinct groups of classes. The outer optimization problem is identical where

at each node m, we search for the best split of K classes into two groups, CL
m and

CR
m, as will be discussed in Sec. 3.

2.1. Multivariate case

The inner optimization problem of separating the two, left and right, groups is

solved by linear discriminant analysis (LDA)5 at each node of the decision tree.

Throughout this section, keep in mind that the whole discussion is conditioned on

one node and the calculations are repeated for each node as the tree is created in

a greedy manner as explained in Sec. 1.2.

In LDA, we look for the direction, as defined by w, such that when the data

is projected onto this single dimension, the two groups are as well separated as

possible. Well-separation implies that after they are projected; (i) the distance

between the two means is large, and (ii) the scatter of instances around each mean

are small.

Let us denote by mL and mL the means of instances from CL before and after

projection, respectively. Note that mL ∈ <d and mL ∈ <.

mL =
1

nL

∑

x
t∈CL

w
T
x

t = w
T
mL. (5)

There are nL samples in the left class group and nR samples in the right class

group. The scatter of samples from CL after projection is

s2

L =
∑

x
t∈CL

(wT
x

t − mL)2 (6)

= w
T SLw (7)

where

SL =
∑

x
t∈CL

(xt − mL)(xt − mL)T (8)

and s2

L/(nL − 1) is the variance of instances from CL after projection onto w.

mR, mR, SR, nR and s2

R are similarly defined. The total within-class scatter matrix

is S = SL + SR.
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Fisher’s linear discriminant is

w = S−1(mL − mR). (9)

Multiplying x with w, we make a projection from the d-dimensional space to

one dimension where we can find a suitable threshold to separate the two groups.

Assuming that the groups are normally distributed with equal variances, one can

solve for the optimal threshold w0 as

w0 = −
1

2
(mL + mR)T S−1(mL − mR) − log

nL

nR

. (10)

Another possibility is to find w0 by testing for all possible split positions to min-

imize an impurity measure like entropy or Gini, or an error measure like the number

of misclassifications. This iterative approach makes no assumption of normality or

homogeneity but may be time consuming on large training sets.

So in our proposed method which we name LDTm, at each node m, we first

divide K > 2 classes into two groups as CL
m and CR

m by an appropriate class

selection procedure (as defined in Sec. 3), then the inner optimization procedure is

carried out on Xm, the sample at node m, by LDA to find the linear split, i.e. wm

using Eq. (9) and wm0 using Eq. (10). There is no iterative training at a node to

find (wm, wm0) (as with CART, OC1, LMDT, or neural trees) but only analytical

calculations and we expect less training time with our proposed linear discriminant

trees than with other multivariate tree induction methods.

Sample multivariate split by our proposed method LDTm on the Iris dataset

(using only two dimensions for graphical purposes) is given in Fig. 1.

2.2. Problem of singularity

If there is a linear dependency between two or more features then the total within-

class scatter matrix, S, becomes singular and S−1 does not exist. A possible solu-

tion is principal component analysis (PCA),19 where we find the eigenvectors and

eigenvalues of the matrix S and get rid of the eigenvectors with zero (or very small)

eigenvalues. Let us say that the eigenvalues of the matrix S are λ1, . . . , λd, sorted

in decreasing order, and c1, . . . , cd are the associated eigenvectors. We find the k

eigenvectors that explain more than ε of the variance

λ1 + λ2 + · · · + λk

λ1 + · · · + λk + · · · + λd

> ε. (11)

The instances are then projected from the original d-dimensional space onto the

new k-dimensional space defined by multiplying with the leading k eigenvectors

zt
j = c

T
j x

t, j = 1, . . . , k. (12)

We then do LDA in this new space of zj and find the new Sz, means, and

calculate the split. Because the eigenvectors are orthogonal, the new Sz has an

inverse. Note that because PCA is also a linear mapping, the eigenvectors ci can
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Fig. 1. Sample multivariate splits generated by LDTm for Iris dataset.

be incorporated into the wmj so that there is no increase in memory need. It is

always a good idea to normalize xj to zero mean and unit variance before doing

PCA as otherwise the variance of the original dimensions, and not the correlations,

would dominate. After the projection is done, there is no need to pass over the

entire training set to compute the new covariance matrix, which is costly as it is

O(Nk2). If A is the k by d matrix whose rows are the eigenvectors, the new k by

k covariance matrix, Sz, can be found as

Sz = ASAT (13)

also the new left and right mean vectors can be found as

mLz = AmLx (14)

where mLx and mLz are the mean vectors of the left group before and after applying

PCA, respectively.

This process is also a form of feature extraction and reduces dimensionality

from d to k. In subset selection used in CART or LMDT for feature extraction, a

subset k of the original dimensions are kept. Here we find k new dimensions, zj ,

that are linear combinations of the original d dimensions, x.
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2.3. Univariate case

Note that after projecting the multivariate data on to the Fisher’s linear discrimi-

nant we have a univariate problem where the split point is found using Eq. (10). We

can use the same procedure to generate univariate decision nodes directly working

on the original features. Given a split of K classes into two, as left and right groups,

and assuming they are normally distributed, the split points are the roots of the

equation

ax2 + bx + c = 0 (15)

where

a = s2

L − s2

R

b = 2(mLs2

R − mRs2

L)

c = (mRsL)2 − (mLsR)2 + 2s2

Ls2

R log
nLsR

nRsL

. (16)

If the two groups have the same variance (as assumed in the multivariate case),

there is only one root [Eq. (10)]. If the variances are different, there are two roots

and we use the one which is between the two means. If neither of the two roots is

between the means or there are no roots of the quadratic equation, we choose the

middle point of the two means as the split point.

Since this is a univariate algorithm, we may use any feature of the dataset for

finding a split at each node. We find the corresponding splits for each feature and

select the one with the minimum entropy.

If the feature is discrete, we convert it to numeric using 1-of-N encoding and

search for the best split in all. This keeps the tree binary and in our simulations,

this works as well as making a N -way split as done in C4.5.

Figure 2 shows the splits produced by the univariate algorithm LDTu on the

two-dimensional subset of the Iris dataset. This tree has the same accuracy as the

multivariate tree of Fig. 1, indicating that going to the multivariate case may not

be necessary in some cases.

3. Class Separation

In Sec. 2, one detail we seem to have skipped over is the following: the model of

Eq. (1) makes a binary decision and we may have K > 2 classes and thus at each

node, we need to find the best way of partitioning K classes into two subsets. If

there are K classes available at a node then there are 2K−1 − 1 distinct partitions

available. This is because K bits can be written in 2K different ways; half of them

are complements of the other half and the binary string of all 0s (or all 1s) is useless.

So because the number of available partitions grows exponentially, we cannot

test for all possible partitions and need heuristics to get a reasonable partition in

polynomial time.
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Fig. 2. Univariate splits generated by LDTu for Iris dataset. The first split is at −0.39.

3.1. Selection method

The first method we use in class separation is the selection method, which is a

depth-first search method with no backtracking. Let m be a decision node and

C = {C1, . . . , CK} be the set of K classes at node m.

(1) Select two classes Ci and Cj at random and put one in CL
m and the other in CR

m.

(2) Train the discriminant (univariate or multivariate) with the given partition,

e.g. using LDA. Do not consider the instances of other classes yet.

(3) For other classes in the class list, search for the class Ck that is best placed

into one of the partitions, as quantified by an impurity measure like entropy.

(4) Add Ck to CL
m or CR

m depending on which side its instances fall more and

continue adding classes one by one using steps 2 to 4 until no more classes are

left.

This algorithm is sensitive to the initial class partition due to its depth-first

nature. As a heuristic, we take the two furthest classes, as measured by the distance

between their means, as the initial two classes. The algorithm traces steps 2 to 4

K − 2 times. So its complexity is O(K).
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This is an agglomerative algorithm where at each iteration a class is merged

with one of the two partitions. Its difference from agglomerative clustering is that

this decision is based on a supervised measure like impurity or entropy and not on

an unsupervised measure such as the distance in the input space.

3.2. Exchange method

The second class separation technique is the exchange method proposed in Ref. 8,

for neural trees. This is a local search with backtracking. Let m be a decision node

and C = {C1, . . . , CK} be the set of K classes at node m.

(1) Select an initial partition of C into CL
m and CR

m, both containing K/2 classes.

(2) Train the discriminant (univariate or multivariate) to separate CL
m and CR

m.

Compute the entropy E0 with information gain criterion.

(3) For each of the classes k ∈ {C1, . . . , CK} form the partitions CL(k) and CR(k)

by changing the assignment of the class Ck in the partitions CL
m and CR

m, i.e.

if it is in CL
m, put it in CR

m and vice versa.

(4) Find the discriminant for the partitions CL(k) and CR(k). Compute the entropy

Ek and the decrease in the entropy ∆Ek = Ek − E0.

(5) Let ∆E∗ be the maximum of the impurity decreases over all possible k and k∗

be the k causing the largest decrease. If this impurity decrease is less than zero

then exit else set CL = CL(k∗), CR = CR(k∗), and go to step 2.

In order to get a good solution in reasonable time we use a heuristic to start in

step 1, instead of starting randomly. The two classes Ci and Cj with the maximum

intermean distance are found and placed into CL
m and CR

m. For each of the classes

k ∈ {C1, . . . , Cm}, we find the one with the minimum intermean distance to CL
m or

CR
m and then we put it into that group. We repeat this second step until no more

classes are left.

The exchange method has complexity O(f × K) where f is the number of

iterations.

4. Datasets and Comparison Criteria

We have performed experiments on 20 datasets from the UCI repository.13 Table 2

describes the properties of the datasets. We have implemented all the algorithms

ourselves, except for C5.0, and our code is available for academic purposes.9

The three criteria we used for comparison are accuracy on the test set, tree

size measured in terms of the number of nodes in the tree and learning time in

seconds on a Pentium III-450 PC. For each method, we performed five two-fold

cross-validation runs on each dataset and used the 5 × 2 cv F Test1 to check for

statistically significant difference. The results of the ten runs are then averaged and

we report the mean and standard deviations, as well as checking for significance

using the test. In tables, “>”, “�” correspond to statistically significant difference

with 95 and 99% confidence respectively.
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Table 2. Description of the datasets.

Set Classes Instances Features Missing Values Feature Values

BREast 2 699 10 Yes numeric
BUPa 2 345 7 No numeric
CAR 4 1728 7 No symbolic
CYLinder 2 541 36 Yes mixed
DERmatology 6 366 35 Yes numeric
ECOli 8 336 8 No numeric
FLAre 3 323 11 No mixed
GLAss 7 214 10 No numeric
HEPatitis 2 155 20 Yes numeric
HORse 2 368 27 Yes mixed
IRIs 3 150 5 No numeric
IROnosphere 2 351 35 No numeric
MONks 2 432 7 No numeric
MUShroom 2 8124 23 Yes symbolic
OPTdigits 10 3823 64 No numeric
PENdigits 10 7494 16 No numeric
SEGment 7 2310 19 No numeric
VOTe 2 435 17 Yes symbolic
WINe 3 178 14 No numeric
ZOO 7 101 17 No numeric

If in one comparison there are more than two methods to compare, we give two

tables where in the first table the raw results are shown. When there are more than

two methods, there can be various possible orderings and we give a second table

which contains pairwise comparisons; the entry (i, j) in this second table gives the

number of datasets (out of 20) on which method i is statistically significantly better

than method j with at least 95% confidence. In the second table, row and column

sums are also given. The row sum gives the number of datasets out of 20 where

the algorithm on the row outperforms at least one of the other algorithms. The

column sum gives the number of datasets where the algorithm on the column is

outperformed by at least one of the other algorithms.

5. Comparison of Univariate Techniques

We compare the univariate version of our decision tree induction method (LDTu)

in terms of accuracy, tree size and learning time with C4.5, C5.0, and the univariate

version of QUEST. LDTu(1) assumes equal variances, LDTu(2) uses two different

variances for the left and right groups — this is actually QDA. In both cases we

use exchange algorithm for outer optimization. QUEST uses 2-means clustering

in outer optimization of the problem and assumes two different variances for the

two groups (QDA). C5.0 is a recent, improved version of C4.5 that is commercially

available,20 and we used its evaluation version that runs on datasets having less

than 400 instances.

In terms of accuracy (Table 3), LDTu and QUEST are slightly better than

C4.5. If we look at Table 4, we also see that in terms of the tree size (the number
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Table 3. Comparison of accuracies of different univariate techniques in terms of
percentage.

Set C4.5 C5.0 LDTu(1) LDTu(2) QUEST

BRE 94.68 ± 1.84 94.39 ± 1.45 94.16 ± 1.40 93.74 ± 1.65 93.76 ± 1.31
BUP 62.84 ± 3.39 62.02 ± 4.89 63.48 ± 4.85 62.09 ± 4.34 62.09 ± 4.15
CAR 86.08 ± 1.60 — 92.80 ± 1.51 92.71 ± 1.63 92.82 ± 1.65
CYL 67.29 ± 4.67 — 67.36 ± 2.75 67.84 ± 1.66 65.55 ± 5.00
DER 92.51 ± 2.42 94.37 ± 1.84 92.46 ± 2.17 92.40 ± 2.25 91.31 ± 5.53
ECO 78.27 ± 4.00 80.60 ± 4.37 78.69 ± 3.91 78.39 ± 3.26 74.94 ± 6.18
FLA 88.35 ± 2.55 88.48 ± 2.49 88.60 ± 2.72 88.60 ± 2.72 88.66 ± 2.81
GLA 60.09 ± 5.52 62.15 ± 4.89 60.00 ± 5.97 58.79 ± 5.75 59.07 ± 7.36
HEP 78.95 ± 4.48 79.99 ± 2.64 78.18 ± 5.22 77.81 ± 5.39 77.81 ± 5.39
HOR 73.80 ± 6.74 84.67 ± 2.49 83.86 ± 4.50 83.70 ± 3.88 83.86 ± 4.08
IRI 92.93 ± 3.33 92.93 ± 2.67 93.20 ± 2.22 94.00 ± 1.91 93.87 ± 2.01
IRO 86.15 ± 3.72 90.08 ± 2.35 85.52 ± 3.39 84.33 ± 4.06 84.73 ± 3.52
MON 89.81 ± 7.72 95.00 ± 10.58 86.20 ± 6.33 82.92 ± 8.33 78.84 ± 8.76
MUS 99.87 ± 0.11 — 99.86 ± 0.15 95.89 ± 5.12 95.89 ± 5.12
OPT 84.81 ± 0.84 — 84.27 ± 1.25 84.73 ± 1.04 83.46 ± 0.84
PEN 92.52 ± 0.60 — 93.24 ± 0.70 92.91 ± 0.51 92.44 ± 0.86
SEG 92.03 ± 0.93 — 92.40 ± 0.68 92.66 ± 0.78 92.24 ± 1.10
VOT 95.63 ± 0.66 95.26 ± 0.87 95.63 ± 0.66 95.63 ± 0.66 95.63 ± 0.66
WIN 86.63 ± 1.94 89.21 ± 2.50 87.98 ± 3.59 85.62 ± 5.94 86.85 ± 2.90

ZOO 82.97 ± 7.36 89.08 ± 6.22 82.97 ± 7.36 82.97 ± 7.36 83.95 ± 8.11

Method C4.5 C5.0 LDTu(1) LDTu(2) QUEST
P

C4.5 — 0 0 0 0 0
C5.0 0 — 1 1 2 2
LDTu(1) 2 0 — 0 0 2
LDTu(2) 1 0 0 — 0 1
QUEST 1 0 0 0 — 1
P

2 0 1 1 2

of nodes in the tree), the two also seem to generate smaller trees than C4.5. In

terms of learning time (Table 5), we see that both LDTu and QUEST run faster

than C4.5 as the two former calculate for the split point analytically whereas C4.5

tries all possible Nm − 1 splits. In this univariate case, QUEST runs faster than

LDTu as the 2-means clustering is faster than the exchange heuristic. On the small

datasets where we could run it, C5.0 is not significantly more accurate than C4.5

but is slightly more accurate than LDTu and QUEST; in terms of tree size, C4.5

and C5.0 trees seem comparable.

We see that there is no significant difference between the two versions of LDTu

and thus assuming equal variances is not harmful, even for the univariate case, if the

splitting into two is done using a supervised measure, as the exchange heuristic does.

6. Results with Multivariate Linear Discriminant Trees

Before comparing it with other multivariate linear trees, we investigate the effect

of various choices on the multivariate version of our algorithm, LDTm.
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Table 4. Comparison of tree sizes measured by the number of nodes (decision
nodes + leaves) of different univariate techniques.

Set C4.5 C5.0 LDTu(1) LDTu(2) QUEST

BRE 13.0 ± 5.0 10.8 ± 3.7 9.8 ± 3.7 10.8 ± 4.5 12.8 ± 6.3

BUP 17.4 ± 12.5 20.4 ± 10.2 26.0 ± 10.9 17.2 ± 10.2 17.6 ± 7.5
CAR 89.4 ± 10.4 — 61.2 ± 7.3 60.6 ± 9.2 60.4 ± 10.6
CYL 20.8 ± 8.7 — 25.6 ± 13.7 27.0 ± 12.9 22.0 ± 12.9
DER 12.4 ± 1.3 14.0 ± 1.4 12.4 ± 1.3 12.4 ± 1.3 12.2 ± 1.7
ECO 14.2 ± 4.6 14.2 ± 4.2 17.2 ± 10.7 17.6 ± 9.5 15.2 ± 6.0
FLA 4.7 ± 6.0 1.4 ± 0.8 1.6 ± 1.3 1.6 ± 1.3 2.4 ± 2.7
GLA 14.2 ± 4.0 23.0 ± 3.8 17.6 ± 7.4 15.6 ± 6.3 17.4 ± 4.6
HEP 2.8 ± 2.4 7.0 ± 2.5 3.2 ± 3.8 4.8 ± 4.7 4.8 ± 4.7
HOR 37.5 ± 19.5 8.8 ± 4.8 7.2 ± 4.6 8.4 ± 5.4 7.6 ± 4.2
IRI 5.4 ± 0.8 5.4 ± 0.8 6.4 ± 2.7 5.8 ± 1.4 6.4 ± 2.1
IRO 7.6 ± 2.7 16.6 ± 3.5 8.4 ± 4.7 10.6 ± 3.9 12.0 ± 6.5
MON 26.8 ± 12.3 12.6 ± 5.1 32.0 ± 10.2 36.6 ± 12.8 39.4 ± 13.5
MUS 26.8 ± 2.0 — 18.0 ± 2.4 15.0 ± 4.4 14.6 ± 4.0
OPT 107.4 ± 9.9 — 116.8 ± 14.1 117.2 ± 13.3 130.2 ± 14.3
PEN 134.4 ± 13.5 — 150.2 ± 15.4 154.0 ± 11.6 188.6 ± 15.3
SEG 42.8 ± 7.0 — 51.6 ± 8.9 56.8 ± 9.1 62.8 ± 9.1
VOT 4.0 ± 2.2 6.0 ± 2.2 4.0 ± 2.2 4.0 ± 2.2 4.0 ± 2.2
WIN 6.8 ± 2.6 8.6 ± 2.1 7.4 ± 1.6 7.4 ± 1.3 7.2 ± 1.5
ZOO 9.2 ± 2.4 11.8 ± 1.4 9.2 ± 2.4 9.2 ± 2.4 9.6 ± 2.7

Method C4.5 C5.0 LDTu(1) LDTu(2) QUEST
P

C4.5 — 1 0 0 2 3
C5.0 0 — 1 1 1 1
LDTu(1) 2 1 — 0 1 4
LDTu(2) 2 1 0 — 0 3
QUEST 2 1 0 0 — 3
P

2 2 1 1 2

In Sec. 6.1, we compare the two class separation heuristics; selection and

exchange. The effect of ε, the proportion of variance explained, that determines

the dimensionality in feature extraction through PCA, is analyzed in Sec. 6.2.

Section 6.3 compares the effect of two different pruning techniques, prepruning

and postpruning on LDTm. In Sec. 6.4, we compare finding the split point, w0,

analytically with doing an exhaustive search.

6.1. Class separation

The aim of this section is to find the effect of the class separation technique; selection

or exchange, discussed in Sec. 3. Other variables such as impurity measure (entropy)

or pruning technique (post-pruning) and the learning method (LDTm) are fixed. If

there are only two classes available in a dataset, this is not included in the results

because there is no need for class separation.

The fact that the goodness of partition of classes into two is measured by entropy

and that the best split is then found using LDA may seem awkward but this is
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Table 5. Comparison of learning times of different univariate
techniques in terms of seconds.

Set C4.5 C5.0 LDTu(1) LDTu(2) QUEST

BRE 1 ± 0 0 ± 0 1 ± 0 1 ± 0 1 ± 0
BUP 1 ± 0 0 ± 0 1 ± 0 1 ± 0 1 ± 0
CAR 11 ± 1 — 17 ± 2 19 ± 3 15 ± 1
CYL 5 ± 0 — 13 ± 2 14 ± 3 16 ± 2
DER 1 ± 0 0 ± 0 5 ± 1 5 ± 1 2 ± 0
ECO 1 ± 0 0 ± 0 2 ± 0 2 ± 0 1 ± 0
FLA 1 ± 0 0 ± 0 2 ± 1 2 ± 0 2 ± 0
GLA 1 ± 0 0 ± 0 1 ± 0 1 ± 0 1 ± 0
HEP 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
HOR 2 ± 0 0 ± 0 10 ± 2 10 ± 1 12 ± 1
IRI 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
IRO 1 ± 0 0 ± 0 2 ± 0 2 ± 1 2 ± 0
MON 1 ± 1 0 ± 0 2 ± 1 2 ± 1 2 ± 1
MUS 12 ± 2 — 216 ± 30 221 ± 42 263 ± 23
OPT 145 ± 8 — 926 ± 143 922 ± 202 243 ± 15
PEN 110 ± 8 — 292 ± 42 317 ± 52 179 ± 9
SEG 12 ± 1 — 46 ± 6 49 ± 14 22 ± 1
VOT 8 ± 2 0 ± 0 2 ± 0 2 ± 0 2 ± 0
WIN 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

ZOO 0 ± 0 0 ± 0 0 ± 0 1 ± 0 0 ± 0

Method C4.5 C5.0 LDTu(1) LDTu(2) QUEST
P

C4.5 — 0 12 14 12 17
C5.0 14 — 14 13 14 14
LDTu(1) 1 0 — 3 0 3
LDTu(2) 1 0 0 — 0 1
QUEST 2 0 6 6 — 9
P

14 0 20 20 20

because the two-class LDA splits two groups and it cannot be used to measure

the separability of K > 2 classes. Entropy as we use measures the goodness of the

separation of all K classes.

In none of the datasets, the selection method is more accurate than the exchange

method in accuracy (Table 6). The exchange method is more accurate than selection

method in three datasets out of 11. Two of these datasets, Optdigits and Pendigits,

have ten classes and the other dataset, Ecoli, has eight classes. So it seems like the

more classes there are, the better is the exchange method compared to the selection

method, due to the large number of division candidates.

If the tree sizes are compared (Table 7), it is also seen that in two datasets,

Pendigits and Segment (which has seven classes), out of 11, the exchange method

is better while the selection method is never better.

Although the exchange method has larger time complexity, both methods per-

formed similarly in terms of learning time (Table 8). This is due to the large tree

size of the selection method, which is in turn because early on, the selection method

cannot find splits as good as the exchange method, and generates larger trees.
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Table 6. Accuracy comparison of class separation
techniques. “>” and “�” implies 95% and 99% sig-
nificant difference respectively.

Set Selection Exchange Significance

CAR 81.35 ± 2.93 84.03 ± 4.58
DER 92.24 ± 4.91 96.12 ± 0.98
ECO 70.42 ± 7.58 78.57 ± 2.98 2 > 1
FLA 88.79 ± 2.51 88.85 ± 2.47
GLA 51.21 ± 9.43 55.98 ± 7.96
IRI 66.40 ± 30.69 95.07 ± 3.27
OPT 60.56 ± 9.67 91.22 ± 0.64 2 � 1
PEN 77.38 ± 5.46 94.92 ± 0.78 2 � 1
SEG 76.77 ± 7.62 90.20 ± 1.04
WIN 89.21 ± 11.02 96.63 ± 2.90
ZOO 71.08 ± 14.89 75.42 ± 9.87

Table 7. Tree size comparison of class separation tech-
niques, in terms of the number of nodes in the induced tree.

Set Selection Exchange Significance

CAR 10.20 ± 6.81 8.80 ± 4.16
DER 11.80 ± 2.15 11.20 ± 0.63
ECO 12.40 ± 4.90 10.20 ± 1.93
FLA 1.40 ± 1.26 1.00 ± 0.00
GLA 12.40 ± 6.87 12.20 ± 6.27
IRI 6.40 ± 4.33 5.80 ± 1.40
OPT 59.60 ± 14.42 43.20 ± 11.29
PEN 120.60 ± 25.12 67.00 ± 14.08 1 > 2
SEG 49.00 ± 8.69 26.00 ± 8.12 1 � 2
WIN 4.60 ± 1.26 5.00 ± 0.00
ZOO 7.40 ± 3.37 7.20 ± 1.99

Table 8. Learning time comparison of class separation tech-
niques, in terms of the number of seconds it takes to learn
the tree.

Set Selection Exchange Significance

CAR 20 ± 11 17 ± 9
DER 7 ± 3 8 ± 4

ECO 3 ± 1 3 ± 1
FLA 1 ± 1 1 ± 1
GLA 2 ± 2 4 ± 3
IRI 0 ± 0 0 ± 0
OPT 2011 ± 618 2594 ± 1076
PEN 1421 ± 420 957 ± 334
SEG 131 ± 36 109 ± 67 1 � 2
WIN 0 ± 0 0 ± 0
ZOO 1 ± 0 1 ± 0



April 26, 2005 21:11 WSPC/115-IJPRAI SPI-J068 00412

340 O. T. Yıldız & E. Alpaydın

Thus we can conclude that the exchange method generalizes better and learns

smaller and more accurate trees on some applications but not on the majority.

6.2. Effect of PCA

In Sec. 2.2, we saw that PCA must be used to solve the singular covariance matrix

problem. In this section, we compare the two percentage levels ε = 0.90 and ε = 0.99

and find out its effect. With ε = 0.99, we only get rid of singularity; with ε = 0.90,

we also do dimensionality reduction. On Breast, Bupa, Iris, Wine, PCA is never

needed. The results on the other sixteen datasets are shown in Table 9 for accuracy,

in Table 10 for tree sizes, and in Table 11 for learning time.

Results show that increasing ε from 0.90 to 0.99 improves accuracy (on eight

out of 16) but does not significantly increase the tree size or learning time. Thus

we propose to use a large ε as possible, just enough to get rid of the eigenvectors

with zero eigenvalues, but not any eigenvector contributing to variance.

6.3. Effect of pruning

In this section, we wish to find out which pruning technique best fits with our

new proposed algorithm LDT. Therefore we tested LDT with two different pruning

techniques; pre-pruning and post-pruning.

For post-pruning, the validation set is 20% of the whole training set. For pre-

pruning we stop splitting further when the data on a node is smaller than 5% of

the total number of elements in the dataset.

Simulation results are given in Table 12 for accuracy, Table 13 for tree size

and Table 14 for learning time. The results show that there is not a significant

Table 9. The effect of ε in LDT on accuracies on datasets
where PCA is used.

Set ε = 0.90 ε = 0.99 Significance

CAR 70.03 ± 1.75 84.03 ± 4.58 2 > 1
CYL 65.43 ± 3.91 67.32 ± 3.78 2 > 1

DER 92.90 ± 1.65 96.12 ± 0.98 2 > 1
ECO 79.94 ± 3.64 78.57 ± 2.98
FLA 88.60 ± 2.72 88.85 ± 2.47
GLA 57.01 ± 7.19 55.98 ± 7.96
HEP 82.83 ± 3.66 81.03 ± 6.65
HOR 74.95 ± 3.37 79.62 ± 6.40
IRO 85.75 ± 3.20 87.12 ± 4.16
MON 73.38 ± 3.45 73.56 ± 3.58
MUS 95.90 ± 1.27 98.64 ± 0.22 2 � 1
OPT 86.44 ± 0.89 91.22 ± 0.64 2 � 1
PEN 91.93 ± 0.65 94.92 ± 0.78 2 � 1
SEG 82.02 ± 2.38 90.20 ± 1.04 2 > 1
VOT 89.24 ± 1.84 94.44 ± 2.32 2 � 1
ZOO 75.44 ± 8.05 75.42 ± 9.87
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Table 10. The effect of ε in LDT on tree size (number of
nodes) on datasets where PCA is used.

Set ε = 0.90 ε = 0.99 Significance

CAR 1.20 ± 0.63 12.00 ± 2.54 2 � 1

CYL 6.60 ± 5.15 16.40 ± 8.95
DER 12.60 ± 1.58 12.80 ± 1.48
ECO 10.40 ± 3.13 20.00 ± 2.71
FLA 1.40 ± 1.26 5.60 ± 3.13
GLA 10.40 ± 4.90 26.20 ± 4.44
HEP 2.40 ± 1.35 8.60 ± 3.10
HOR 7.20 ± 5.20 16.80 ± 4.05
IRO 4.20 ± 1.40 11.60 ± 2.67
MON 6.60 ± 1.58 7.80 ± 4.13
MUS 18.60 ± 4.60 19.20 ± 4.85
OPT 49.40 ± 9.28 59.40 ± 2.07 1 > 2
PEN 79.20 ± 10.39 89.00 ± 6.25
SEG 46.40 ± 11.28 39.80 ± 11.08
VOT 4.00 ± 1.05 9.80 ± 2.53
ZOO 6.40 ± 1.65 11.80 ± 1.93

Table 11. The effect of ε in LDT on learning time (sec-
onds) on datasets where PCA is used.

Set ε = 0.90 ε = 0.99 Significance

CAR 2 ± 3 17 ± 9
CYL 32 ± 13 33 ± 15
DER 7 ± 2 8 ± 4
ECO 2 ± 1 3 ± 1
FLA 1 ± 0 1 ± 1
GLA 2 ± 1 4 ± 3
HEP 0 ± 0 1 ± 0
HOR 23 ± 21 34 ± 23
IRO 2 ± 1 4 ± 3
MON 2 ± 1 2 ± 2
MUS 1041 ± 132 3423 ± 1424
OPT 1838 ± 257 2594 ± 1076
PEN 720 ± 85 957 ± 334
SEG 133 ± 33 109 ± 67
VOT 5 ± 3 3 ± 1
ZOO 1 ± 0 1 ± 0

difference between pre-pruning and post-pruning in terms of accuracy and learning

time, whereas post-pruning trees are significantly smaller than pre-pruning trees in

seven datasets out of 20. So we can say that post-pruning has better performance

than pre-pruning with LDT.

6.4. Finding the split point

In our proposed algorithm, after we find the weights wm of the linear split at any

node using LDA, we must also determine the split point w0. In this case we have
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Table 12. Comparison of accuracies in terms of percentage.
The table shows the results for pre-pruning and post-pruning.

Set Pre-pruning Post-pruning Significance

BRE 95.97 ± 0.69 95.88 ± 1.00
BUP 62.49 ± 6.67 60.92 ± 4.01
CAR 84.56 ± 5.98 84.03 ± 4.58
CYL 69.65 ± 2.89 67.32 ± 3.78
DER 96.50 ± 0.97 96.12 ± 0.98
ECO 82.68 ± 3.13 78.57 ± 2.98
FLA 87.68 ± 1.88 88.85 ± 2.47
GLA 55.98 ± 5.89 55.98 ± 7.96
HEP 84.78 ± 2.83 81.03 ± 6.65
HOR 81.79 ± 1.74 79.62 ± 6.40
IRI 93.73 ± 9.15 95.07 ± 3.27
IRO 88.60 ± 3.26 87.12 ± 4.16
MON 74.77 ± 1.62 73.56 ± 3.58
MUS 98.47 ± 0.36 98.64 ± 0.22
OPT 92.04 ± 1.16 91.22 ± 0.64
PEN 92.87 ± 1.10 94.92 ± 0.78 2 > 1
SEG 90.48 ± 1.43 90.20 ± 1.04
VOT 94.94 ± 2.42 94.44 ± 2.32
WIN 96.18 ± 2.44 96.63 ± 2.90

ZOO 81.79 ± 7.77 75.42 ± 9.87

Table 13. Comparison of tree sizes in terms of number
of nodes. The table shows the results for pre-pruning and
post-pruning.

Set Pre-pruning Post-pruning Significance

BRE 7.2 ± 0.6 4.4 ± 1.6
BUP 8.8 ± 3.2 2.8 ± 2.0 1 � 2
CAR 12.6 ± 7.0 8.8 ± 4.2

CYL 13.0 ± 4.7 6.6 ± 4.0
DER 14.2 ± 1.0 11.2 ± 0.6 1 > 2
ECO 20.6 ± 5.5 10.2 ± 1.9 1 > 2
FLA 5.8 ± 2.5 1.0 ± 0.0
GLA 21.0 ± 5.7 12.2 ± 6.3 1 > 2
HEP 7.2 ± 3.7 2.4 ± 1.3
HOR 15.4 ± 4.5 3.4 ± 2.1 1 � 2
IRI 6.8 ± 3.0 5.8 ± 1.4
IRO 11.0 ± 3.3 4.6 ± 1.6 1 > 2
MON 7.8 ± 4.1 6.6 ± 1.8
MUS 25.2 ± 3.8 21.4 ± 5.1
OPT 87.6 ± 7.5 43.2 ± 11.3 1 � 2
PEN 90.4 ± 19.9 67.0 ± 14.1
SEG 39.6 ± 9.0 26.0 ± 8.1
VOT 11.2 ± 4.2 4.2 ± 1.4
WIN 6.6 ± 1.3 5.0 ± 0.0
ZOO 12.2 ± 3.0 7.2 ± 2.0
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Table 14. Comparison of learning times in terms of sec-
onds. The table shows the results for pre-pruning and
post-pruning.

Set Pre-pruning Post-pruning Significance

BRE 1 ± 0 2 ± 1
BUP 1 ± 1 1 ± 1
CAR 13 ± 8 17 ± 9
CYL 24 ± 21 33 ± 15
DER 8 ± 2 8 ± 4
ECO 3 ± 1 3 ± 1
FLA 1 ± 1 1 ± 1
GLA 3 ± 1 4 ± 3
HEP 1 ± 1 1 ± 0
HOR 42 ± 36 34 ± 23
IRI 0 ± 0 0 ± 0
IRO 6 ± 4 4 ± 3
MON 1 ± 1 2 ± 2
MUS 1457 ± 389 3423 ± 1424
OPT 1961 ± 718 2594 ± 1076
PEN 737 ± 391 957 ± 334
SEG 83 ± 33 109 ± 67
VOT 5 ± 3 3 ± 1

WIN 1 ± 0 0 ± 0
ZOO 1 ± 0 1 ± 0

two choices: either we use Eq. (7) and find w0 analytically which assumes that the

two groups are normal with equal variances; or, we can search through all possible

split points, as in C4.5, to minimize impurity. In this section we compare these two

alternatives. Keeping all other factors same, we generate trees analytically using

Eq. (7) and by doing an exhaustive search, and compare the induced trees.

In terms of accuracy (Table 15), there is not any significant difference between

two methods. Only on Ecoli dataset, exhaustive search is significantly better than

the analytic method. This is expected as LDA gives the optimal separating dis-

criminant if the two groups are normal distributed with equal covariance matrices.5

The class parameters, i.e. mean and scatter, and the separating discriminant are

estimated to maximize the likelihood and assuming a shared covariance matrix.

Exhaustive search looks for a split to minimize entropy. Finding the vector to opti-

mize one criterion and then finding the split point to optimize another is disturbing.

Doing them both under the same assumption of normality makes more sense and

should be preferred.

In terms of tree sizes (Table 16), analytical method creates smaller trees on

two out of twenty datasets. Learning time results (Table 17) show that exhaustive

search is always slower than analytical method but the difference is significant in

six datasets out of twenty. These are not necessarily the large datasets. It seems

that it is the matrix operations necessary to find the linear discriminant (which

is a function of the input dimensionality, i.e. O(d2), and not the training set size)
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Table 15. Comparison of accuracies in terms of percent-
age. The table shows the results for analytical versus
exhaustive methods of split point selection.

Set Analytical Exhaustive Significance

BRE 95.88 ± 1.00 96.57 ± 0.74
BUP 60.92 ± 4.01 66.03 ± 3.91
CAR 84.03 ± 4.58 89.10 ± 1.34
CYL 67.32 ± 3.78 66.39 ± 4.43
DER 96.12 ± 0.98 96.28 ± 1.85
ECO 78.57 ± 2.98 79.40 ± 3.25 2 > 1
FLA 88.85 ± 2.47 88.48 ± 2.32
GLA 55.98 ± 7.96 55.98 ± 4.14
HEP 81.03 ± 6.65 81.68 ± 4.80
HOR 79.62 ± 6.40 79.89 ± 6.13
IRI 95.07 ± 3.27 94.27 ± 2.18
IRO 87.12 ± 4.16 86.03 ± 4.03
MON 73.56 ± 3.58 78.10 ± 4.37
MUS 98.64 ± 0.22 98.43 ± 0.45
OPT 91.22 ± 0.64 91.36 ± 0.66
PEN 94.92 ± 0.78 95.39 ± 0.47
SEG 90.20 ± 1.04 92.74 ± 1.34
VOT 94.44 ± 2.32 93.51 ± 2.71

WIN 96.63 ± 2.90 95.51 ± 3.00
ZOO 75.42 ± 9.87 76.25 ± 9.26

Table 16. Comparison of tree sizes in terms of number
of nodes. The table shows the results for analytical versus
exhaustive methods of split point selection.

Set Analytical Exhaustive Significance

BRE 4.4 ± 1.6 4.0 ± 2.2
BUP 2.8 ± 2.0 14.0 ± 10.1
CAR 8.8 ± 4.2 21.2 ± 5.8 2 > 1

CYL 6.6 ± 4.0 12.0 ± 9.0
DER 11.2 ± 0.6 11.4 ± 0.8
ECO 10.2 ± 1.9 11.4 ± 2.8
FLA 1.0 ± 0.0 1.8 ± 2.5
GLA 12.2 ± 6.3 11.4 ± 5.2
HEP 2.4 ± 1.3 2.6 ± 2.1
HOR 3.4 ± 2.1 5.4 ± 4.0 2 > 1
IRI 5.8 ± 1.4 5.0 ± 0.0
IRO 4.6 ± 1.6 5.0 ± 2.1
MON 6.6 ± 1.8 15.0 ± 8.8
MUS 21.4 ± 5.1 24.2 ± 5.8
OPT 43.2 ± 11.3 44.0 ± 5.6
PEN 67.0 ± 14.1 74.8 ± 9.3
SEG 26.0 ± 8.1 37.4 ± 7.5
VOT 4.2 ± 1.4 5.0 ± 2.3
WIN 5.0 ± 0.0 5.0 ± 0.0
ZOO 7.2 ± 2.0 8.0 ± 2.4
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Table 17. Comparison of learning times in terms of sec-
onds. The table shows the results for analytical versus
exhaustive methods of split point selection.

Set Analytical Exhaustive Significance

BRE 2 ± 1 3 ± 1
BUP 1 ± 1 11 ± 3 2 � 1
CAR 17 ± 9 95 ± 21 2 � 1
CYL 33 ± 15 116 ± 23 2 � 1
DER 8 ± 4 9 ± 1
ECO 3 ± 1 6 ± 1 2 � 1
FLA 1 ± 1 14 ± 5 2 > 1
GLA 4 ± 3 6 ± 1
HEP 1 ± 0 1 ± 1
HOR 34 ± 23 31 ± 8
IRI 0 ± 0 0 ± 0
IRO 4 ± 3 12 ± 2 2 � 1
MON 2 ± 2 16 ± 5
MUS 3423 ± 1424 3348 ± 695
OPT 2594 ± 1076 2453 ± 353
PEN 957 ± 334 1226 ± 177
SEG 109 ± 67 194 ± 11
VOT 3 ± 1 5 ± 2

WIN 0 ± 0 0 ± 0
ZOO 1 ± 0 1 ± 0

Table 18. Number of univariate and multivariate nodes, and percentage of the
multivariate nodes to all nodes in the hybrid tree according to the specified rules.

Rule Uni Multi Multi%

Level of the node ≤4 835 156 16%
Level of the node >4 1211 42 3%

Number of data in the node ≥500 65 79 55%
Number of data in the node <500 1981 119 6%

Number of classes in the node >5 228 140 38%
Number of classes in the node ≤5 1818 58 3%

Ratio of training examples in the node >%20 620 130 17%
Ratio of training examples in the node ≤%20 1426 68 5%

that dominates the learning time and not the exhaustive search to find w0 (which

is O(N)).

We thus conclude that exhaustive search method for split point selection does

not offer any significant difference and sometimes it also increases learning time.

7. Univariate versus Multivariate Nodes

We wrote in the introduction that there is a dependency between the complexity

of a node and the size of the tree: with complex nodes the tree may be quite small;

with simple nodes one may grow large trees. However, a complex model with a
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larger number of parameters requires a larger training dataset and risks overfitting

on a small amount of data. Each node type has a certain bias (axis-aligned versus

arbitrary oblique split) and may be appropriate in a different situation.

The aim of this section is to investigate which type of node is better under

which circumstances. To see this, at each node, we train and compare two possible

nodes; univariate and linear multivariate, and use the 5 × 2 cv F test, to choose

one. We then continue tree induction recursively in the same manner. Only if the

test indicates that the multivariate node has better accuracy with at least 95%

significance do we choose the multivariate node, otherwise we choose the univariate

node due to its simplicity. We investigate this approach of a hybrid tree in more

detail in Ref. 21 and call it the omnivariate decision tree which is composed of

multivariate nonlinear, multivariate linear and univariate nodes. In this study, we

only allow multivariate linear and univariate nodes, and our aim is to use it to

understand which type of node is better when.

Running this algorithm ten times over all 30 datasets, there are a total of 2,244

internal decision nodes which may be thought of as 2,244 different problems on

which the two node types are compared. Analyzing the nature of the problem and

the decision made, i.e. the chosen node type, we try to find out the conditions

leading to the two types of nodes.

Table 19 shows the proportion of univariate and multivariate nodes. We see that

overall 90% of the nodes are univariate and only 10% of the nodes are multivariate

Table 19. Number of univariate and multi-
variate nodes in the hybrid tree.

Set Uni Multi

BRE 3.6 ± 1.1 0.0 ± 0.0
BUP 10.2 ± 3.5 0.2 ± 0.4
CAR 24.8 ± 4.2 0.5 ± 0.7
CYL 10.4 ± 5.7 0.3 ± 0.5

DER 4.6 ± 1.0 0.8 ± 0.4
ECO 5.2 ± 2.8 0.0 ± 0.0
FLA 0.3 ± 0.7 0.0 ± 0.0
GLA 6.1 ± 2.1 0.4 ± 0.7
HEP 0.9 ± 1.9 0.0 ± 0.0
HOR 2.9 ± 1.7 0.1 ± 0.3
IRI 2.2 ± 0.8 0.1 ± 0.3
IRO 4.1 ± 2.2 0.0 ± 0.0
MON 10.1 ± 2.8 0.2 ± 0.4
MUS 8.3 ± 1.6 1.5 ± 1.3
OPT 22.1 ± 6.0 8.4 ± 1.3
PEN 55.7 ± 5.9 5.5 ± 1.8
SEG 20.8 ± 3.3 2.4 ± 0.8
VOT 1.4 ± 1.2 0.1 ± 0.3
WIN 2.7 ± 0.7 0.0 ± 0.0
ZOO 2.9 ± 0.7 0.7 ± 0.7
P

199.3 21.2
% 90.4 9.6
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nodes. On six datasets, multivariate nodes are never selected. This indicates that

most problems can be solved univariate only.

We then want to find a connection between the attributes of the datasets and

the type of nodes selected in hybrid decision tree. The attributes of datasets are:

(1) Level of the node, (2) Number of features, (3) Number of classes, (4) Number

of classes in that node, (5) Total number of training samples for that dataset,

(6) Number of training examples in that node, and (7) The ratio of the training

examples of that node to the total number of training examples of the whole dataset.

Taking these inputs and the node type as the class code, we run the C4.5 algo-

rithm on this sample of 2,244 instances to check if we can find simple explanatory

rules. Unfortunately, the generated decision tree is not so simple. It has 65 nodes.

But analyzing the tree on a feature basis, we find simple rules using a single feature

that give us information. According to the decision tree, we see that the probabil-

ity of using a multivariate node increases (over its prior probability of 10%) when

(Table 18)

• The number of training samples in that node is over 500.

• The number of classes in that node is larger than five.

• The ratio of the training examples is larger than 20%.

• The level of the node is smaller than or equal to four.

As shown in Fig. 3, we see that multivariate nodes, when they appear, they

do so early on in the tree closer to the root where there is enough data. This is

expected because as we go down the tree, we have easier problems (having less

classes) in effectively smaller-dimensional subspaces and at the same time, we have

smaller training data and multivariate model overfits and simple, e.g. univariate,

splits suffice and generalize better. It seems like it is not the training set percentage

per se that affects the node type but rather the number of data instances. It may also

be said that when there are more classes, separating them is a more complicated

task and the multivariate split is preferred over the univariate split. Of course,

whether a univariate or a multivariate node is more appropriate depends actually

on the complexity of the unknown discriminant we are approximating and this

complexity is only partially reflected by the number of classes or the number of

training examples. The moral we would like to convey is that a univariate model

may be sufficient for most nodes during tree construction but a judicious use of the

multivariate node may make the tree smaller and more accurate.

8. Overall Comparison of Decision Tree Methods

The seven decision tree construction methods both univariate and multivariate, are

compared. These are: univariate C4.5, multivariate linear CART, oblique classifier

OC1, neural trees with single layer perceptron nodes ID-LP, linear machine decision

trees LMDT, and the multivariate versions of QUEST and our algorithm LDT. We
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Fig. 3. The percentage of multivariate nodes as a function of level in the tree, data size in the
node, number of classes in the node, and the percentage of training set reaching to the node. The
default probability of 10% is shown dashed. We see that the more complex multivariate node is
used early in the tree, when there is enough data, and/or if the number of classes is large.

use exchange method for class separation in training ID-LP and LDTm. We always

use post-pruning. In LDT, when PCA is used, we take ε = 0.99.

In Table 20, we see that the accuracies of C4.5, LDT, QUEST, ID-LP and LMDT

are nearly equal and they seem to outperform CART and OC1. LDT, QUEST and

ID-LP construct K-way classification using binary splits and generalize as well as

the K-way splitting LMDT.

In Table 21, we see that C4.5 constructs the smallest trees in terms of the

number of parameters. After C4.5, the smallest trees are constructed by LDT and

ID-LP. LMDT performs better than OC1 and QUEST, which perform better than

CART.

Table 22 shows the comparison of learning time of the methods. CART and OC1

take the most time in learning, whereas C4.5 and LMDT have the smallest learning

time. Remember again that this is due to the K-way splitting nodes of LMDT.

LDT and ID-LP with binary nodes are reasonably fast. All multivariate methods

except LDT and QUEST in training a decision node are iterative, i.e. they optimize

iteratively an error function, and have no guarantee of converging to the optimum
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Table 20. Comparison of accuracies of different decision tree methods in terms of percentage.

Set C4.5 CART ID-LP LMDT OC1 QUEST LDT

BRE 94.7 ± 1.8 94.9 ± 1.4 96.3 ± 0.8 96.0 ± 1.0 95.9 ± 0.8 96.2 ± 0.7 95.9 ± 1.0
BUP 62.8 ± 3.4 61.7 ± 3.4 64.2 ± 3.8 60.6 ± 4.1 63.1 ± 2.8 62.4 ± 4.8 60.9 ± 4.0
CAR 86.1 ± 1.6 83.8 ± 2.0 92.7 ± 1.8 85.5 ± 1.7 87.2 ± 2.0 85.5 ± 2.0 84.0 ± 4.6
CYL 67.3 ± 4.7 59.5 ± 4.1 69.2 ± 2.8 68.9 ± 2.6 64.7 ± 3.7 68.3 ± 2.4 67.3 ± 3.8
DER 92.5 ± 2.4 80.9 ± 4.6 97.2 ± 1.0 95.6 ± 1.7 78.0 ± 4.8 96.3 ± 1.3 96.1 ± 1.0
ECO 78.3 ± 4.0 74.6 ± 3.8 80.0 ± 4.1 78.3 ± 5.6 76.5 ± 3.2 78.6 ± 2.9 78.6 ± 3.0
FLA 88.4 ± 2.6 81.6 ± 3.6 88.1 ± 2.7 88.9 ± 2.5 87.7 ± 2.7 88.6 ± 2.4 88.9 ± 2.5
GLA 60.1 ± 5.5 53.9 ± 4.2 57.4 ± 7.5 54.5 ± 3.6 56.5 ± 6.4 57.3 ± 5.9 56.0 ± 8.0
HEP 79.0 ± 4.5 79.0 ± 4.0 81.6 ± 4.4 79.4 ± 4.1 80.4 ± 3.3 83.7 ± 4.4 81.0 ± 6.7
HOR 73.8 ± 6.7 77.0 ± 3.0 80.0 ± 6.6 79.7 ± 6.5 81.0 ± 6.9 80.8 ± 6.5 79.6 ± 6.4
IRI 92.9 ± 3.3 89.3 ± 4.4 95.5 ± 2.4 85.7 ± 9.2 92.8 ± 5.0 95.5 ± 1.8 95.1 ± 3.3
IRO 86.2 ± 3.7 86.8 ± 4.0 87.9 ± 2.8 85.2 ± 3.0 85.5 ± 3.7 85.9 ± 2.9 87.1 ± 4.2
MON 89.8 ± 7.7 91.2 ± 6.9 72.3 ± 5.7 71.1 ± 6.3 80.4 ± 3.2 77.5 ± 6.1 73.6 ± 3.6
MUS 99.9 ± 0.1 93.5 ± 1.8 100.0 ± 0.0 100.0 ± 0.1 99.4 ± 0.3 98.5 ± 0.2 98.6 ± 0.2
OPT 84.8 ± 0.8 81.4 ± 2.1 92.4 ± 0.8 93.1 ± 0.9 72.3 ± 2.7 91.3 ± 0.6 91.2 ± 0.6
PEN 92.5 ± 0.6 87.1 ± 2.9 94.9 ± 2.8 95.9 ± 0.8 89.0 ± 0.4 96.0 ± 0.3 94.9 ± 0.8
SEG 92.0 ± 0.9 88.1 ± 1.7 87.6 ± 10.7 90.2 ± 0.9 87.0 ± 1.7 89.1 ± 1.3 90.2 ± 1.0
VOT 95.6 ± 0.7 90.3 ± 3.2 95.5 ± 0.9 94.8 ± 0.8 93.4 ± 1.6 94.4 ± 2.2 94.4 ± 2.3
WIN 86.6 ± 1.9 87.3 ± 4.4 96.1 ± 1.9 94.0 ± 2.4 85.4 ± 4.0 95.7 ± 2.6 96.6 ± 2.9
ZOO 83.0 ± 7.4 70.0 ± 9.7 79.2 ± 9.6 83.8 ± 7.3 72.0 ± 10.9 74.5 ± 7.4 75.4 ± 9.9

Method C4.5 CART ID-LP LMDT OC1 QUEST LDT
P

C4.5 — 5 0 2 5 2 2 7
CART 0 — 1 1 0 0 1 2
ID-LP 5 7 — 1 5 2 1 7
LMDT 3 6 0 — 4 1 1 7
OC1 0 2 0 1 — 0 0 2
QUEST 2 7 0 0 3 — 0 7
LDT 3 6 0 1 4 0 — 6
P

4 10 1 3 7 3 3

point and there is thus a problem of when to stop training. LDT and QUEST solve

for the discriminant analytically and have no such problem.

LDT has a learning time complexity of O(Nd2) for constructing the covariance

matrix (which is the costliest part), O(d4) for finding the eigenvectors of the covari-

ance matrix, O(d2k) for converting the covariance matrix to the new k-dimensional

covariance matrix and O(k3) for taking the inverse of this new covariance matrix.

ID-LP has a learning time of O(Nde), where e stands for the number of epochs

to train the neural network. So we can say that comparing O(Nd2) of LDT and

O(Nde) of ID-LP, LDT is faster than ID-LP if e, the number of epochs to train the

neural network, is larger than d, the dimensionality of the problem.

Although the accuracies of LDT and QUEST are comparable, we see in Table 21

that in six datasets, LDT generates smaller trees than QUEST whereas QUEST

trees are never smaller than LDT trees. We see in Table 22 that on 11 datasets, LDT

learns faster than QUEST whereas QUEST never learns faster. This is different
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Table 21. Comparison of tree complexities of different decision tree methods in terms of the
number of parameters.

Set C4.5 CART ID-LP LMDT OC1 QUEST LDT

BRE 19 ± 8 56 ± 15 13 ± 4 27 ± 13 32 ± 18 22 ± 17 20 ± 9
BUP 26 ± 19 170 ± 15 13 ± 12 36 ± 46 43 ± 30 83 ± 23 8 ± 8
CAR 134 ± 16 323 ± 39 167 ± 76 746 ± 222 286 ± 75 371 ± 97 91 ± 48
CYL 31 ± 13 1563 ± 174 299 ± 141 455 ± 345 306 ± 227 356 ± 212 200 ± 0
DER 18 ± 2 487 ± 85 181 ± 0 204 ± 0 278 ± 98 188 ± 15 185 ± 11
ECO 21 ± 7 150 ± 23 40 ± 10 86 ± 30 46 ± 15 68 ± 17 42 ± 9
FLA 7 ± 9 411 ± 78 21 ± 33 0 ± 0 11 ± 18 24 ± 48 1 ± 0
GLA 21 ± 6 229 ± 23 43 ± 17 151 ± 49 55 ± 27 96 ± 34 63 ± 35
HEP 4 ± 4 138 ± 36 12 ± 11 27 ± 36 30 ± 27 22 ± 17 16 ± 14
HOR 56 ± 29 1338 ± 257 130 ± 67 310 ± 187 179 ± 146 169 ± 124 120 ± 102
IRI 8 ± 1 29 ± 7 13 ± 0 18 ± 7 14 ± 2 14 ± 2 15 ± 4
IRO 11 ± 4 278 ± 68 62 ± 24 116 ± 33 138 ± 58 102 ± 76 66 ± 28
MON 40 ± 19 68 ± 41 31 ± 21 56 ± 20 72 ± 22 67 ± 16 23 ± 7
MUS 40 ± 3 1429 ± 222 69 ± 0 132 ± 0 436 ± 97 905 ± 309 695 ± 175
OPT 161 ± 15 2298 ± 131 852 ± 144 2938 ± 483 2595 ± 216 2707 ± 277 1394 ± 373
PEN 201 ± 20 692 ± 91 411 ± 92 1488 ± 246 1463 ± 292 1079 ± 94 595 ± 127
SEG 64 ± 10 443 ± 90 197 ± 69 788 ± 161 539 ± 146 621 ± 141 251 ± 81
VOT 6 ± 3 276 ± 90 38 ± 11 83 ± 43 55 ± 29 59 ± 23 55 ± 24
WIN 10 ± 4 64 ± 17 31 ± 0 39 ± 0 36 ± 10 31 ± 0 31 ± 0

ZOO 13 ± 4 219 ± 45 62 ± 21 109 ± 7 57 ± 23 75 ± 26 57 ± 18

Method C4.5 CART ID-LP LMDT OC1 QUEST LDT
P

C4.5 — 19 9 11 10 10 10 19
CART 0 — 0 1 1 1 0 1
ID-LP 0 17 — 5 5 6 2 18
LMDT 0 9 0 — 1 1 1 9
OC1 0 12 0 2 — 1 0 12
QUEST 0 11 0 0 0 — 0 11
LDT 0 15 0 5 5 6 — 18
P

0 19 9 11 12 11 10

than what we saw in univariate trees. In univariate trees QUEST is better than

LDTu, since in univariate trees there is no matrix calculation, so there is not much

difference between univariate LDA and QDA in finding the split point. In this case

grouping classes is more important. Since QUEST uses unsupervised 2-means, it is

faster than LDT.

In multivariate trees, LDT is faster than QUEST. Since QUEST assumes

unequal variances, there are two covariance matrix calculations, which takes longer

time. In LDT, equal variances are assumed, and so only one covariance matrix

calculation is needed.

Also if there is singularity in the covariance matrix or matrices, after applying

PCA with new dimensions, we need to calculate again two new covariance matrices

for QUEST, but one new covariance matrix for LDT.
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Table 22. Comparison of learning times of different decision tree methods in terms of seconds.

Set C4.5 CART ID-LP LMDT OC1 QUEST LDT

BRE 1 ± 0 107 ± 17 1 ± 0 0 ± 0 138 ± 24 6 ± 2 2 ± 1
BUP 1 ± 0 252 ± 23 1 ± 0 0 ± 0 159 ± 13 14 ± 2 1 ± 1
CAR 11 ± 1 1178 ± 148 17 ± 6 20 ± 5 1835 ± 119 360 ± 78 17 ± 9
CYL 5 ± 0 4589 ± 343 9 ± 2 6 ± 1 2297 ± 362 153 ± 27 33 ± 15
DER 1 ± 0 858 ± 170 7 ± 1 1 ± 0 561 ± 76 12 ± 2 8 ± 4
ECO 1 ± 0 221 ± 25 4 ± 1 1 ± 0 143 ± 21 13 ± 3 3 ± 1
FLA 1 ± 0 1032 ± 203 1 ± 1 1 ± 1 342 ± 84 17 ± 5 1 ± 1
GLA 1 ± 0 320 ± 25 2 ± 1 1 ± 0 138 ± 16 12 ± 3 4 ± 3
HEP 0 ± 0 209 ± 47 0 ± 0 0 ± 0 85 ± 13 1 ± 1 1 ± 0
HOR 2 ± 0 3481 ± 1101 4 ± 1 3 ± 0 1890 ± 271 58 ± 18 34 ± 23
IRI 0 ± 0 31 ± 11 0 ± 0 0 ± 0 21 ± 5 0 ± 0 0 ± 0
IRO 1 ± 0 544 ± 94 1 ± 0 1 ± 0 337 ± 47 21 ± 4 4 ± 3
MON 1 ± 1 126 ± 61 1 ± 0 1 ± 0 155 ± 14 11 ± 3 2 ± 2
MUS 12 ± 2 33613 ± 2942 136 ± 72 19 ± 2 70100 ± 8054 5669 ± 984 3423 ± 1424
OPT 145 ± 8 9148 ± 713 662 ± 153 223 ± 23 42076 ± 2279 5935 ± 615 2594 ± 1076
PEN 110 ± 8 3311 ± 350 823 ± 167 187 ± 21 22690 ± 808 2350 ± 198 957 ± 334
SEG 12 ± 1 1212 ± 170 85 ± 15 30 ± 7 3350 ± 726 423 ± 73 109 ± 67
VOT 8 ± 2 805 ± 167 2 ± 1 1 ± 0 233 ± 46 5 ± 2 3 ± 1
WIN 0 ± 0 84 ± 26 1 ± 0 0 ± 0 49 ± 13 1 ± 0 0 ± 0
ZOO 0 ± 0 453 ± 61 3 ± 0 0 ± 0 47 ± 8 1 ± 0 1 ± 0

Method C4.5 CART ID-LP LMDT OC1 QUEST LDT
P

C4.5 — 20 9 6 20 15 6 20
CART 0 — 0 0 6 0 0 6
ID-LP 1 20 — 0 20 14 1 20
LMDT 6 20 10 — 20 15 5 20
OC1 0 7 0 0 — 0 0 7
QUEST 1 20 2 0 20 — 0 20
LDT 0 20 2 0 20 11 — 20
P

6 20 10 6 20 15 6

9. Conclusions

In this paper, we propose a new decision tree induction method, LDT, based on

Fisher’s Linear Discriminant Analysis. Our algorithm has both univariate and mul-

tivariate versions and our experimental results comparing our algorithm with other

univariate and multivariate methods indicate that the proposed method is accurate,

learns fast, and generates small trees.

Our results indicate that in the majority of cases, a univariate method suffices.

In the case of the univariate version of our method, LDTu, when there are numeric

features, we propose to use the univariate version of our algorithm as it calculates

the split position analytically and thus is faster than C4.5. With discrete features,

converting them to a set of 0/1 variables and treating them as numeric variables

keeps the tree binary and works as well as making a N -way split as done in C4.5.

Among the multivariate algorithms, the multivariate version of our proposed

method, LDTm, stands out as a good method as it is quite accurate, generates
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small trees, and learns fast. It uses binary decision nodes which help interpretabil-

ity. It has a sound statistical basis and under certain assumptions, finds the optimal

discriminant. There is no error function to be minimized iteratively and thus has

no problems associated with convergence. The splitting of K > 2 classes into two is

done using a heuristic that employs a supervised measure that takes class informa-

tion into account and, for example, is advantageous over the unsupervised method

2-means clustering that QUEST uses.

We advocate that though a univariate model may be sufficient for most cases, a

judicious use of the multivariate node may make the tree smaller and more accurate.

In our experiments, we see that using a multivariate tree or having some nodes of a

tree multivariate can be justified if the node is early in the tree, if there are enough

training instances, or if the number of classes in that node is large.
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