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Abstract. The accuracy of the k-nearest neighbor algorithm depends
on the distance function used to measure similarity between instances.
Methods have been proposed in the literature to learn a good distance
function from a labelled training set. One such method is the large margin
nearest neighbor classifier that learns a global Mahalanobis distance. We
propose a mixture of such classifiers where a gating function divides
the input space into regions and a separate distance function is learned
in each region in a lower dimensional manifold. We show that such an
extension improves accuracy and allows visualization.
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1 Introduction

Nonparametric, memory-based methods, such as the k-nearest neighbor clas-
sifier, interpolates from past similar cases. This requires a good distance (or
inversely, similarity) measure to determine the relevant subset of the training
set. Given two d-dimensional instances xi, xj ∈ �d, the Euclidean distance, or
its square, is the best known:

DE(xi, xj) = ‖xi − xj‖22 = (xi − xj)
�(xi − xj)

The Euclidean distance assumes that all features have the same variance and
that they are uncorrelated. If this is not the case and there is a covariance
structure as given by a covariance matrix S, one should use the Mahalanobis
distance:

DM = (xi − xj)
�M(xi − xj)

where M ≡ S−1. The Euclidean distance is a special case where M = S = I, the
identity matrix.

M is a d× d symmetric, positive semi-definite matrix and when d is large,
not all features may be informative and/or there may be strong correlations
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between features, and one may want to do dimensionality reduction by a low-
rank approximation. Any symmetric Mahalanobis matrix can be factorized as
M = L�L, where L is an e× d projection matrix and e ≤ d:

DM(xi, xj) = (xi − xj)
�M(xi − xj) = (xi − xj)

�L�L(xi − xj)

= (L(xi − xj))
�L(xi − xj) = (Lxi − Lxj)

�(Lxi − Lxj)

= ‖zi − zj‖22 = DE(zi, zj)
= DL(xi, xj) (1)

That is, using such a low-rank (e < d) approximation is equivalent to pro-
jecting the data to this new e-dimensional space as, zi = Lxi, zi ∈ �e and using
Euclidean distance there.

In a high dimensional problem, different regions of the input space may exhibit
different dependencies and variances and hence, instead of a single, global metric,
it may be more appropriate to use different metrics in different regions. Besides,
because regions have local structures, dimensionality can be further decreased.
In this study, we propose a framework where the input space is partitioned into
regions and different projection matrices are learnt in different regions.

The rest of this paper is organized as follows: We give a brief literature survey
of related work in Section 2, and among these, the closest to our work are
the Large Margin Nearest Neighbor (LMNN) algorithm—that learns M—and
Large Margin Component Analysis (LMCA) algorithm—that learns L—which
are discussed in more detail Section 3. Our proposed extension of mixtures of
LMNN—that learns multiple Mm or Lm in different parts of the input space—is
given in Section 4 which are discussed in more detail in Section 3. We discuss
our experimental results in Section 5 and conclude in Section 6.

2 Related Work

In the literature, many methods have been proposed to train a Mahalanobis
matrix M or a projection matrix L. Some methods train multiple Mahalanobis
or projection matrices, which can be per-class or per-exemplar. Below, chrono-
logically we give a brief summary of some methods.

One of the first distance metric learning algorithm is given by Xing et al.
in [1] who define a convex optimization problem to find a Mahalanobis matrix.
The instances in the data set form two disjoint subsets of similar and dissimilar
pairs and a Mahalanobis matrix is trained such that the distance between similar
points is minimized while the dissimilar points are at least 1 unit way from each
other.

Neighborhood Components Analysis (NCA) is a stochastic gradient-based
algorithm to find a linear projection matrix that minimizes the leave-one-out
classification error of the nearest neighbor classifier in the new space (see [2]). A
differentiable objective function is defined on the soft neighbor assignments in
the linearly projected space. The projection matrix can be also used for dimen-
sionality reduction. Slakhutdinov and Hinton extend NCA to embed a nonlinear
projection in [3], where a multilayer neural network is trained for this purpose.
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Frome et al. in [4] propose a method to train a weight vector for each image
to calculate the global distance between images using the feature vector which
is a concatenation of local patch distances between the images. A large margin
classifier is trained over the local distance feature vectors in a convex program-
ming problem. Since the trained distances are not guaranteed to be compatible,
a logistic model is trained over them to estimate posterior probabilities. They
are ranked and the query image is assigned to the class of the image with the
highest rank. In [5], they improve the algorithm by training a globally consis-
tent local distance functions such that no second-level classifier is required to
be trained. They redefine the problem using a convex optimization formulation.
Since all the weight vectors are trained together, the final distance estimates are
compatible with each other.

Chang and Yeung in [6] train an affine function per instance that provides
smooth transitions between instances. A variant of regularized moving least
squares is applied in a semi-supervised setting. Although the objective func-
tion has a closed-form solution, it becomes intractable for data sets with many
instances and an approximation algorithm is given.

Davis et al. in [7] study metric learning from an information-theoretic point
of view. They define the optimal Gaussian distribution whose covariance ma-
trix satisfies the distance constraints defined on the instance pairs; the distance
between instance pairs belonging to the same class must be smaller than a pre-
determined threshold and the instance pairs from different classes must be away
from each other by at least a specified distance. Then, the problem is converted
into a LogDet (logarithm of determinant) optimization problem that is convex.

The Large Margin Nearest Neighbor algorithm (LMNN) (see [8] and [9]) de-
fines a semi-definite programming problem over the squared Mahalanobis dis-
tances of target and impostor sets—the impostors are the closest instances with
different class labels and targets are the closest instances with the same label.
Distances to the target neighbors are minimized while the distances to impostors
are penalized if they are within a margin, which is a safe distance away from
the furthest target neighbor. This is a convex programming instance and hence
has a unique solution. A multiple metrics version of LMNN where a metric is
trained for each class is also studied in [9].

Large Margin Component Analysis (LMCA) in [10] is a variant of LMNN and
finds a lower dimensional rectangular projection matrix L instead of a square
Mahalanobis matrix M (see Equation 1). Both methods share the same objective
function but since LMCA defines the squared distance in terms of the projection
matrix, this is no longer a convex optimization problem and LMCA converges to
a local optimum. Our proposed method is an extension of LMNN and LMCA,
and these methods will be discussed in more detail in Section 3, before we discuss
our method in Section 4.

Malisiewicz and Efros in [11] focus on training per-exemplar metric for image
retrieval. They also work on the concatenated vector of segment distances. Their
algorithm consists of two parts. Sequentially, they train metrics per-exemplar
given the nearest neighbors and then they re-assign the nearest neighbors given
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the trained metrics. They specify a margin on the trained distance function val-
ues as used in Support Vector Machines (SVM). The neighbors that are away
less than one unit distance are called the support set and the precision of clas-
sification result is determined by this support set.

Zhan et al. in [12] propose to learn instance-specific distances by using metric
propagation. A smooth function (such as a Gaussian kernel) is propagated be-
tween the labelled and unlabelled instances. A regularized loss function is defined
such that the distances between instances of the same label are minimized with
respect to the given neighborhood relationships; the distance function trained
using labeled instances can then be used for unlabeled instances. The proposed
framework is formulated as a convex problem.

Chen and Sun in [13] propose a hierarchical LMNN algorithm. Overlapping
ratio is defined to measure the confusion between classes and if this ratio is
above a threshold, overlapping classes are grouped in the same cluster. The
hierarchy describes how to map a test instance to a cluster. A Mahalanobis
matrix is trained for each cluster and a given test instance is classified by using
its cluster’s metric matrix.

Noh et al. in [14], aim reducing the expectation error that the nearest neighbor
has a different label. They show that if the distributions of the two classes
are known, the difference between the empirical nearest neighbor error and the
optimal nearest neighbor error based on asymptotic Bayes error is caused by
finite sampling. They propose Generative Local Metric Learning which defines
a convex problem if the divergence function used is also convex.

Chang in [15] proposes an iterative metric boosting method. An upper bound
function on the leave-one-out error for the nearest neighbor classification is de-
fined and is minimized. The misclassified instances are weighted and the Maha-
lanobis matrix is optimized with respect to these weights. An eigenvalue problem
is solved to find the Mahalanobis matrix.

Bunte et al. in [16] propose Limited Rank Matrix Learning which is a recent
algorithm that extends Learning Vector Quantization. It learns class prototypes
and a low-rank projection matrix at the same time, iteratively. The projection
matrix is trained to be discriminative by optimizing a cost function that maps
instances close to their class prototypes and away from the other class prototypes,
using a criterion similar to that of Linear Discriminant Analysis.

Wang et al., in [17], propose to combine multiple metric matrices to form
per-exemplar local metrics. The algorithm consists of two steps. First, a weight
matrix is trained such that each data point can be expressed as a linear combina-
tion of pre-defined anchor points. The cluster means are defined as the anchors
and any clustering algorithm can be used for defining the anchors, i.e., k-means.
Then, a metric learning algorithm, a modified version of Multiple-metric LMNN,
is used to train a metric for each anchor point. The per-exemplar local metrics
are combinations of these anchor metrics whose weights are determined by the
weight matrix.
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Table 1. The overall summary of distance metric learning methods

Method Convexity Type of Metric Distance

Xing et al. [1] Yes Single Mahalanobis
Golberger et al. [2] No Single Projection
Salakhutdinov and Hinton [3] No Single Nonlinear Projection
Frome et al. [4] Partial Per-Exemplar Weight Vector
Frome et al. [5] Yes Per-Exemplar Weight Vector
Chang and Yeung [6] Yes Per-Exemplar Mahalanobis
Davis et al. [7] Yes Single Mahalanobis
Weinberger and Saul [8] Yes Single Mahalanobis
Weinberger and Saul [9] Yes Per-Class Mahalanobis
Torresani and Lee [10] No Single Projection
Malisiewicz and Efros [11] Partial Per-Exemplar Weight Vector
Zhan et al. [12] Yes Per-Exemplar Weight Vector
Chen and Sun [13] Partial Per-Cluster Mahalanobis
Noh et al. [14] Yes Single Mahalanobis
Chang [15] Partial Single Mahalanobis

Bunte et al. [16] No Per-Class Vector
Single Projection

Wang et al. [17] Partial Multiple Mahalanobis
Wu et al. [18] Yes Per-Exemplar Mahalanobis

The Bregman distance functions are trained in a SVM-like manner in [18].
Since the general Bregman distances are not metrics, the authors work with a
particular set of convex Bregman functions to ensure that they train a metric.
Kernelizing the Bregman distances, they solve a quadratic problem.

The methods are summarized in Table 1. Note that partial convexity means
that the algorithm consists of some sub-problems or steps and that not all of
them are convex.

3 Large Margin Nearest Neighbor (LMNN) and Large
Margin Component Analysis (LMCA) Algorithms

The Large Margin Nearest Neighbor (LMNN) trains a global Mahalanobis ma-
trix that evaluates distances discriminatively (see [9] and [8]). Let us define our
data set as pairs (xi, yi), where xi is the input instance vector and yi is the corre-
sponding label. The notation j � i (j leads to i) means xj is a target neighbor of
xi. A target is a neighbor with the same (correct) class label whereas an impostor
is a neighbor with different (wrong) class label. For accurate nearest neighbor
classification, targets must be closer than the impostors.
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Using the label information, a Mahalanobis matrix M can be trained to

minimize (1− μ)
∑

i,j�i

(xi − xj)
�M(xi − xj) + μ

∑

i,j�i,l

(1− yil)ξijl

subject to (xi − xl)
�M(xi − xl)− (xi − xj)

�M(xi − xj) ≥ 1− ξijl

ξijl ≥ 0

M � 0 (2)

where yil = 1 if yi = yl, which are the labels of xi and xl, and yil = 0 otherwise.
The first term is the sum of distances of each instance to its target neighbors
which we want to be minimum and the second term penalizes close impostors:
For any instance i where l is an impostor and j is a target, we would like the
distance to the impostor be at least one unit more than the distance to a target.
If this is not satisfied, there is a slack and we minimize the sum of such slacks.

Equation 2 defines a positive semi-definite programming problem and
there is a unique minimum. After some manipulations, the loss function can be
rewritten as:

E = (1 − μ)
∑

i,j�i

trace(MCij)

+μ
∑

i,j�i,l

(1− yil) [1 + trace(MCij)− trace(MCil)]+ (3)

where [a]+ is the hinge loss which is a when a > 0 and is 0 otherwise. The
difference matrix, Cij , is defined as Cij = (xi − xj)(xi − xj)

�. Though other
solving methods such as alternating projection algorithms can also be used here,
using iterative gradient descent is simple and the global solution can still be
reached [8]. The gradient is:

∂E

∂M
= (1− μ)

∑

i,j�i

Cij + μ
∑

(i,j,l)

(Cij − Cil) (4)

where (i, j, l) means active triples (that activate the hinge loss) in the current
gradient update (the impostors can vary in each update).

As we discussed in Equation 1, the metric matrix learned can be factorized
as M = L�L, where L is the projection matrix. Large Margin Component
Analysis (LMCA) in [10] is a variant of LMNN which uses this idea. It focuses on
finding a lower dimensional rectangular projection matrix instead of a full square
Mahalanobis matrix. LMCA also minimizes Equation 3, but when defined in
terms of L, this is no longer a convex optimization problem and gradient-descent
is used. At each iteration, the projection matrix is updated in the negative
direction of the gradient:

∂E

∂L
= 2(1− μ)L

∑

i,j�i

Cij + 2μL
∑

(i,j,l)

(Cij − Cil) (5)
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4 Mixtures of Large Margin Nearest Neighbor Classifiers

LMNN uses the a single, global M and LMCA uses a single, global L over the
whole input space. It may be the case that a data set has multiple locally varying
distributions—features may have different variances and different correlations in
different parts of the input space, defining multiple local manifolds. Our idea
is to divide up the input space into local regions using a gating function and
learn different metrics in different regions; we hence define a mixture of LMNNs.
In doing this, we are inspired by the Mixture of Experts neural network model
of Jacobs et al. in [19]. Previously, Gönen and Alpaydın in [20] used the same
idea in multiple kernel learning where they write a kernel as a weighted sum of
localized kernels.

The gating function that defines the region of expertise of a local metric can
be cooperative or competitive, which is implemented respectively by the sigmoid
or softmax function (P is the number of regions):

Cooperative: ηm(xi|wm) =
1

1 + exp(−w�
mxi − wm0)

(6)

Competitive: ηm(xi|wm) =
exp(w�

mxi + wm0)∑P
h=1 exp(w�

h xi + wh0)
(7)

Local model m becomes active if ηm(xi) > 0 and we say that xi belongs to
region m. The softmax function is competitive because it enforces a soft winner-
take-all mechanism and for any input, we expect a single active local metric and
the gating model works as a selector (

∑
m ηm(xi) = 1). The sigmoid function

is cooperative because there can be more than one active local metric and the
model takes a weighted sum (

∑
m ηm(xi) need not be 1).

In each local region, using a full M may lead to overfitting and to regularize,
we learn a local lower rank L in each: When x chooses local model m, Lm is the
local projection used. The localized projection of xi into region m is

zim = ηm(xi|wm)Lmxi

The total distance between a pair (xi, xj) is calculated as the sum of the local
distances:

Dtotal(xi, xj) =

P∑

m=1

DLm(xi, xj)

where DLm(xi, xj) is the local distance in region m:

DLm(xi, xj) =‖zim − zj,m‖22
=‖ηm(xi|wm)Lmxi − ηm(xj |wm)Lmxj‖22
=‖Lm(ηm(xi|wm)xi − ηm(xj |wm)xj)‖22
= [ηm(xi|wm)xi − ηm(xj |wm)xj ]

�
L�
m

Lm [ηm(xi|wm)xi − ηm(xj |wm)xj ] (8)
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Hence, the total distance is a weighted combination of local distances and the
contribution of local projections are determined by ηm(xi). Thus, it is possible
that multiple metrics are active, particularly in the cooperative setting.

The model parameters are the localized projection matrices Lm and the gating
parameters wm. We use the same formulation of LMNN in Equation 2 by using
Dtotal instead of the Mahalanobis distance (xi − xj)

�M(xi − xj):

minimize (1− μ)
∑

i,j�i

Dtotal(xi, xj) + μ
∑

i,j�i,l

(1− yil)ξijl

subject to Dtotal(xi, xl)−Dtotal(xi, xj) ≥ 1− ξijl

ξijl ≥ 0 (9)

Let us rewrite the loss function:

E(η) = (1− μ)
∑

i,j�i

P∑

m=1

trace(L�
mLmC

(m)
ij (η)) + μ

∑

i,j�i,l

(1− yil) [1 + ζijl]+

(10)

where

ζijl =

P∑

m=1

(
trace(L�

mLmC
(m)
ij (η))− trace(L�

mLmC
(m)
il (η))

)

We can use the same trick and rewrite the gated loss function in terms of
difference matrices. C(m)

ij (η) is defined over the gated projections of xi and xj

in region m:

C
(m)
ij (η) = [ηm(xi|wm)xi − ηm(xj |wm)xj] [ηm(xi|wm)xi − ηm(xj |wm)xj ]

�

When we use a gating function, the problem is not convex anymore and we
use gradient descent. The derivative of the loss function with respect to the local
projection matrix Lm can then be derived:

∂E(η)

∂Lm
= 2(1− μ)Lm

∑

i,j�i

C
(m)
ij (η) + 2μLm

∑

(i,j,l)

(C
(m)
ij (η)−C

(m)
il (η)) (11)

The derivative of objective function with respect to the gating parameters
depends on the function used:

∂E(η)

∂whk
= 2(1− μ)

∑

i,j�i

∂Dtotal(xi, xj)

∂whk

+μ
∑

(i,j,l)

(1 − yil)

(
∂Dtotal(xi, xj)

∂whk
− ∂Dtotal(xi, xl)

∂whk

)
(12)
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Algorithm 1. Training a Mixture of Large Margin Nearest Neighbor Classifiers
1: Initialize wmk and wm0 to small random numbers.
2: Initialize Lm matrices to the PCA projection matrix of the whole data.
3: repeat
4: repeat
5: Calculate D(xi,xj) and find target neighbors and impostors.
6: w

(t+1)
mk ← w

(t)
mk − γ(t) ∂E(η)

∂wmk

7: until convergence of gating parameters
8: repeat
9: Calculate D(xi,xj) and find target neighbors and impostors.

10: L
(t+1)
m ← L

(t)
m − γ(t) ∂E(η)

∂Lm

11: until convergence of local projections
12: until convergence

We can apply the chain rule to get the derivative of the total distance:

∂Dtotal(xi, xj)

∂whk
=

P∑

m=1

2

[
xi

∂ηm(xi|wm)

∂whk
− xj

∂ηm(xj |wm)

∂whk

]�

L�
mLm [ηm(xi|wm)xi − ηm(xj |wm)xj ] (13)

If the sigmoid gating is used, the derivatives are (xi0 ≡ 1):

∂ηm(xi|wm)

∂whk
= δmh (1− ηm(xi|wm)) ηm(xi|wm)xik , k = 0, 1, . . . , d (14)

For the softmax gating, we have (xi,0 ≡ 1):

∂ηm(xi|wm)

∂whk
= (δmh − ηh(xi|wh)) ηm(xi|wm)xik, k = 0, 1, . . . , d (15)

where δmh, is 1 if m = h and it is 0 otherwise.
The pseudo-code for the Mixture of LMNN (MoLMNN) is given in Algorithm

1. To have a meaningful starting projection direction we initialize the local pro-
jections Lm by using Principal Components Analysis (PCA) on the training
data. At each iteration, we first apply gradient-descent to update the gating
parameters, and then, using the trained gating model, the local projection ma-
trices are updated. We apply these steps, until both the gating model and the
projection matrices converge or the classification result does not improve any
further. The learning rate, γ, is determined using linear search at each iteration.

5 Experiments and Results

We compare sigmoid and softmax-gated MoLMNN with LMNN and LMCA on
21 data sets, that are publicly available in [20, 21, 22, 23]. In Yeast, Faults and
Segment data sets, two classes are used (nuc vs cyt, k_stratch vs bumps, and
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sky vs windows, respectively). In Musk data set, only the real valued features
are used. The input data is z-normalized.

Our experimental methodology is as follows: Each data set is split into two
subsets as one-third test data and two-thirds training and validation data. The
two-thirds part is used to create ten training and validation folds using 5 × 2
cross-validation. The number of reduced dimensions, namely e, is chosen among
the number of features that explain 90, 95 and 98 per cent of the variance;
LMNN, LMCA and MoLMNNs models with P = 1 up to 10 regions are trained
for k = 3, 5, 7 and 9 neighbors . We also try and choose the best of sigmoid
and softmax gating. We do such a four-dimensional, (k, e, P, sigmoid/softmax)
grid search and choose the combination that has the highest average validation
accuracy—the other models are similarly trained and the best configuration is
chosen for their parameter set. For the best setting, the corresponding model
is trained on the ten different training folds and tested on the same left-out
one-third test set. These ten test results are reported and compared with the
parametric 5 × 2 cross-validation paired F test [24]. Table 2 shows the mean
and standard deviation of the test results for each data set and the results of
significance tests.

We see that on most data sets, a few regions (P ≤ 4) is enough. The number
of regions correspond to the modalities of data with different input distributions.
Increasing the number of regions does not improve accuracy beyond a certain
value. Note that even with a single region, MoLMNN may be more accurate
because it reassigns impostors and targets at each iteration while the other
algorithms fix them at initialization.

We also find that MoLMNN uses more neighbors when compared with other
algorithms. We believe this to be an indicator that MoLMNN trains a more
suitable distance function which places more of the target neighbors nearby.
Other algorithms use fewer nearest neighbors because due to inaccurate distance
approximation, their performance degrade if more neighbors are used. In terms
of sigmoid vs softmax gating, we do not notice one being always superior to the
other—each has its use.

MoLMNN significantly outperforms both LMCA and LMNN on Arabidopsis,
Musk, Yeast and Sonar. It outperforms LMCA on Splice and LMNN on Yale.
LMCA gives higher accuracy results on Yale and Ionosphere data sets. Except
Yeast, these data sets have more than 60 dimensions, which shows that MoLMNN
can capture local information to improve performance.

On Arabidopsis data set, we can visualize the data by reducing dimensionality
to two; this is a bioinformatics data set with 1, 000 dimensions. In Fig. 1(a), we
see the plot using PCA; there we see that the data has significant structure but
that PCA cannot capture the difference between the two classes. In Fig. 1(b),
we see the plot using LMCA and the learned discriminant using k = 3. In Fig.
2, we see results with MoLMNN with two regions. Each data point is plotted
in the region where its gating value is higher and the discriminants are plotted
separately in each region with k = 3. We see that we get better discrimination
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Table 2. The mean and standard deviation of test set accuracies of MoLMNN, LMCA
and LMNN. The parameters of the best configuration are given in parantheses, where
So is softmax and Si is sigmoid. Boldface indicates that the method is significantly
better than the other two. In terms of pairwise comparisons (shown by ‘*’), on Splice,
MoLMNN is more accurate than LMCA and on Ionosophere, LMCA is more accurate
than MoLMNN.

Data set MoLMNN (k,e,P,g) LMCA (k,e) LMNN (k,d)

Abalone 77.86 ± 1.01 (9,3,1,So) 78.21 ± 1.97 (9,3) 78.03 ± 1.33 (9,7)
Arabidopsis 81.89 ± 0.97 (9,473,1,Si) 77.21 ± 1.92 (5,390) 69.24 ± 2.17 (3,1000)
Australian 86.17 ± 1.42 (9,14,7,So) 85.83 ± 2.15 (5,14) 86.43 ± 1.08 (9,14)
Bupa 61.65 ± 4.27 (5,6,4,Si) 58.61 ± 2.79 (9,5) 59.57 ± 3.13 (9,6)
Ctg 89.73 ± 0.80 (9,16,2,So) 89.96 ± 0.62 (5,11) 89.83 ± 0.71 (5,21)
Faults 98.52 ± 0.58 (9,14,4,Si) 98.48 ± 0.25 (9,14) 98.56 ± 0.16 (9,27)
German Numeric 70.21 ± 2.27 (9,20,1,Si) 72.10 ± 2.84 (9,18) 72.01 ± 1.95 (9,24)
Heart 83.89 ± 4.10 (5,3,5,Si) 82.44 ± 4.38 (5,4) 85.22 ± 3.10 (7,13)
Ionosphere 81.54 ± 2.36 (9,17,3,Si) 83.25 ± 2.65* (3,27) 82.91 ± 2.88 (3,34)
Mg 83.58 ± 0.79 (9,5,1,So) 82.34 ± 0.61 (3,6) 82.34 ± 0.61 (3,6)
Musk 86.01 ± 2.66 (7,17,4,So) 80.82 ± 2.88 (5,28) 79.62 ± 4.00 (5,166)
Optdigits 96.98 ± 0.31 (9,51,3,Si) 97.26 ± 0.35 (3,41) 97.33 ± 0.35 (3,64)
Pendigits 97.33 ± 0.31 (5,11,2,So) 97.49 ± 0.15 (3,11) 97.31 ± 0.23 (5,16)
Pima 72.93 ± 0.96 (9,8,2,So) 73.32 ± 1.90 (9,8) 73.32 ± 1.90 (9,8)
Segment 99.95 ± 0.14 (7,8,9,Si) 100.00 ± 0.00 (7,8) 100.00 ± 0.00 (7,19)
Sonar 76.52 ± 3.60 (7,36,10,Si) 71.16 ± 3.01 (3,28) 68.55 ± 5.11 (3,60)
Splice 89.03 ± 0.71* (9,50,1,Si) 84.97 ± 0.83 (5,58) 85.81 ± 0.76 (9,60)
Transfusion 78.67 ± 1.13 (9,3,2,Si) 79.40 ± 1.34 (9,3) 79.36 ± 1.37 (9,5)
Wdbc 94.97 ± 1.35 (9,14,4,So) 94.02 ± 2.23 (7,10) 94.29 ± 1.94 (3,30)
Yeast 60.57 ± 2.58 (9,6,6,Si) 59.39 ± 2.38 (5,6) 59.33 ± 2.52 (5,8)
Yale 93.51 ± 0.77 (3,196,3,Si) 94.90 ± 0.50 (3,88) 92.77 ± 0.56 (7,896)
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Fig. 1. The 2d mappings of Arabidopsis data set with (a) PCA and (b) LMCA
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between the classes this way. Though we have not checked for this application,
where the gating boundary lies and the dimensions in each region could also
carry information.

We also check the relationship between the number of regions and the number
of reduced dimensions. Figure 3 shows how test accuracy changes as we vary the
number of dimensions and the number of regions. This is for k = 9, but we see
similar behavior for other k. We see that it is more the number of regions that
affect accuracy rather than the local dimensionality; we also see that sigmoid
gating leads to more fluctuating performance—regions may overlap and hence
may interfere more.
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Fig. 2. The 2d mappings of Arabidopsis data set with MoLMNN (softmax) with two
regions
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Fig. 3. The effects of the number of regions and proportion of variance explained on
accuracy on validation dataset when k = 9
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6 Conclusions

In this study, we propose the Mixture of LMNN (MoLMNN) method which
softly partitions the input space and trains a separate projection matrix in each
region to best discriminate the data. The partitioning of the space and the
training of the projection matrices are coupled. Our experiments on real data
sets show that compared with LMNN and LMCA proper, the mixture approach
frequently performs better. Localization of the data and reducing dimensionality
to two allows visualization. The boundary of the gating model and the projected
dimensions could carry information which may help understand the data.
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