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Abstract. The misclassification error which is usually used in tests to
compare classification algorithms, does not make a distinction between
the sources of error, namely, false positives and false negatives. Instead
of summing these in a single number, we propose to collect multivariate
statistics and use multivariate tests on them. Information retrieval uses
the measures of precision and recall, and signal detection uses true pos-
itive rate (tpr) and false positive rate (fpr) and a multivariate test can
also use such two values instead of combining them in a single value, such
as error or average precision. For example, we can have bivariate tests for
(precision, recall) or (tpr, fpr). We propose to use the pairwise test based
on Hotelling’s multivariate T2 test to compare two algorithms or multi-
variate analysis of variance (MANOVA) to compare L > 2 algorithms. In
our experiments, we show that the multivariate tests have higher power
than the univariate error test, that is, they can detect differences that
the error test cannot, and we also discuss how the decisions made by
different multivariate tests differ, to be able to point out where to use
which. We also show how multivariate or univariate pairwise tests can
be used as post-hoc tests after MANOVA to find cliques of algorithms,
or order them along separate dimensions.

1 Introduction

For a typical machine learning application, there are multiple candidate algo-
rithms and we need to choose one among many. In supervised learning, this is
typically done by comparing errors, and in classification with two classes, the
misclassification error is the sum of false positives and false negatives (see Ta-
ble [[((a)). However, misclassification error does not make a distinction between
false positives and false negatives, and various other measures have been pro-
posed depending on the type of error we focus on (see Table[I[b)). In information
retrieval, the two measures used are precision and recall, and in signal detection,
they are true positive rate (tpr) and false positive rate (fpr). People also use
curves of these or areas under such curves. These different set of measures have
different uses, as we will discuss later.

In comparing classification algorithms, we use statistical tests to make sure
that the difference is significant, that is, big enough that it could not have
happened by chance, or in other words, very unlikely to have been caused by

C.A. Coello Coello (Ed.): LION 5, LNCS 6683, pp. 1115] 2011.
© Springer-Verlag Berlin Heidelberg 2011



2 O. Taner Yildiz, O. Aslan, and E. Alpaydin

Table 1. (a) 2 x 2 confusion matrix for two classes. (b) Different performance measures.

(a) (b)
Name  Formula
Predicted class error (fo+fn)/(p+n)
True class Positive Negative Sum accuracy (tp+in)/(p+n)
Positive tp fn D tpr tp/p
Negative fp tn n fpr Io/n
Sum p’ n’ precision tp/p’

recall tp/p

chance — the so-called p-value of the test. To be able to measure the effect of
chance (e.g., variance due to small changes in the training set), typically, one does
training and validation a number of times, possibly by resampling using cross-
validation. For example, with k training and validation dataset pairs, we train
the classification algorithms on the k training sets and obtain the k confusion
matrices on the validation sets. From these, we can for example calculate the
k misclassification error values and to compare two algorithms, we can use a
pairwise statistical test [I] to see whether the two algorithms lead to classifiers
with equal expected error. When there are more than two to compare, one can
use analysis of variance (ANOVA) to check if all have equal expected error.
It is critical that such tests are paired, that is, we use the same training and
validation data with all algorithms so that whatever difference we observe is due
to the algorithm, and not due to any randomness in resampling the data.

We note the disadvantage of using error here; such tests cannot make a dis-
tinction between false positives and false negatives. Two classifiers may have the
same error but one may have all its error due to false positives, the other all
due to false negatives, and we will not be able to detect this difference if our
comparison metric is simply the error; see Figure [Tl for an example.

In this paper, we propose multivariate tests that can do comparison using
multiple measures and not just a single one, i.e., error. That is, from the k con-
fusion matrices, we will collect multivariate statistics such as a two-dimensional
vector of (tpr, fpr) or (precision, recall), and do a bivariate test. We can also do
a four-variate test using the whole 2 x 2 confusion matrix or any other vector of
measurements. Statistical tests in the machine learning literature are all univari-
ate; to the best of our knowledge, our use of multivariate tests in performance
comparison of machine learning algorithms is the first.

The need to combine different measures have been noticed before. Average
precision combines precision and recall, for example, Caruana et al. (2004) [2]
compared different performance metrics such as accuracy, lift, F-Score, area un-
der the ROC curve, average precision, precision/recall break-even point, squared
error, cross entropy, and probability calibration; they showed that these metrics
are correlated and proposed a new measure SAR as the average of Squared error,
Accuracy and Roc area. Seliya et al. (2009) [3] calculated different measures too
and going one step further proposed to combine them taking the correlation into
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Fig. 1. Example showing that error is not the best measure in comparison. The neg-
ative and positive instances are normally distributed with their means at 2 and 3
respectively; both have standard deviation 0.3. In (a), we see the two densities, the
posterior probabilities and 100 instances sampled from each. We have a classifier that
chooses the positive class if the input is greater than a threshold (corresponding to
a threshold on the posterior of the positive class) and what we then do, is move this
threshold of decision gradually from 2 to 3 (corresponding to increasing the posterior
threshold from 0 to 1). As we see in (b), the error does not change; the number of
false positives decreases but the number of false negatives increase in equal amount.
In (c) and (d), we see that if we use (tpr, fpr) and (precision, recall) as measures of
performance, the values differ as the threshold is changed. As the threshold increases,
the number of true positives decrease which decreases tpr and recall; but because false
positives decrease, fpr decreases and precision increases. Note that in (c¢) and (d), as
we increase the threshold, we move from the right to the left along the curves. (Tpr,
fpr) and (precision, recall) can detect a difference due to different thresholds because
they make a distinction between false positives and false negatives. For example, if we
had two classifiers one with threshold at 2 and another with threshold at 3, a pairwise
test on error would not be able to detect any difference between them, but tests on
(tpr, fpr) or (precision, recall) would. The aim of this paper is the discussion of such
tests.
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account. Note however that these are for reporting performances only and they
include no statistical methodology for testing or comparison, as we do here.

This paper is organized as follows: To compare two algorithms, we discuss the
pairwise univariate test and the proposed multivariate test in Section 2l When
there are L > 2 algorithms to compare, we can use univariate and multivariate
ANOVA, as discussed in Section[Bl We give our experimental results in Section @l
and conclude in Section

2 Pairwise Comparison

Let us say we have two classification algorithms. We train and validate the
two algorithms on k training/validation data folds and calculate the resulting k
separate 2 X 2 confusion matrices M;;,7 = 1,2,j = 1,...,k, on the validation
sets in the same format as shown in Table [I(a).

2.1 Univariate Case

If we want to compare in terms of error, for both algorithms and all k folds, we
calculate e;; = fp;; + fn;; and then the paired difference between the errors

dj = e1j — ez
and we test if these differences come from a population with zero mean:
H():,u,d:OVS. Hl:,udyéO
For the univariate paired t test, we calculate the average and the standard

deviation: .
Zj(dj - d)Q
d—jEZldj/k:,sd— k1

Under the null hypothesis that the two algorithms have the same expected
error, we know that

d
' =Vk (1)
Sd
is ¢ distributed with k& — 1 degrees of freedom. We reject Hy if |t'| > tq /2 51
with (1 — a)100 % confidence.

2.2 Multivariate Case

If we do not want to reduce to a single statistic and want to use a set of values
in comparison, we need a test that can use vectors instead of scalars. In such
a case, we want to compare the means of two p-dimensional populations, that
is, we want to test for the null hypothesis Hy : py — o = 0. If we want to
compare in terms of (tpr, fpr) or (precision, recall), then p = 2. Note that using
the same setting, it is also possible to define a multivariate test on (sensitivity,
specificity), or consider all four entries in the confusion matrix, in which case
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p = 4. As before, we train and validate both algorithms with the same folds and
use a paired test, except that now the test is multivariate.

Let us say «;; € R? is the performance vector containing p performance values.
For the multivariate paired Hotelling’s test, we calculate the paired difference
vectors

dj =T1; — T2y

and check if they come from a p-variate Gaussian with zero mean:
Hoy:py=0vs. Hi:py; #0

We calculate the average vector and the covariance matrix:

k
1 T
d:];dj/k ., Sy = k_lij:(drd)(drd)

Under the null hypothesis that the two algorithms have the same expected
behavior, we know that [4]

T =kd' S;'d (2)

is Hotelling’s T? distributed with p and k — 1 degrees of freedom. We reject
the null hypothesis if T7'? > T§7p7k_1. Hotelling’s T?(p, m) can be approximated
using F' distribution via the formula

(m—p—!—l

2
mp > Tp,m ~ Fm,m—p-{—l (3)

Note that we calculate our measures such as tpr, precision, and so on, from
entries in the 2 x 2 confusion matrix; these are counts of indicator random
variables (they are 0/1 Bernoulli random variables) caused by the same event
(the trained classifier) and the total counts are then dependent binomial random
variables. We know from the central limit theorem that the binomial converges
to the Gaussian unless the sample (here, the validation set size) is very small and
hence the assumption of joint multivariate normality makes sense. Remember
that all parametric tests based on error also use the same assumption.

When p = 1, this multivariate test reduces to the univariate ¢ test of Section
21 Just like d/sq of ({dl) measuring the normalized distance in one dimension,

degld of ([2) measures the (squared) normalized distance in p dimensions.

If the multivariate test rejects, we can do p post-hoc univariate tests to check
which one(s) of the variates cause(s) a rejection. For example, if a multivariate
test on (precision, recall) rejects, we may want to check if the difference is due
to a significant difference in precision, recall, or both. For testing difference in
variate [, we use the univariate test in () and calculate

f=vi " (4)

and reject Ho : gy = 0 if [t]| > to/2 -1
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Note that it may be the case that none of the univariate differences is signifi-
cant whereas the multivariate one is, and the linear combination of variates that
cause the maximum difference can be calculated as

w=S8;"d (5)

We can then see the effect of the different univariate dimensions by looking at
the corresponding elements of w. The fact that this is the Fisher’s LDA direction
is not accidental—we are looking for the direction that maximizes the separation
of two groups of data.

3 Analysis of Variance

If we have L > 2 algorithms to compare, we test whether they have the same
expected performance. In the univariate case, we reduce the confusion matrices
to error values and compare them; in the multivariate case, we compare vectors
of performance values.

3.1 Univariate Case
Given L populations, we test for
Ho:py =po=---=pur vs. Hy : u, # ps for one pair r; s

Let us say that e;;,i =1,...,L,j =1,...,k, denotes the error of algorithm 4
on validation fold j. e;. = > j €ij /k denotes the average error of algorithm ¢, and
e.. =, ¢€;./L denotes the overall average. The univariate ANOVA calculates

 MSH _ SSH/(L-1)

~ MSE ~ SSE/L(k—1)

_ (Ziet/k—e./Lk)(L—1)
(i e — el /k)/L(k—1)

which, under the null hypothesis, is F' distributed with L—1 and L(k—1) degrees
of freedom. We reject Ho if F' > F,, 11 1(k—1)-

If ANOVA rejects and we know that there is at least one pair that is signifi-
cantly different, we can use the pairwise test of Section 21l as a post-hoc test on
all pairs r, s to check which pair(s) lead(s) to the significant difference in error.

F/

(6)

3.2 Multivariate Case

Given L populations, we test for

Hy:py=pyg=--=pp vs. Hy : p, # pg for one pair r, s.
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Let us say that x;;,7 =1,...,L,j = 1,...,k denotes the p-dimensional per-

formance vector of algorithm ¢ on validation fold j. The multivariate ANOVA
(MANOVA) calculates the two matrices of between- and within-scatter:

L
H= kz xi —x.)"
i=1

L k
E= ZZ Tij — ;) (i — @ )T
=1 j=1
Then E
A = 7
|E + H] (7)

is Wilks’ A distributed with p, L — 1, L(k — 1) degrees of freedom [4]. We reject
Hy if A" < Aq p 1—1,0(6—1)- Note that rejection is for small values of A’: If the
sample mean vectors are equal, we expect H to be 0 and A’ to approach 1;
as the sample means become more spread, H becomes “larger” than E and A’
approaches 0.

Wilks’ A can be approximated using x? distribution via the formula

—n+1
(p 9 - m) log Ap,m,n ~ X?Lp (8)

If MANOVA rejects, we can do p separate univariate ANOVA on each of the
individual variates as we discussed in Section[3.I] or the difference may be due to
some linear combination of the variates: The mean vectors occupy a space whose

dimensionality is given by s = min(p, L — 1); its dimensions are the eigenvectors
of ET'H and we have

1
:1:[1+>\¢
=1

where A; are the corresponding sorted eigenvalues. The analysis of the eigenval-
ues and the corresponding variates of the eigenvectors allow us to pinpoint the
causes if MANOVA rejects. For example, if A1/ >, X; > 0.9, there is collinearity,
i.e., the means lie on a single discriminant, z = w” x, where w is the eigenvector
with the largest eigenvalue A;.

We can also do a set of pairwise multivariate tests as we have discussed in
Section after MANOVA rejects, to see which pairs (or groups) of algorithms
have comparable performance vectors.

4 Experiments

4.1 Setup

We use a total of 36 two-class datasets where 27 of them (artificial, australian,
breast, bupa, credit, cylinder, german, haberman, heart, hepatitis, horse, irono-
sphere, krvskp, magic, mammographic, monks, mushroom, parkinsons, pima,
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polyadenylation, promoters, satellite47, spambase, spect, tictactoe, transfusion,
vote) are from the UCI repository [B], three (ringnorm, titanic, twonorm) are
from the Delve repository [6], and six (acceptors, ads, dlbel, donors, musk2,
prostatetumor) are Bioinformatics datasets [7]. We use 10-fold cross-validation
and five algorithms: (1) ¢45: C4.5 decision tree. (2) sum: Support vector ma-
chine (SVM) with a linear kernel [§].(3) lda: Linear discriminant classifier. (4)
gda: Quadratic discriminant classifier. (5) knn: k-nearest neighbor with k = 20.

4.2 Results

Univariate vs. Multivariate testing. In the first part of our experiments,
we compare the univariate k-fold paired t test (kK = 10) on error which we name
UniErr, with our proposed multivariate pairwise test using (tpr, fpr), which we
name MultiTF.

Figure [2 shows the example where the univariate test fails to reject and Mul-
tiTF rejects the null hypothesis that the two classifiers lda and gda have the same
mean on the breast dataset. Figure [2(a) shows the (tpr, fpr) scatter plots of the
ten runs each of the two methods and the isoprobability contours of the fitted
bivariate Gaussians. We see that LDA has higher fpr whereas QDA has lower
tpr, that is, higher false negative rate. We see in Figure P(b) that the classifiers
have comparable overall error histograms: LDA has more false positives, QDA
has more false negatives, but overall they have comparable error. We see in Fig-
ure 2(c) that the contour plot of the covariance matrix of the paired differences
has its mean far from (0,0) and that is why the multivariate test rejects the null
hypothesis that the means are the same, whereas in Figure Bl(d), we see that
histogram of the differences of errors has its mean close to 0 and the univariate
test fails to reject the null hypothesis that the means are equal.

MultiTF vs. MultiPR. In the second part of our experiments, we see the
effect of different measures on the multivariate test and compare MultiTF with
the multivariate test using (precision, recall) that we name MultiPR; this will
help us identify which one to use in which context.

Figure B shows an example where MultiTF rejects and MultiPR fails to reject
the null hypothesis that ¢4 and gda have the same mean on the pima dataset.
In Figures Bla) and (b), the = axes are the same because tpr and recall are the
same; the two differ in the y axes and that helps us understand why the two
decisions are different. Although with respect to (tpr, fpr), the mean of ¢/5 and
gda seem to be close to each other (Fig. Bla)), their difference is significantly
large compared to their standard deviations and this causes a rejection. They
are close enough in the (precision, recall) space (Fig. B(b)) and hence MultiPR
does not reject. In calculating precision, we divide by p’, and in calculating fpr,
we divide by n; here, n is larger than p’ and hence, the variance of fpr is smaller,
which makes the difference significant.

We can also see this by comparing Figures [B(d) and (e): In (d), we see that
(0,0) lies on the outermost contour indicating that the probability that we see a
difference as large is small and hence we reject the null hypothesis; in (e), (0,0)
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Fig. 2. The example case where the univariate test fails to reject and MultiTF rejects
the null hypothesis that lda and gda have the same mean on the breast dataset. (a)
shows the isoprobability contour plots of the Gaussians fitted to performance data from
two algorithms and (c) shows the distribution of their paired difference; (b) and (d)
show the corresponding error histograms and the histogram of paired error differences
respectively. Roughly speaking, the multivariate test rejects if the mean of the differ-
ences is far from (0,0), compared to the scale of the covariance matrix of differences;
just as the univariate test rejects if the mean of the differences is far from 0, compared
to the standard deviation of differences.

is close enough to the center of the contours and the probability that we see such
a difference is not small and hence we do not reject.

If the univariate post-hoc tests are performed, we see that the algorithms are
significantly different in terms of fpr with a p-value of 0.006. The corresponding
elements of w (equation[H]) are (tpr : 0.499, fpr : —25.898) and (precision : 2.014,
recall : —4.374), which shows that fpr is the important one.
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Fig. 3. An example case where MultiTF rejects and MultiPR fails to reject the null
hypothesis that the two classifiers, c45 and g¢da, have the same mean on the pima
dataset. (a) and (d) show the isoprobability contour plots of the fitted Gaussians and
of the difference with respect to (tpr, fpr); (b) and (e) show the same with respect to
(precision, recall); (c) and (f) show the corresponding histogram of the error rates and
the differences in the error rates.

The error distributions of the algorithms are also similar to each other and
the univariate test also fails to reject the null hypothesis that the error rates of
those algorithms are equal (see Figs. Blc) and (f)).

(Precision, recall) and (tpr, fpr) metric pairs have different application areas.
In (precision, recall), we are basically interested in how well we classify the
positive examples, whereas in (tpr, fpr), in trying to minimize fpr, we also want
to increase the true negatives. To show the difference between them, we did two
experiments: In Figure [dl(a), we simply add more and more true negatives to a
classifier. In such a case, we see that this has no effect on precision and recall,
but decreases fpr. When compared with the classifier without any additional true
negatives, MultiPR does not reject but MultiTF starts rejecting after a point.

Tt is known that (precision, recall) is sensitive to class skewness [9], whereas
(tpr, fpr) is not. In Figure [@(b)), we slowly change the ratio p/n, and we see
that because precision uses values from both rows, it changes; however (tpr,
fpr) do not change since they use values from only one row. Compared with the
classifier with the original ratio, MultiTF does not reject (because the rates do
not change), but MultiPR starts rejecting after a point.
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Fig. 4. In (a), when we add more and more true negatives (tn < tn (1+ X)), precision
and recall do not change, but fpr (=fp / (n +X tn)) decreases and MultiTF test starts
rejecting the null hypothesis. In (b), we change the ratio ? = E’}’;ﬁzgglgg while keeping
tpr and fpr the same (tp — tp (1—a), fn— fn (1—a), fo — fr (1+a), tn — tn (1+a)), we
see that precision changes and MultiPR starts rejecting. Plotted values are proportions
of failures to reject in 100 independent runs.

If we are doing an information retrieval task with a query such as, “Find me
all images of tigers,” adding additional non-tiger images to the database does not
have any effect on our measure of performance (as long as we have no difficulty
in recognizing them as non-tigers and do not retrieve them), and hence we use
precision and recall. If we want to differentiate between two types of targets, for
example, cars and tanks, our accuracy on these different targets is important,
and we use tpr and fpr.

Comparison of multiple algorithms. In the third part of our experiments,
we use the univariate and multivariate tests to compare L > 2 classification
algorithms. For the univariate case, if ANOVA rejects, we can do L(L — 1)/2
pairwise univariate tests to find difference between pairs and also cliques, i.e.,
subsets of algorithms in which all pairwise tests fail to reject.

In the case of a univariate test, we can also write down an order by comparing
the means. For this, we sort the algorithms in terms of average error in ascend-
ing order and then try to find groups where there is no statistically significant
difference between the smallest and largest means in the group, which we check
by applying a pairwise univariate test to these two at the ends. If this the case,
we underline the group. We first try all five, if there is a difference between the
first and the fifth, we try the two groups of four leaving out the two extremes,
and so on.

If MANOVA rejects, similarly, we can do the pairwise multivariate tests and
find cliques. We can also do univariate tests on the dimensions separately and



12 O. Taner Yildiz, O. Aslan, and E. Alpaydin

0.2

1. ; 11.5
-c45 10.4
-knn 9.28
-lda 812
_ -qda .96
= |l-svm .
& g 80
=2 .64 1
3.48 1
2.32
1.1 l
0.6 089 - o 000 a5 tda—qda-svm
Precision breast
(b) (c)

Fig. 5. Comparison of five algorithms on breast. (a) and (b) show the isoprobability
contour plots of the fitted bivariate Gaussians with respect to (tpr, fpr) and (precision,
recall) respectively; (c) shows the corresponding histogram of the error rates.

Table 2. Tabular representation of post-hoc univariate and MultiTF/MultiPR test
results on breast dataset. 1 stands for a failure to reject the null hypothesis.

¢45 lda gda sym knn c45 lda qda sym knn
c45 0 0 0 O c45 00 0 O
lda 0O 11 1 lda 0O 0 1 1
gda 0 1 1 1 qda 0 O 0 0
sym0 1 1 1 sym0 1 0 1
knn0O 1 1 1 knn0O 1 0 1

try to find orderings, as discussed above for error. For example, if MANOVA
on (precision, recall) on five algorithms reject, we can try to find groups and
orderings in terms of precision and recall separately.

Figure [l shows the first example case on breast dataset. Both ANOVA and
MANOVA reject the null hypothesis. According to post-hoc test results, the
univariate test finds a single clique of four algorithms (knn, lda, gda, svm). On
the other hand, both multivariate post-hoc tests (MultiTF and MultiPR) find a
single clique of three algorithms (knn, lda, sum). Table 2 shows the results of all
pairwise tests between five algorithms.

The univariate orderings found are as follows:

error knn svm lda qda c45
tpr, recall lda knn svm qda c45
fpr qda knn svm c45 lda

precision gda knn sum c45 lda

The clique found by multivariate tests (knn, lda, sum) appears as a single
group with respect to tpr and recall. Although (knn, sum) appear together, lda
is separate from that group when the criterion is fpr or precision. We see that
these different measures are able to detect differences that error cannot, and that
the differences vary depending on what performance measure we concentrate on.
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Fig. 6. Comparison of five algorithms on spect. (a) and (b) show the isoprobability
contour plots of the fitted bivariate Gaussians with respect to (tpr, fpr) and (precision,
recall) respectively; (c) shows the corresponding histogram of the error rates.

Table 3. Tabular representation of post-hoc MultiTF and MultiPR test results on
spect dataset. 1 stands for failing to reject the null hypothesis.

¢45 lda gda sym knn c45 lda qda sym knn
c45 01 1 0 c45 00 0 O
lda 0O 0 0 1 lda 0O 0 0 1
gda 1 O 1 0 qda 0 0 1 0
syml 0 1 0 sum0 0 1 0
knn0O 1 0 O knn0O 1 0 O

Figure [0l shows the second example case where we compare all algorithms on
spect. Again, both ANOVA and MANOVA reject the null hypothesis. According
to the post-hoc tests, the univariate test finds five different cliques (one clique of
three and four cliques of two algorithms): (¢45, gda, svm), (knn c45), (lda, c45),
(lda, knn), (sum, knn). On this dataset, the decisions of the two multivariate
tests, MultiTF and MultiPR, are different from each other. MultiTF finds two
cliques: (¢45, gda, sym) and (Ida, knn), whereas MultiPR finds the same cliques
except ¢45 is missing in one clique: (gda, svm) and (Ilda, knn). Table Bl shows the
results of the multivariate pairwise tests between five algorithms.

The univariate ordering of the five classifiers are as follows:

error qda svm c45 knn lda

tpr, recall knn lda svm qda c45
fpr qda c45 svm knn lda
precision gda sum knn lda c45

The first clique found by MultiTF (c45, qda, sum) appears as a single group
with respect to both tpr and fpr, whereas the second clique (Ida, knn) form a
group only with respect to fpr. Similarly, the first clique found by MultiPR (gda,
sum) appears as a single group with respect to recall and precision, whereas the
second clique (Ida, knn) form a group only with respect to precision.
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Using the full 2x2 confusion matrix. Instead of using (tpr, fpr) or (pre-
cision, recall), one can also use the full 2 x 2 confusion matrix using the same
multivariate test in four dimensions. Note however that though the matrix con-
tains four numbers, because p and n are fixed, the degree of freedom is two and
that going to four dimensions is unnecessary. In our pairwise comparison exper-
iments, we see that in 2582 cases out of 2740, the rank of the 2 x 2 confusion
matrix Sy is indeed 2. Only in 98 cases, the rank is 1: This case occurs if the ratio
tp / tn is the same for all folds, and in 60 cases, the rank is 4: This case occurs
if the number of positive and/or negative instances is not exactly divisible by
k, resulting in a difference between the positive and/or negative instances going
from one fold to another.

It can be shown that when we use the 2 x 2 confusion matrix, the test statistic
calculated will be the same as that of MultiTF. The other values fn and tn are
fixed because we have (p = tp + fn) and (n = fp + tn) and they do not change
going from one fold to another due to stratification, reducing the dimensionality
to two, and it can be shown that MultiTF uses scaled versions of the counts
used by Multi 2 x 2 but both return the same value. As explained above, there
are cases when the stratification is not exact, but such cases are rare and do not
affect the overall result.

5 Conclusions

In this paper, we propose to use multivariate tests to compare the performances
of classification algorithms. Doing this, we can consider entries in the confusion
matrix separately without needing to sum them up in a cumulative measure such
as error or accuracy, which may hide certain differences in the behavior of the
algorithms. Though multivariate pairwise tests and multivariate ANOVA have
been known in the statistical literature, to the best of our knowledge, their use
in performance comparison of machine learning algorithms is new.

There are a number of advantages to testing p variables multivariately rather
than p separate univariate testing [4], as has also been shown in our experimental
results above: (1) The use of p univariate tests inflates the type I error rate,
unless we do some sort of correction (which in turn decreases power). (2) The
univariate tests ignore correlations between variables, whereas the multivariate
test uses the covariance information. (3) The multivariate test has higher power:
Sometimes the p univariate tests may fail to detect a difference whereas the
multivariate difference may be significant. (4) The multivariate test (pairwise
test or MANOVA) constructs linear combinations of variables that reveals how
the variables unite to reject the hypothesis.

The use of k-fold cross-validation to obtain k set of performance values comes
with a caveat. Because all k training/validation sets are resampled from the same
set, they overlap, and these k set of measurements are not really independent.
This is true both for the univariate ¢ test [I] and the multivariate test. Nadeu
and Bengio (2003) [10] and Bouckaert and Frank (2004) [I1] discuss a variance-
correction term. We note that the resampling procedure used to generate the k



Multivariate Statistical Tests for Comparing Classification Algorithms 15

data folds is orthogonal to the test which uses these results and that our proposed
multivariate test can be used with any improved resampling procedure.

We calculate (tpr, fpr) or (precision, recall) values for a specific threshold
value. To have an overall comparison, for example, we can use s different thresh-
olds (as done in a ROC curve) and calculate a pair for each value and get an
overall 2s dimensional vector and again use the multivariate test. This is an inter-
esting research direction. In this paper, we discuss how two or more algorithms
can be compared on a single dataset. Demsar (2006) [I2] discusses the compari-
son of algorithms over multiple datasets and an interesting future direction will
be to extend our proposed multivariate test for this.
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