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a b s t r a c t

Recently, it has been proposed to combine multiple kernels using a weighted linear sum. In certain appli-
cations, different kernels may be using different input representations and these methods do not consider
neither the cost of acquiring them nor the cost of evaluating the kernels. We generalize the framework of
MULTIPLE KERNEL LEARNING (MKL) for this cost-conscious methodology. On 12 benchmark data sets from the
UCI repository, we compare MKL and its cost-conscious variants in terms of accuracy, support vector
count, and total cost. Cost-conscious MKL achieves statistically similar accuracy results by using fewer
support vectors/kernels by best trading off accuracy brought by each representation/kernel with the con-
comitant cost. We also test our approach on two popular bioinformatics data sets from MIPS comprehen-
sive yeast genome database (CYGD) and see that integrating the cost factor into kernel combination
allows us to obtain cheaper kernel combinations by using fewer active kernels and/or support vectors.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

SUPPORT VECTOR MACHINE (SVM) is a discriminative classifier pro-
posed for binary classification problems and is based on the theory
of structural risk minimization (Vapnik, 1995). Given a sample of N
independent and identically distributed training instances:

ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxN ; yNÞ;

where xi is the D-dimensional input vector and yi 2 f�1; þ1g is its
class label, i ¼ 1; . . . ; N, SVM basically finds the linear discriminant
with the maximum margin in the feature space induced by the
mapping function U. The resulting decision function is:

f ðxÞ ¼ sgnðhw;UðxÞi þ bÞ:

The classifier can be trained by solving the following quadratic opti-
mization problem:

minimize
1
2
kwk2 þ C

XN

i¼1

ni;

with respect to w 2 RD; n 2 RN
þ; b 2 R;

subject to yi hw;UðxiÞi þ bð ÞP 1� ni 8i;

where w is the vector of weight coefficients, C is a predefined posi-
tive trade-off parameter between model simplicity and classifica-
tion error, n is the vector of slack variables, and b is the bias term
of the separating hyperplane. Instead of solving this optimization
ll rights reserved.
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), alpaydin@boun.edu.tr (E.
problem directly, the Lagrangian dual function enables us to obtain
the following dual formulation:

maximize
XN

i¼1

ai �
1
2

XN

i¼1

XN

j¼1

aiajyiyj hUðxiÞ;UðxjÞi
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{kðxi ;xjÞ

:

with respect to a 2 RN
þ;

subject to
XN

i¼1

aiyi ¼ 0;

C P ai P 0 8i; ð1Þ

where a is the vector of dual variables corresponding to each sepa-
ration constraint and the obtained kernel matrix is positive semi-
definite. Solving this, we get w ¼

PN
i¼1aiyiUðxiÞ and the decision

function can be written as:

f ðxÞ ¼ sgn
XN

i¼1

aiyikðxi; xÞ þ b

 !
:

There are several kernel functions successfully used in the literature
such as linear kernel (kL), polynomial kernel (kP), and Gaussian ker-
nel (kG):

kLðxi; xjÞ ¼ hxi; xji;
kPðxi; xjÞ ¼ ðhxi; xji þ 1Þq q 2 N;

kGðxi; xjÞ ¼ exp �kxi � xjk2
=s2

� �
s 2 Rþþ:

There are also kernel functions proposed for particular applications,
such as natural language processing (Lodhi et al., 2002) and bioin-
formatics (Schölkopf et al., 2004).
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Selecting the kernel function and its parameters (e.g., q and s) is
an important issue in SVM training. Kernel selection is generally
done by selecting the best kernel function after applying a cross-
validation procedure. In recent years, kernel combination methods
have been proposed, where we use multiple kernels instead of
selecting one specific kernel function and its corresponding param-
eters. Each kernel function can capture a different type of similarity
and using several instead of one will enable a better solution. The
reasoning is similar to combining different classifiers: instead of
choosing a single kernel function and putting all our eggs in the
same basket, it is better to have a set and let an algorithm do the
picking. The cost-conscious approach can similarly be justified:
We add a learner to an ensemble if its contribution to accuracy is
worth the increase in cost (time/space complexity of the learner
and/or the cost of acquiring the input representation) (Demir and
Alpaydın, 2005). Similarly, we include a kernel if it is worth the ex-
tra cost of computation or input representation.

In this paper, we demonstrate the effect of cost-conscious
methodology in kernel combination on several benchmark data
sets. The paper is organized as follows: Different kernel combina-
tion methods are reviewed in Section 2. Section 3 explains how
cost-conscious kernel combination can be performed by reinter-
preting the multiple kernel formulation of Bach et al. (2004).
Experiments and results obtained are given in Section 4 and we
conclude in Section 5.

2. Kernel combination methods

The kernel matrix in the objective function must be positive
semi-definite to solve the optimization problem in Eq. (1) effi-
ciently. In this case, the mathematical model becomes a convex
optimization problem and there are several methods that can be
used to obtain the global optimum. Simple rules, such as scaling
with a positive number, summation, and multiplication, as sum-
marized in Eq. (2) allow us to obtain new kernel functions from
existing ones; they ensure that the combined kernel has also a po-
sitive semi-definite kernel matrix (Cristianini and Shawe-Taylor,
2000):

kðxi; xjÞ ¼ ak1ðxi; xjÞ a 2 Rþ;

kðxi; xjÞ ¼ k1ðxi; xjÞ þ k2ðxi; xjÞ;
kðxi; xjÞ ¼ k1ðxi; xjÞk2ðxi; xjÞ: ð2Þ

Summation rule is applied successfully to computational biology
(Pavlidis et al., 2001) and optical digit recognition (Moguerza
et al., 2004) where heterogeneous data sets exist by the nature of
these problems. In both works, summation of two or more kernels
obtained from different representations of the same data set is used.

Such simple rules make assumptions about the combination
rule before training. For example, unweighted summation of kernel
functions gives equal importance to each kernel. Lanckriet et al.
(2002, 2004a) replace the kernel function in the objective and deci-
sion functions with a linear combination of kernels. The new objec-
tive function is:

minimize
g

maximize
a

XN

i¼1

ai �
1
2

XN

i¼1

XN

j¼1

aiajyiyj

XP

m¼1

gmkmðxi; xjÞ;

where m indexes kernels, P is their number, each km corresponds to
a different kernel function, and gm is the combination weight of km.
The new decision function becomes:

f ðxÞ ¼ sgn
XN

i¼1

aiyi

XP

m¼1

gmkmðxi; xÞ þ b

 !
:

Lanckriet et al. (2002, 2004a) represent this problem using a semi-
definite programming (SDP) formulation by constraining the com-
bined kernel matrix to be positive semi-definite. Lanckriet et al.
(2004a) simplify further the model into a quadratically constrained
quadratic programming (QCQP) problem by considering only the
nonnegative combination weights. The QCQP formulation can be
solved for both the support vector coefficients (a) and the combina-
tion weights (g), whereas the SDP formulation gives only the combi-
nation weights and requires solving a canonical SVM problem to find
the support vector coefficients. The QCQP formulation has been
tested on genomic data fusion with different kernel functions eval-
uated on different data representations (Lanckriet et al., 2004b).

The primal optimization problem can be modified without di-
rectly changing the dual optimization problem (Bach et al., 2004):

minimize
1
2

XP

m¼1

dmkwmk
 !2

þ C
XN

i¼1

ni;

with respect to wm 2 RDm ; n 2 RN
þ; b 2 R;

subject to yi

XP

m¼1

hwm;UmðxiÞi þ b

 !
P 1� ni 8i;

where dm is the nonnegative weight assigned to the feature space
induced by Um, wm is the vector of weight coefficients, and Dm is
the dimensionality of the corresponding feature space. This model
can be treated as a second-order cone program and the resulting
dual problem is:

minimize
1
2
c2 �

XN

i¼1

ai

with respect to c 2 R; a 2 RN
þ;

subject to dmc P
XN

i¼1

aiyiUmðxiÞ
�����

����� 8m;

XN

i¼1

aiyi ¼ 0;

C P ai P 0 8i: ð3Þ

This formulation has nonlinear constraints different from the origi-
nal dual problem and is a case of conic programming. It is difficult
to solve this model because of the high space and time complexity.
Squaring each side of the first set of constraints in Eq. (3) and
replacing c2 with 2c reveal the following QCQP problem:

minimize c�
XN

i¼1

ai;

with respect to c 2 R; a 2 RN
þ;

subject to d2
mc P

1
2

XN

i¼1

XN

j¼1

aiajyiyj hUmðxiÞ;UmðxjÞi
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{kmðxi ;xjÞ

8m;

XN

i¼1

aiyi ¼ 0;

C P ai P 0 8i:

Sonnenburg et al. (2006) develop a semi-infinite linear program-
ming equivalent to this model and a solution method to solve the
model iteratively, instead of solving it as a QCQP problem.

3. Cost-conscious kernel combination

We use a cost-conscious variant of the mathematical model
developed in Bach et al. (2004). In general, dm are treated as scaling
factors to balance the scale differences between kernel function
outputs and all dm are selected as 1, because kernel outputs are al-
ready normalized before training:
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kðxi; xjÞ ¼
kðxi; xjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðxi; xiÞkðxj; xjÞ
p : ð4Þ

The solution obtained from the optimization problem gives us a lin-
ear combination of kernel functions that satisfies:

XP

m¼1

d2
mgm ¼ 1;

obtained from Karush–Kuhn–Tucker optimality conditions (Bach
et al., 2004). This equation defines upper bounds for gm and we
can control the feasible region for gm by changing dm.

We use the same mathematical model but our interpretation for
dm is different. We think dm as the cost coefficient for using km.
There are two possible cases:

(a) We can combine different kernel functions and dm may be
considered as the cost of evaluating a kernel. For example,
evaluating the Gaussian kernel function is more costly than
evaluating the linear kernel. Here, the kernel cost is gener-
ally expressed in terms of the required processor time.

(b) We can combine different representations or modalities and
dm may be considered as the cost of extracting/sensing the
corresponding representation/signal. Each data representa-
tion has its own data acquisition cost and kernel function
evaluation time due to its different dimensionality. Kernel
combination should favor the cheaper and smaller data rep-
resentations if they are sufficient for accurate classification.
If a particular data representation is not selected (i.e., its g
is 0) after the training phase, we are not required to collect
and prepare data for this representation in the testing phase.
So, by assigning higher costs, we can eliminate some of the
data representations and therefore decrease the total cost
and time for test examples, unless the costly kernels/repre-
sentations are absolutely necessary for accuracy. For exam-
ple, in speech recognition where additional to the usual
acoustic input, if we also use visual lip image as another
source, we need to make sure that its contribution to accu-
racy is worth the cost of acquiring and processing the image.
Or in biometrics where we have multiple modalities (face,
fingerprint, iris, signature), we only want to include those
whose costs can be justified in terms of additional accuracy.

From this perspective, setting all weights equal to 1 corre-
sponds to assuming equal costs for all kernels, which, in general,
is not true. We need a measure to estimate the total cost for the
testing phase based on the number of support vectors and the ker-
nel functions selected in training, which we define as:

c ¼
XN

i¼1
1ðai > 0Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

# of support
vectors

XP

m¼1
1ðgm > 0Þ dmPP

l¼1dl|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
the total normalized cost

for active kernels

where we multiply the number of support vectors and the summa-
tion of the normalized costs for active kernels.

4. Experiments

In our experiments, we use the MOSEK optimization package
(Mosek, 2009) to solve QCQP problems. MOSEK enables us to obtain
the support vector coefficients (a) and the kernel combination
weights (g) from the primal–dual solution found.

Our experimental methodology is as follows: given a data set, a
random one-third is reserved as the test set and the remaining
two-thirds is resampled using 5 � 2 cross-validation to generate
10 training and validation sets, with stratification. The validation
sets of all folds are used to optimize C (by trying all values between
10�4 and 10þ4 in log scale). The best configuration (the one that has
the highest average accuracy on the validation folds) is used to
train the final learners on the training folds and their performance
is measured on the test set. So, for each data set, we have ten test
set results.

In the result tables, we report the average accuracy percentage,
support vector percentage, total cost, and normalized combination
weights. The average accuracy, support vector percentage, and to-
tal cost are made bold if the difference between MKL and cost-con-
scious variant is significant using the 5� 2 cv paired F test
(Alpaydın, 1999). Total cost calculation is performed with the cost
coefficients of cost-conscious variant to get comparable results. We
also report the count of (W)ins–(T)ies–(L)osses of kernel combina-
tion with the cost-conscious MKL from direct comparison and the
5� 2 cv paired F test. The Wilcoxon signed rank test is used to
compare the two variants over a number of data sets in terms of
average accuracies, support vector counts, total cost, and the result
is shown as (W)in, (T)ie, or (L)oss.
4.1. Kernel selection on UCI data sets

We perform the experiments on 12 benchmark data sets (BANA-

NA, HEART, IONOSPHERE, LIVERDISORDER, OPTDIGITS, PENDIGITS, PIMA, RINGNORM,
SONAR, SPAMBASE, TWONORM, and WDBC) from the UCI repository (Asun-
cion and Newman, 2007). OPTDIGITS and PENDIGITS data sets are optical
and pen-based digit recognition problems, respectively. Two-class
subsets of these data sets (1VS8 and 3VS9 for OPDIGITS, 0VS8, 1VS7, and
5VS9 for PENDIGITS) are taken to obtain binary classification
problems.

Three different kernel functions are used in this part: linear ker-
nel (kL), polynomial kernel (kP), and Gaussian kernel (kG). We use
the second degree (q ¼ 2) polynomial kernel and estimate s in
the Gaussian kernel as the average nearest neighbor distance be-
tween instances in the training set. Outputs obtained from each
kernel function are in different scales. In order to avoid this scale
problem, kernel outputs are normalized by using Eq. (4). We exper-
iment two scenarios on (kL-kP-kG): in the first one, all kernels have
equal cost (dL ¼ 1:00, dP ¼ 1:00, dG ¼ 1:00) and in the second, their
cost increase as we go from linear to polynomial to Gaussian
(dL ¼ 1:00, dP ¼

ffiffiffi
2
p
¼ 1:41, dG ¼ 2:00). The polynomial kernel is

slightly more costly than the linear kernel because of taking the
second power and the Gaussian kernel is more complicated than
that because of the exp function. These values we use are rough
estimates; exact values depend on the particular hardware
implementation.

On all 12 data sets, the comparison of results by MKL and cost-
conscious MKL is given in Table 1. We can see that PENDIGITS (5VS9),
PIMA, and WDBC use only the linear kernel when we increase dP and
dG and achieve statistically similar accuracy results. Removing the
polynomial and the Gaussian kernel from the ensemble by penal-
izing them decreases total cost significantly for PENDIGITS (5VS9)
and WDBC. The cost-conscious MKL assigns zero weight to the
Gaussian kernel for OPTDIGITS (1VS8 and 3VS9), SONAR, and SPAMBASE

data sets whereas the equal cost variant uses the Gaussian kernel
with weights larger than 0.30. Nonlinear data sets such as BANANA

and RINGNORM continue using the Gaussian kernel even if its cost
is increased to 2. However the average test accuracy in RINGNORM

data set is reduced drastically after changing the combination
weight of the Gaussian kernel from 1.00 to 0.25. By comparing
two variants over all data sets, we see that the cost-conscious
MKL achieves similar accuracy results according to both the 5� 2
cv paired F test (12 ties out of 15 tasks) and the Wilcoxon signed
rank test. The 5� 2 cv paired F test reports that total cost is de-
creased significantly over eight out of 15 tasks. Reduction in total



Table 1
The average accuracy percentage, support vector percentage, and total cost for (kL-kP-kG) combination on benchmark data sets. The first line is the case where all kernels have
equal cost and the second line is where complex kernels are penalized.

Data set Test accuracy SV Total cost gL-gP-gG

BANANA 83.17 ± 0.52 90.68 ± 0.11 70.14 ± 0.08 0.00–0.03–0.97
83.27 ± 1.05 83.27 ± 0.11 64.40 ± 0.08 0.00–0.04–0.96

HEART 79.67 ± 1.74 79.44 ± 3.28 18.00 ± 0.74 1.00–0.00–0.00
79.67 ± 1.74 79.44 ± 3.28 18.00 ± 0.74 1.00–0.00–0.00

IONOSPHERE 93.85 ± 1.13 64.36 ± 2.73 54.25 ± 7.54 0.01–0.46–0.53
90.94 ± 1.57 46.67 ± 2.52 44.65 ± 7.54 0.29–0.60–0.10

LIVERDISORDER 64.17 ± 4.14 93.30 ± 1.54 57.01 ± 20.32 0.02–0.00–0.98
65.91 ± 3.17 80.87 ± 3.60 66.57 ± 20.32 0.67–0.30–0.03

OPTDIGITS (1VS8) 98.01 ± 0.14 28.21 ± 2.68 28.21 ± 1.00 0.27–0.38–0.34
98.01 ± 0.14 19.12 ± 1.83 10.46 ± 1.00 0.53–0.47–0.00

OPTDIGITS (3VS9) 96.71 ± 1.53 25.46 ± 4.19 25.46 ± 1.15 0.44–0.20–0.36
97.37 ± 1.39 15.25 ± 2.10 8.34 ± 1.15 0.73–0.27–0.00

PENDIGITS (0VS8) 99.30 ± 0.11 11.70 ± 0.53 11.70 ± 0.11 0.18–0.71–0.11
99.80 ± 0.00 9.10 ± 0.11 9.10 ± 0.11 0.25–0.66–0.09

PENDIGITS (1VS7) 100.00 ± 0.00 14.00 ± 1.69 14.00 ± 1.58 0.39–0.24–0.37
100.00 ± 0.00 6.50 ± 1.58 6.50 ± 1.58 0.68–0.23–0.09

PENDIGITS (5VS9) 99.20 ± 0.21 33.20 ± 0.21 18.16 ± 0.05 0.79–0.21–0.00
99.20 ± 0.21 32.60 ± 0.21 7.39 ± 0.05 1.00–0.00–0.00

PIMA 73.09 ± 0.75 68.91 ± 1.62 20.14 ± 0.37 0.97–0.03–0.00
72.93 ± 1.01 68.79 ± 1.65 15.58 ± 0.37 1.00–0.00–0.00

RINGNORM 98.01 ± 0.63 26.85 ± 0.00 12.17 ± 0.79 0.00–0.00–1.00
87.25 ± 0.42 82.46 ± 1.16 56.05 ± 0.79 0.75–0.00–0.25

SONAR 81.14 ± 3.14 86.96 ± 2.46 86.96 ± 3.10 0.14–0.33–0.54
80.29 ± 3.61 69.13 ± 5.68 37.81 ± 3.10 0.48–0.52–0.00

SPAMBASE 92.53 ± 0.10 42.99 ± 4.33 42.99 ± 6.23 0.39–0.18–0.43
92.43 ± 0.00 31.06 ± 2.53 12.40 ± 6.23 0.96–0.04–0.00

TWONORM 97.20 ± 0.00 89.10 ± 0.11 20.18 ± 0.05 1.00–0.00–0.00
97.20 ± 0.00 89.00 ± 0.21 20.16 ± 0.05 1.00–0.00–0.00

WDBC 95.45 ± 0.91 22.26 ± 3.21 16.97 ± 0.36 0.70–0.06–0.24
94.97 ± 0.97 17.00 ± 1.59 3.85 ± 0.36 1.00–0.00–0.00

(W-T-L) 2-12-1 8-6-1 8-6-1 5 � 2 cv paired F test
(W-T-L) 4-5-6 13-1-1 12-1-2 Direct comparison
(W/T/L) T W W Wilcoxon rank test
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cost is also reported to be statistically significant using the Wilco-
xon signed rank test over 15 tasks.
4.2. Representation selection on handwritten digit data

Kernel combination can also be used to combine different data
representations or modalities. In this case, it can be the case that
extracting different representations or modalities may have costs
associated with them and we do not want to use a costly one un-
less it is deemed necessary for classification. For example, PENDIGITS

data set has four different representations: DYN, STA4, STA8, and
STA16 (Alimoğlu and Alpaydın, 1997). DYN contains eight successive
pen points on two-dimensional coordinate system and is used
when combining kernel functions on PENDIGITS data set. STA16 is
16� 16 image bitmap representation of the corresponding training
instance formed by connecting the points in the DYN representation
Fig. 1. Four different representations for digit eight.
by line segments. STA4 and STA8 are 4� 4 and 8� 8 subsampled
bitmap representations of STA16, respectively. Fig. 1 illustrates
DYN, STA16, STA8, and STA4 representations on a sample data
instance.

In our experiments, we use linear kernels over four different
representations of PENDIGITS data set. We form two sets of experi-
ments as follows: (a) (kDYN-kSTA16) with (dDYN-dSTA16) taken as
(1.00–1.00) and (1.00–4.00), increasing the cost of forming the im-
age representation, (b) (kDYN-kSTA4-kSTA8-kSTA16) with (dDYN-dSTA4-dSTA8-
dSTA16) taken as (1.00–1.00–1.00–1.00) and (1.00–1.00–2.00–4.00),
increasing the cost of representation with higher dimensionalities.

As we see in Table 2, when both representations, DYN and STA16,
have equal cost, both are chosen for 0VS8 and 1VS7. When we in-
crease the cost of the STA16 to 4, only DYN representation is used
Table 2
The average accuracy percentage, support vector percentage, total cost, and kernel
combination weights for (DYN-STA16) combination.

Data set Test accuracy SV Total cost gDYN-gSTA16

PENDIGITS (0VS8) 99.40 ± 0.21 15.10 ± 0.95 15.10 ± 0.21 0.21–0.79
99.00 ± 0.42 8.80 ± 0.21 8.80 ± 0.21 0.75–0.25

PENDIGITS (1VS7) 99.70 ± 0.32 11.00 ± 0.21 11.00 ± 0.02 0.35–0.65
100.00 ± 0.00 3.70 ± 0.11 0.74 ± 0.02 1.00–0.00

PENDIGITS (5VS9) 99.20 ± 0.21 32.80 ± 0.21 6.56 ± 0.08 1.00–0.00
99.20 ± 0.21 32.80 ± 0.42 6.56 ± 0.08 1.00–0.00
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for 1VS7. The average accuracy percentage for all three tasks re-
mains the same according to the 5� 2 cv paired F test results with
increasing dSTA16. Total cost in testing phase decreases because of
two factors: (a) the average support vector percentages are de-
creased. (b) kSTA16 is not evaluated when gSTA16 is equal to 0. When
we combine all four representations and penalize kernels propor-
tional to their dimensionality (see Table 3), we obtain accuracy re-
sults that are statistically the same, but using only two
representations (DYN and STA4) for 5VS9 and three representations
(DYN, STA4, and STA8) for 0VS8 and 1VS7. The cost-conscious MKL also
uses significantly fewer support vectors in all cases. Estimated total
cost for both cases decrease drastically as a result of using fewer
kernels and support vectors.
4.3. Kernel/representation selection on bioinformatics data

We perform protein location prediction and protein function
prediction experiments on the MIPS comprehensive yeast genome
database (Mewes et al., 2000).
4.3.1. Protein location prediction
CYGD assigns subcellular locations for 2318 and 1150 proteins

according to whether they participate in the membrane and the
ribosome, respectively. We combine the seven kernel functions
used also in Lanckriet et al. (2004b) for comparing equal cost and
cost-conscious variants of MKL.

kSW and kB are generated from protein sequences using Smith–
Waterman (SW) and the BLAST pairwise sequence comparison
algorithms, respectively. kPfam are also generated from protein se-
quences by replacing pairwise comparison scores with the expec-
tation values obtained from hidden Markov models in the Pfam
database. kFFT is calculated by comparing the frequency content
of the hydropathy profiles of the two proteins. kLI is the inner prod-
uct between interaction values for a pair of proteins. kD is the dif-
fusion kernel calculated over the graph constructed by using the
same interaction data used in kLI. kE is the Gaussian kernel calcu-
lated over microarray gene expression measurements.

kSW , kB, and kPfam require pairwise comparison scores for protein
sequences, so, they are computationally expensive. The same con-
cern is also valid for kFFT . kLI obtained by inner product over protein
interactions is a simple kernel. kD requires constructing a graph
from protein interactions and calculating a similarity measure
based on a random walk on this graph. kE is also a cheap kernel,
Table 3
The average accuracy percentage, support vector percentage, total cost, and kernel combin

Data set Test accuracy SV

PENDIGITS (0VS8) 99.50 ± 0.11 10.70 ± 0.11
99.30 ± 0.32 5.80 ± 0.4

PENDIGITS (1VS7) 99.90 ± 0.11 9.70 ± 0.53
99.70 ± 0.32 3.00 ± 0.4

PENDIGITS (5VS9) 99.30 ± 0.11 12.90 ± 0.95
99.50 ± 0.11 10.30 ± 0.1

Table 4
The average accuracy percentage, support vector percentage, total cost, and kernel combin

Task Test accuracy SV

MEMBRANE 86.30 ± 0.61 84.42 ± 1.03
85.40 ± 0.55 71.33 ± 1.67

RIBOSOMAL 98.99 ± 0.26 18.56 ± 1.56
99.07 ± 0.18 18.61 ± 1.46
which simply evaluates the Gaussian kernel function over 441
dimensional gene expressions.

Two different cost combinations are formed by considering all
seven kernels despite the fact that kE and kFFT are not much rele-
vant for membrane and ribosomal protein recognition tasks,
respectively. We consider the following two (dSW -dB-dPfam-dFFT -
dLI-dD-dE) combinations: (a) (1.00–1.00–1.00–1.00–1.00–1.00–
1.00), all kernels are considered with equal cost coefficients as a
base case, (b) (1.41–1.41–1.41–1.41–1.00–2.00–1.00), the diffusion
kernel (kD) is assigned the largest cost coefficient due to its compu-
tational complexity, kLI and kE are given cost coefficients smaller
than those of sequence based kernels (kSW -kB-kPfam-kFFT ) due to
their simplicity. The cost values we assign here are used as rough
estimates to give us an ordering of the costs. Exact values depend
on the implementation of these kernel functions and the time/
space complexity of the data structures and the algorithms that
are used.

Table 4 summarizes the results for ribosomal and membrane
protein recognition problem. Cost-conscious variant uses statisti-
cally significantly fewer support vectors compared to the equal
cost variant in membrane protein recognition. As an important re-
sult, it can be observed that discarding kD (i.e., dD ¼ 2), which is
computationally expensive, and using protein sequence based ker-
nels with a larger cost coefficient than kLI achieves similar classifi-
cation results by improving total cost for both tasks.

4.3.2. Protein function prediction
CYGD categorizes 3588 proteins into 13 top-level categories,

which can be interpreted as 13 binary classification tasks (YEAST1, -
YEAST2, . . . ,YEAST13), one for each category. The reason for decom-
posing into binary classification problems instead of using a
multiclass formulation is that some proteins belong to more than
one category. In this set of experiments, we use the eight kernel
functions used also in Lanckriet et al. (2004a).

kPfam is the inner product between binary representations of
protein sequences to Pfam domains. kPfamE is an enriched variant
of kPfam obtained by using additional domains. kTAP , kPhys, and kGen

are three different diffusion kernels calculated over the graphs
constructed from three different types of protein interactions:
co-participation in a protein complex, genetic interactions, and
protein–protein interactions, respectively. kExp and kExpG are calcu-
lated from cell cycle gene expression measurements. kExp is a bin-
ary kernel function that is determined by using Pearson
correlation of a pair of expression profiles. kExpG is the Gaussian ker-
ation weights for (DYN-STA4-STA8-STA16) combination.

Total cost gDYN-gSTA4-gSTA8- gSTA16

10.70 ± 0.33 0.24–0.16–0.33–0.26
2 2.90 ± 0.21 0.48–0.38–0.14–0.00

9.70 ± 1.33 0.32–0.31–0.31–0.06
2 1.50 ± 0.21 0.45–0.51–0.04–0.00

12.90 ± 0.04 0.35–0.12–0.10–0.44
1 2.58 ± 0.03 0.64–0.36–0.00–0.00

ations weights for membrane and ribosomal protein recognition tasks.

Total cost gSW -gB-gPfam-gFFT -gLI- gD-gE

75.34 ± 5.09 0.28–0.31–0.11–0.05–0.00–0.15–0.10
37.81 ± 5.09 0.00–0.26–0.06–0.00–0.07–0.00–0.60

6.86 ± 1.96 0.01–0.00–0.00–0.16–0.03–0.00–0.80
6.08 ± 1.96 0.00–0.00–0.00–0.01–0.03–0.00–0.96



Table 5
The average accuracy percentage, support vector percentage, total cost, and kernel combination weights for (kPfam-kTAP-kPhys-kGen-kExp) combination.

Task Test accuracy SV Total cost gPfam-gTAP-gPhys-gGen- gExp

YEAST1 78.20 ± 0.84 91.08 ± 0.85 91.08 ± 26.82 0.67–0.03–0.07–0.17–0.06
72.70 ± 0.56 97.03 ± 0.59 50.96 ± 26.82 0.14–0.00–0.00–0.01–0.85

YEAST2 93.29 ± 0.10 91.10 ± 2.33 88.92 ± 0.08 0.23–0.01–0.14–0.18–0.44
93.24 ± 0.06 96.54 ± 0.69 11.47 ± 0.08 0.00–0.00–0.00–0.00–1.00

YEAST3 86.40 ± 0.46 95.68 ± 0.86 95.68 ± 14.66 0.11–0.01–0.18–0.32–0.37
83.96 ± 0.35 94.62 ± 1.43 56.27 ± 14.66 0.16–0.00–0.00–0.01–0.83

YEAST4 84.81 ± 0.56 93.17 ± 1.07 93.17 ± 18.68 0.22–0.03–0.23–0.21–0.31
82.07 ± 0.49 94.48 ± 1.18 60.71 ± 18.68 0.16–0.01–0.01–0.00–0.82

YEAST5 91.51 ± 0.17 75.42 ± 1.54 75.42 ± 23.51 0.19–0.01–0.13–0.25–0.41
91.50 ± 0.19 90.96 ± 1.77 60.76 ± 23.51 0.15–0.00–0.01–0.01–0.84

YEAST6 86.75 ± 0.45 91.74 ± 1.25 76.48 ± 29.43 0.63–0.00–0.13–0.23–0.01
83.84 ± 0.66 95.46 ± 1.20 54.40 ± 29.43 0.16–0.00–0.00–0.01–0.82

YEAST7 90.20 ± 0.41 83.09 ± 1.92 75.09 ± 0.18 0.18–0.03–0.28–0.23–0.27
87.01 ± 0.29 95.46 ± 0.63 27.39 ± 0.18 0.12–0.00–0.00–0.00–0.88

YEAST8 92.93 ± 0.16 91.67 ± 3.51 82.92 ± 0.23 0.34–0.01–0.10–0.14–0.42
92.73 ± 0.16 95.91 ± 0.81 27.52 ± 0.23 0.10–0.00–0.00–0.00–0.90

YEAST9 94.59 ± 0.14 84.71 ± 2.71 84.71 ± 0.11 0.16–0.11–0.22–0.11–0.39
94.57 ± 0.00 96.55 ± 0.94 11.47 ± 0.11 0.00–0.00–0.00–0.00–1.00

YEAST10 89.97 ± 0.23 94.88 ± 0.53 79.08 ± 17.56 0.09–0.00–0.24–0.23–0.44
88.54 ± 0.48 92.54 ± 1.85 44.18 ± 17.56 0.15–0.00–0.02–0.00–0.83

YEAST11 94.66 ± 0.11 92.97 ± 1.92 75.30 ± 0.04 0.07–0.00–0.17–0.25–0.51
94.65 ± 0.00 97.22 ± 0.38 11.55 ± 0.04 0.00–0.00–0.00–0.00–1.00

YEAST12 94.87 ± 0.35 75.80 ± 2.17 32.56 ± 0.87 0.99–0.01–0.00–0.00–0.00
94.10 ± 0.62 83.02 ± 3.02 23.82 ± 0.87 0.59–0.00–0.00–0.00–0.41

YEAST13 97.74 ± 0.00 86.64 ± 8.66 85.43 ± 0.06 0.12–0.05–0.10–0.07–0.66
97.74 ± 0.00 96.79 ± 0.54 11.50 ± 0.06 0.00–0.00–0.00–0.00–1.00

(W-T-L) 0-7-6 0-8-5 8-5-0 5 � 2 cv paired F test
(W-T-L) 0-1-12 2-0-11 13-0-0 Direct comparison
(W/T/L) L L W Wilcoxon signed rank test

Table 6
The average accuracy percentage, support vector percentage, total cost, and kernel combination weights for (kPfamE-kTAP-kPhys-kGen-kExpG-kSW ) combination.

Task Test accuracy SV Total cost gPfamE-gTAP-gPhys-gGen- gExpG-gSW

YEAST1 79.15 ± 0.77 92.74 ± 0.84 92.74 ± 8.57 0.16–0.02–0.09–0.16–0.05–0.51
78.15 ± 0.49 86.26 ± 1.20 38.88 ± 8.57 0.11–0.00–0.00–0.00–0.56–0.33

YEAST2 94.13 ± 0.29 70.44 ± 4.10 66.03 ± 3.99 0.01–0.01–0.16–0.21–0.09–0.52
93.94 ± 0.49 42.96 ± 3.49 13.78 ± 3.99 0.00–0.00–0.00–0.00–0.63–0.36

YEAST3 86.40 ± 0.54 90.47 ± 1.07 86.85 ± 5.76 0.05–0.01–0.16–0.29–0.05–0.44
85.03 ± 0.50 66.71 ± 3.20 36.29 ± 5.76 0.14–0.00–0.00–0.05–0.75–0.06

YEAST4 85.64 ± 0.58 84.27 ± 1.67 84.27 ± 0.37 0.17–0.03–0.20–0.18–0.06–0.37
82.32 ± 0.76 62.67 ± 0.82 28.15 ± 0.37 0.34–0.01–0.00–0.00–0.65–0.00

YEAST5 93.12 ± 0.50 60.38 ± 2.86 60.38 ± 4.73 0.17–0.01–0.12–0.15–0.22–0.32
94.54 ± 0.42 49.11 ± 2.85 27.18 ± 4.73 0.10–0.00–0.00–0.00–0.64–0.26

YEAST6 86.89 ± 0.37 84.23 ± 0.94 82.53 ± 0.62 0.14–0.01–0.12–0.24–0.04–0.47
85.96 ± 0.85 77.61 ± 1.59 30.23 ± 0.62 0.10–0.00–0.00–0.00–0.50–0.40

YEAST7 91.14 ± 0.46 89.77 ± 1.19 87.96 ± 0.87 0.09–0.04–0.28–0.24–0.03–0.32
88.07 ± 0.54 75.24 ± 2.25 29.31 ± 0.87 0.24–0.00–0.00–0.00–0.39–0.37

YEAST8 93.66 ± 0.19 83.07 ± 3.94 70.03 ± 3.43 0.00–0.04–0.18–0.22–0.03–0.52
93.41 ± 0.31 53.28 ± 1.69 15.33 ± 3.43 0.00–0.00–0.00–0.00–0.65–0.34

YEAST9 94.67 ± 0.35 40.18 ± 5.08 39.40 ± 6.79 0.02–0.14–0.24–0.12–0.01–0.47
94.72 ± 0.38 57.95 ± 3.32 23.52 ± 6.79 0.02–0.00–0.00–0.00–0.60–0.37

YEAST10 90.09 ± 0.25 70.98 ± 1.62 49.26 ± 6.70 0.00–0.00–0.23–0.19–0.02–0.57
88.65 ± 0.09 71.62 ± 3.64 25.36 ± 6.70 0.00–0.00–0.01–0.00–0.61–0.38

YEAST11 94.65 ± 0.00 86.89 ± 2.20 58.53 ± 2.91 0.00–0.01–0.16–0.13–0.01–0.68
94.65 ± 0.00 58.95 ± 3.44 15.34 ± 2.91 0.00–0.00–0.00–0.00–0.70–0.30

YEAST12 96.01 ± 0.24 54.92 ± 3.24 45.70 ± 2.61 0.39–0.11–0.07–0.02–0.02–0.37
95.58 ± 0.59 38.89 ± 1.58 15.94 ± 2.61 0.34–0.00–0.00–0.00–0.46–0.20

YEAST13 97.68 ± 0.10 63.12 ± 5.14 54.04 ± 2.33 0.00–0.24–0.10–0.11–0.03–0.51
97.74 ± 0.00 30.47 ± 2.17 8.82 ± 2.33 0.02–0.00–0.00–0.00–0.89–0.09

(W-T-L) 0-10-3 11-2-0 13-0-0 5 � 2 cv paired F test
(W-T-L) 3-1-9 11-0-2 13-0-0 Direct comparison
(W/T/L) L W W Wilcoxon signed rank test
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nel defined on the expression profiles. kSW is obtained by applying
SW algorithm to yeast protein sequences.

Two different kernel subsets described in Lanckriet et al.
(2004a) are also used for experiments: (kPfam-kTAP-kPhys-kGen-kExp)
and (kPfamE-kTAP-kPhys-kGen-kExpG-kSW ). For the first subset, kPfam and
diffusion kernels are assigned cost coefficients higher
(dPfam ¼ 1:41 and dTAP ¼ dPhys ¼ dGen ¼ 2:00) than kExpðdExp ¼ 1:00Þ.
Likewise, kPfamE, kSW , and diffusion kernels are penalized
(dPfamE ¼ dSW ¼ 1:41 and dTAP ¼ dPhys ¼ dGen ¼ 2:00) in the second
subset.

The results for each binary classification task in the first subset
are given in Table 5. We see that avoiding the expensive kernels
such as diffusion kernels leads to significant accuracy loss and in-
crease in the number of support vectors stored. The cost-conscious
MKL uses kExp only in four out of 13 tasks. In other tasks except
YEAST12, kExp is used with a combination weight between 0.82
and 1. Support vector percentages are increased in nearly all cases
but total kernel evaluation will be decreased for test instances due
to the unused kernels. This result can also be seen from the esti-
mated total cost results, which has an obvious decreasing trend
for the cost-conscious variant. The 5� 2 cv paired F test and the
Wilcoxon signed rank test report significant win for total cost
and significant loss for the average test accuracy and support vec-
tor percentages, indicating that in this case, the expensive kernels
are worth their costs.

Table 6 lists the results for the second subset. Cost-conscious
variant uses kExpG heavily with combination weights ranging from
0.39 to 0.89. Equal cost variant uses kSW with a significant weight
in all tasks. However cost-conscious variant prefers to use kSW with
a smaller coefficient. Different from the first subset, support vector
percentages also decrease significantly in 11 out of 13 tasks, in
addition to a decrease in total cost. The 5� 2 cv paired F test re-
ports a significant loss for the average test accuracy in three tasks
and the difference between the average test accuracies of two vari-
ants is significant according to the Wilcoxon signed rank test. The
Wilcoxon signed rank test finds significant wins for the number of
support vectors stored and total cost.

5. Conclusions

This work introduces a cost-conscious kernel combination
framework to include the cost of kernel computations and data
acquisition/generation into the MKL mathematical model. In this
work, we present results for two set of experiments on benchmark
data sets: combining different kernels on the same data represen-
tation and combining different data representations with the same
kernel. The results show that incorporating a cost factor into the
model enables us to use only the necessary kernels and avoid
costly kernel computations and input generation for some data
representations in testing phase when possible. The cost of a kernel
depends on the time/space complexity of the kernel implementa-
tion (in software or hardware) and the cost of sensing the input
representation and manipulating it.

The cost-conscious MKL variant is also tested on two bioinfor-
matics applications described from CYGD. Similar to the results ob-
tained on the UCI benchmark data sets, the cost-conscious variant
of MKL helps us trade-off the contribution of a kernel to accuracy
with its complexity and can eliminate expensive data representa-
tions/kernels when possible. By using cost-conscious MKL in bioin-
formatics applications, we can select a kernel combination that
enables us to get rid of obtaining costlier data representations
(generally obtained through additional experimental processes)
and evaluating expensive kernel functions.

To summarize, we see that integrating the cost factor into ker-
nel combination allows us to identify and select necessary kernel
functions for the classification task at hand. Expensive kernels or
costlier representations, in terms of evaluation time and memory,
can be disregarded if they do not convey important information.
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