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Supervised Learning of Local Projection Kernels

Mehmet Gönen∗, Ethem Alpaydın

Department of Computer Engineering, Boğaziçi University, TR-34342, Bebek, İstanbul, Turkey

Abstract

We formulate a supervised, localized dimensionality reduction method using a gating model that divides up the input
space into regions and selects the dimensionality reduction projection separately in each region. The gating model, the
locally linear projections, and the kernel-based supervised learning algorithm which uses them in its kernels are coupled
and their training is performed with an alternating optimization procedure. Our proposed local projection kernel projects
a data instance into different feature spaces by using the local projection matrices, combines them with the gating model,
and performs the dot product in the combined feature space. Empirical results on benchmark data sets for visualization
and classification tasks validate the idea. The method is generalizable to regression estimation and novelty detection.
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1. Introduction

In binary classification, we are given a training data set
{(xi, yi)}

n

i=1 where n is the number of training instances,
xi ∈ R

d and yi ∈ {−1, +1}. Dimensionality reduction
is commonly used to alleviate the effect of redundant or
correlated features and to visualize the training data using
few, for example, two dimensions.

Principal Component Analysis (Pca) is the first
method that comes to mind for linear dimensionality re-
duction. Pca seeks to maximize the explained variance
of the data in the projected feature space and performs a
linear dimensionality reduction by calculating a projection
matrix from the eigenvectors of the covariance matrix. It
may perform badly for classification problems due to its
linear and unsupervised nature. Kernel Pca (Kpca) is
an extension to Pca algorithm which obtains nonlinear
mappings with the help of kernel functions (Schölkopf and
Smola, 2002).

Fisher Discriminant Analysis (Fda) is a well-known
linear supervised method for dimensionality reduction that
jointly minimizes the within-class variance and maximizes
the between-class variance. Fda has two main limitations:
(a) the dimensionality of the projected feature space can
be at most c − 1 where c is the number of classes, (b) it
assumes that each class follows a unimodal distribution,
which may not always hold. Fda can also be kernelized to
obtain nonlinear mappings.

Methods such as Pca and Fda learn a global projec-
tion matrix and use this matrix over the whole input space.
This approach may not work for data sets which have a
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local neighborhood structure. A Mixture of Principal

Component Analyzers has been proposed to capture
regional differences in the covariance structure (Tipping
and Bishop, 1999). The method divides the input density
into clusters and learns a local Pca model in each clus-
ter. However, the unsupervised nature of Pca method is
preserved even though we learn local models.

Locally Linear Embedding (Lle) (Roweis and Saul,
2000), Isomap (Tenenbaum et al., 2000), and Laplacian

Eigenmaps (Belkin and Niyogi, 2001) are some exam-
ples of unsupervised locality preserving manifold learn-
ing algorithms but these methods do not explicitly learn
a mapping function for unseen data instances. Ocnlinx
et al. (2009) and Hou et al. (2009) propose two variants
of the Lle algorithm in order to capture the local neigh-
borhood structure in the data better. Locality Pre-

serving Projections (Lpp) have been proposed also to
learn a mapping function while preserving locality (He and
Niyogi, 2003).

In addition to these unsupervised methods, there are
also supervised methods which keep the local neighbor-
hood structure in the data. Local Fisher Discrimi-

nant Analysis (Lfda) combines the ideas behind Fda

and Lpp (Sugiyama, 2007). The mapping is obtained
again by solving a generalized eigenvalue problem but the
between-class scatter and within-class scatter matrices are
calculated locally with the help of an affinity matrix (an
idea which is borrowed from Lpp). Lfda also removes
the restriction of obtaining at most c − 1 dimensions in
the projected feature space. Tao et al. (2009) extend Fda

by maximizing the geometric mean of the divergences be-
tween different pairs of classes. This strategy obtains bet-
ter projections in terms of class separation for multiclass
problems. Another method is Local Learning Projec-
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tions (Llp) which can use supervised information (its dif-
ference from Pca) and minimize the local estimation error
instead of the global estimation error (Wu et al., 2007).

Yan et al. (2007) formulate a common framework for
representing different dimensionality reduction algorithms
as graph embedding problems. For example, Pca, Fda,
Isomap, Lle, Lpp, and Laplacian Eigenmaps can be
cast into a common formulation. Following this idea, a su-
pervised variant of Lle called Discriminant Lle (Dlle)
that also learns a mapping function is proposed (Li et al.,
2008).

In this paper, we propose a supervised dimensionality
reduction method coupled with a kernel machine called
Local Projection Kernels (Lpk). In Section 2, we
reproduce the modification of the discriminant function of
the support vector machine (Svm) by integrating a projec-
tion matrix and explain how to optimize Svm parameters
and the projection matrix jointly, as given by Chapelle
et al. (2002). We give a brief description of localized ker-
nel functions proposed by Gönen and Alpaydın (2008) in
Section 3. Then, in Section 4, we combine these two ideas
of projections and localized kernels, and describe how to
optimize all of the parameters in a coupled manner with
an alternating optimization procedure. Section 5 explains
the key properties of the proposed algorithm. We then
demonstrate its performance on benchmark data sets for
visualization and classification tasks in Section 6 and con-
clude in Section 7.

2. Supervised Learning of Projection Kernels

Svm is a discriminative classifier based on structural
risk minimization (Vapnik, 1995) and soft-margin Svm for-
mulation can be given as:

min.
1

2
‖w‖

2
+ C

n∑
i=1

ξi

w.r.t. w, b, ξ

s.t. yi (〈w, Φ(xi)〉+ b) ≥ 1− ξi ∀i

ξi ≥ 0 ∀i (1)

where w is the vector of weight coefficients, C is the regu-
larization parameter, b is the threshold, ξ is the vector of
slack variables and Φ(·) is the mapping function used for
classification.

Suppose that, instead of using the original features,
we apply a linear projection to data instances with the
projection matrix, W ∈ R

d×r:

z = W�x

where r is the dimensionality of the projected feature space.
If we use the projected instances in the decision function,
we obtain:

f(x) = 〈w, Φ(z)〉+ b

and the primal problem for Svm in (1) becomes:

min.
1

2
‖w‖

2
+ C

n∑
i=1

ξi

w.r.t. w, b, ξ, W

s.t. yi (〈w, Φ(zi)〉+ b) ≥ 1− ξi ∀i

ξi ≥ 0 ∀i . (2)

Note that the optimization problem in (2) is not convex
due to the nonlinearity in the separation constraints.

Instead of trying to optimize Svm parameters, {w, b, ξ},
and the projection matrix, W , together, we utilize a two-
step optimization algorithm as in Chapelle et al. (2002)
and Rakotomamonjy et al. (2008). The algorithm starts
with a random projection matrix at the start. In the first
step, we solve (2) with respect to {w, b, ξ} while fixing
W . We then update W using a gradient-descent step cal-
culated from the objective function of (2) in the second
step. The following dual formulation can be solved in-
stead of the primal formulation in the first step to apply
the kernel trick.

max.
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj 〈Φ(zi), Φ(zj)〉︸ ︷︷ ︸
K(zi, zj)

w.r.t. α

s.t.

n∑
i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i (3)

For a fixed W , we solve the dual optimization problem
and obtain the optimal α values. We need to update W

by calculating the gradient of the objective function in (3).
The gradient of the objective function with respect to the
elements of W is calculated as:

∂J

∂Wkl

= −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj

∂K(zi, zj)

∂Wkl

where k ∈ {1, 2, . . . , d} and l ∈ {1, 2, . . . , r}. The same
gradient can also be obtained as the derivative of the mar-
gin (Chapelle et al., 2002).

Three commonly used kernels, linear kernel (KL), poly-
nomial kernel (KP ), and Gaussian kernel (KG), can be
expressed in terms of W as follows:

KL(zi, zj) = 〈zi, zj〉 = x�i WW�xj

KP (zi, zj) = (〈zi, zj〉+ 1)
q

=
(
x�i WW�xj + 1

)q

KG(zi, zj) = exp
(
− ‖zi − zj‖

2
/

s2
)

= exp
(
−(xi − xj)

�WW�(xi − xj)
/

s2
)

.

The derivative of the kernels with respect to the elements

2
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of the projection matrix are given as:

∂KL

∂Wkl

= xi[k]zj [l] + zi[l]xj [k]

∂KP

∂Wkl

= (xi[k]zj[l] + zi[l]xj [k]) q (〈zi, zj〉+ 1)
q−1

∂KG

∂Wkl

= −2(xi[k]− xj [k])(zi[l]− zj [l])KG(zi, zj)/s2

where [·] indexes the elements of a vector.
The projection matrix can be updated using a sim-

ple gradient-descent update rule with a fixed step size or
Armijo’s rule can be used to determine a better step size at
each iteration (see Section 5). Note that this alternating
optimization procedure does not guarantee convergence to
the global optimum and the initial value of W may affect
the solution quality. Algorithm 1 lists the main steps of
the procedure which we call Global Projection Ker-

nels (Gpk) from now on (Δ(t) is the step size in gradient
descent).

Algorithm 1 Global Projection Kernels

1: Initialize W to random numbers
2: repeat

3: Calculate K(zi, zj)
4: Solve canonical Svm with K(zi, zj)

5: W
(t+1)
kl ⇐W

(t)
kl −Δ(t) ∂J

∂Wkl

∀(k, l)

6: until convergence

After convergence, we obtain the decision function in
terms of model parameters as follows:

f(x) =
n∑

i=1

αiyiK(W�xi, W
�x) + b .

We project both the input x and the support vector xi to
the lower dimensional space and calculate the kernel there.

3. Localized Kernel Functions

Each mapping function we use in (1) or (2) corresponds
to a different kernel function in the dual formulation and is
directly related to the performance of the resulting classi-
fier. The best kernel function (i.e., the mapping function)
for a specific data set is generally selected from a set of can-
didate kernel functions using a statistical cross-validation
procedure.

Instead of selecting and using a single mapping (ker-
nel) function, Bach et al. (2004) propose Multiple Ker-

nel Learning (Mkl) which takes an unweighted sum
of multiple discriminant values in different feature spaces
obtained with different mapping functions:

f(x) =

p∑
m=1

〈wm, Φm(x)〉+ b

where m indexes kernels, wm is the vector of weight coeffi-
cients, Φm(·) is the mapping function for feature space m,
and p is the number of kernels. The primal formulation of
Mkl is obtained as:

min.
1

2

(
p∑

m=1

‖wm‖

)2

+ C

n∑
i=1

ξi

w.r.t. wm, b, ξ

s.t. yi

(
p∑

m=1

〈wm, Φm(xi)〉+ b

)
≥ 1− ξi ∀i

ξi ≥ 0 ∀i

and the resulting decision function is a weighted sum of
kernels:

f(x) =
n∑

i=1

p∑
m=1

αiyiηm 〈Φm(xi), Φm(x)〉︸ ︷︷ ︸
Km(xi, x)

+b .

where the kernel weights satisfy ηm ≥ 0 and
∑p

m=1 ηm = 1.
Mkl uses a fixed combination rule which assigns the

same weight to a kernel over the whole input space. If data
has an underlying local structure, we should give higher
weights to appropriate kernel functions (i.e., kernels which
match the complexity of data distribution) for each local
region. Gönen and Alpaydın (2008) propose Localized

Multiple Kernel Learning (Lmkl) by rewriting the
discriminant function as follows, in order to allow local
combinations of kernels:

f(x) =

p∑
m=1

ηm(x|V )〈wm, Φm(x)〉+ b (4)

where ηm(x|V ) is the gating function which chooses the
weight for feature space m as a function of input x and V

is the vector of the gating function parameters. Assuming
that the regions of use of kernels are linearly separable, we
can express the gating model as:

ηm(x|V ) =
exp(〈vm, ΦG(x)〉+ vm0)
p∑

k=1

exp(〈vk, ΦG(x)〉+ vk0)

(5)

where V includes all vm, vm0, and ΦG(x) is the feature
space in which we learn the gating model.

By modifying the original Svm formulation in (1) with
the localized discriminant function in (4), we get the fol-
lowing optimization problem:

min.
1

2

p∑
m=1

‖wm‖
2 + C

n∑
i=1

ξi

w.r.t. wm, b, ξ, V

s.t. yi

(
p∑

m=1

ηm(xi|V )〈wm, Φm(xi)〉+ b

)
≥ 1− ξi ∀i

ξi ≥ 0 ∀i .

3
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Lmkl uses an alternating optimization procedure to solve
this nonconvex problem and obtains the discriminant func-
tion as:

f(x) =
n∑

i=1

p∑
m=1

αiyiηm(xi|V )Km(xi, x)ηm(x|V ) + b .

4. Supervised Learning of Local Projection Ker-

nels

Using a single projection matrix over the whole input
space can not capture multiple modalities that may exist
in the data. At this point, we can combine localized kernel
functions of Section 3 with projection matrices of Section 2
and similar to using kernel functions with changing weights
in different regions, we can divide the input space into p
regions and learn a local projection matrix, W m ∈ R

d×r,
m = 1, . . . , p, in each region, in order to capture the local
structure information. So, we have p different projected
data instances for each instance:

zm = W�
mx m = 1, . . . , p

and the discriminant function can be rewritten as:

f(x) =

p∑
m=1

ηm(x|V )〈wm, Φ(zm)〉+ b

where the gating function, ηm(x|V ), now chooses the weight
for projected feature space m as a function of input x. By
modifying the formulation in (2) with this new discrimi-
nant function, we get the following optimization problem:

min.
1

2

p∑
m=1

‖wm‖
2

+ C

n∑
i=1

ξi

w.r.t. wm, b, ξ, W m, V

s.t. yi

(
p∑

m=1

ηm(xi|V )〈wm, Φ(zim)〉+ b

)
≥ 1− ξi ∀i

ξi ≥ 0 ∀i (6)

and this problem is not convex, either. For given {W 1:p, V }
values, (6) becomes convex and we can obtain the La-
grangian of the primal problem:

LD =
1

2

p∑
m=1

‖wm‖
2

+

n∑
i=1

(C − αi − βi)ξi +

n∑
i=1

αi

−

n∑
i=1

αiyi

(
p∑

m=1

ηm(xi|V )〈wm, Φ(zim)〉+ b

)

and taking the derivatives of LD with respect to the primal
variables gives:

∂LD

∂wm

⇒ wm =

n∑
i=1

αiyiηm(xi|V )Φ(zim) ∀m

∂LD

∂b
⇒

n∑
i=1

αiyi = 0

∂LD

∂ξi

⇒ C = αi + βi ∀i . (7)

From (6) and (7), the dual formulation is obtained as:

max.

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjKη(xi, xj)

w.r.t. α

s.t.
n∑

i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i (8)

where the local projection kernel matrix is defined as:

Kη(xi, xj) =

p∑
m=1

ηm(xi|V ) 〈Φ(zim), Φ(zjm)〉︸ ︷︷ ︸
K(W�

mxi, W
�
mxj)

ηm(xj |V )

and using Kη(xi, xj) corresponds to projecting data in-
stances into the (p×r)-dimensional feature space and using
the dot product in this feature space.⎛

⎜⎜⎜⎝
η1(xi|V )Φ(W�

1 xi)

η2(xi|V )Φ(W�
2 xi)

...

ηp(xi|V )Φ(W�
p xi)

⎞
⎟⎟⎟⎠
�⎛
⎜⎜⎜⎝

η1(xj |V )Φ(W�
1 xj)

η2(xj |V )Φ(W�
2 xj)

...

ηp(xj |V )Φ(W�
p xj)

⎞
⎟⎟⎟⎠

Having fixed Svm and gating, we can update the lo-
cal projection matrices using gradient descent. For given
{α, V } values, the gradient of the objective function in (8)
with respect to the elements of W m matrices are given as:

∂Jη

∂Wmkl

= −
1

2

n∑
i=1

n∑
j=1

Υijηm(xi|V )
∂K(zim, zjm)

∂Wmkl

ηm(xj |V )

where Υij = αiαjyiyj .
Having fixed Svm and the local projections, we can up-

date the gating parameters. For given {α, W 1:p} values,
the gradient of the objective function in (8) with respect
to the gating model parameters are given as:

∂Jη

∂vm

= −
1

2

n∑
i=1

n∑
j=1

p∑
k=1

Υijηk(xi|V )K(zik, zjk)ηk(xj |V )

(
ΦG(xi)

(
δk
m − ηm(xi|V )

)
+ ΦG(xj)

(
δk
m − ηm(xj |V )

))
∂Jη

∂vm0
= −

1

2

n∑
i=1

n∑
j=1

p∑
k=1

Υijηk(xi|V )K(zik, zjk)ηk(xj |V )

(
δk
m − ηm(xi|V ) + δk

m − ηm(xj |V )
)

4
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(a) Original Space
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(b) Projected Space

Figure 1: Motivating example for learning local projections. (a) There are two local regions in the original feature space and the thick dashed
line separate them. W1 and W2 arrows show the projection directions in the two regions. The solid lines show the discriminant in each
region. (b) The horizontal and vertical axes correspond to the projected directions in the two regions and the solid line shows the resulting
discriminant in this projected space. We see that the two classes are perfectly separated in this space.

where δk
m is 1 if m = k, and 0 otherwise.

The complete algorithm of our proposed Lpk with lin-
ear gating model is summarized in Algorithm 2 (Δ(t) and
μ(t) are the step sizes of the corresponding updates in gra-
dient descent). The convergence of the algorithm can be
determined by observing the change in the objective func-
tion value.

Algorithm 2 Local Projection Kernels

1: Initialize {W 1:p, V } to random numbers
2: repeat

3: Calculate Kη(xi, xj)
4: Solve canonical Svm with Kη(xi, xj)

5: W
(t+1)
mkl ⇐W

(t)
mkl −Δ(t)

∂Jη

∂Wmkl

∀(m, k, l)

6: v
(t+1)
m ⇐ v

(t)
m − μ(t)

∂Jη

∂vm

∀m

7: v
(t+1)
m0 ⇐ v

(t)
m0 − μ(t)

∂Jη

∂vm0
∀m

8: until convergence

After determining the final {α, b, W 1:p, V } values, the
resulting discriminant function is:

f(x) =

n∑
i=1

p∑
m=1

αiyiηm(xi|V )K(W�
mxi, W

�
mx)ηm(x|V ) + b .

In order to better illustrate the proposed method, we
create a toy data set which consists of four clusters (two
for each class) as shown in Fig. 1(a). If we use a global
projection matrix over the whole input space, we can not
obtain a clear linear separation between classes due to in-
traclass multimodalities. However, we can obtain a pro-
jected space in which classes are well-separated and multi-

modal structures in each class are preserved, as shown in
Fig. 1(b), by splitting the input space into two regions us-
ing the linear gating model (shown with the thick dashed
line in Fig. 1(a)) and performing local projections (one-
dimensional projections, W 1 ∈ R

2×1 and W 2 ∈ R
2×1,

shown with arrows in Fig. 1(a)) in each region.
Fig. 2 shows the gating model output superimposed

with training data. We see that η1(x|V ) divides the input
space into two local regions. The line where η1(x|V ) = 0.5
is shown by a thick dashed line in Fig. 1(a).

−5 −4 −3 −2 −1 0 1 2 3 4 5 −5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

x[2]
x[1]

η 1
(x
|V

)

Figure 2: The gating model output superimposed with training data
for the motivating example.

5. Discussion of the Method

In Lpk training, the gradient calculations have ignor-
able time complexity compared with the Svm solver and

5
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these calculations are made by using only the support vec-
tors at the current iteration. The key issue for faster con-
vergence is to select good gradient-descent step sizes, (Δ(t)

and μ(t) in Algorithm 2), at each iteration. Better step size
values can be obtained by utilizing a line search method
such as Armijo’s rule but this process needs additional calls
to the Svm solver. Clearly, the time complexity for each
iteration increases but the algorithm converges in fewer
iterations. In our experiments, we use Armijo’s rule to de-
termine the step sizes at each iteration and the algorithm
converges in a few iterations (generally 5 to 10). A more
detailed convergence analysis is performed in Section 6.4.

We describe Lpk for binary classification problems but
the same idea can easily be applied to regression estima-
tion and novelty detection problems (Schölkopf and Smola,
2002) by changing the dual optimization problem (8) solved
at each iteration and calculating the gradients with respect
to the new objective function. The gradient formulations
obtained for binary classification problems can be used by
just replacing Υij with (α+

i −α−i )(α+
j −α−j ) for regression

estimation and with αiαj for novelty detection.
Using local projection matrices in different regions of

the input space enables us to extract information about
the relative importance of features in each region. The
features with high magnitude weights in local projection
matrices give more information in the corresponding region
of the input space. The features with very small weights
can also be discarded to perform feature selection locally.

Coupled learning of a data projection rule and a clas-
sification algorithm has also been studied by Weinberger
et al. (2005) and Globerson and Roweis (2005). In these
studies, a Mahalanobis distance metric used in nearest
neighbor classification is learned by directly considering
the classification accuracy. Tao et al. (2005) propose a su-
pervised learning method that performs learning and fea-
ture extraction together for tensor data. The discriminant
parameters and the projection matrix are optimized using
an alternating approach. Our proposed Lpk is more simi-
lar to Pereira and Gordon (2006) in that the optimization
of the projection matrix and the classifier (Svm as in our
case) performed jointly. They use a global projection ma-
trix over the whole input space, but we introduce a data-
dependent projection by using a gating model for choosing
the projection matrix.

6. Experiments

In this section, we evaluate the performance of the pro-
posed method on visualization and classification tasks on
benchmark data sets. We implement the main body of our
algorithm in MATLAB and solve the optimization prob-
lems with MOSEK optimization software (Mosek, 2009).
We stop the algorithm when the objective function value
of the current iteration is not less than (1 − τ) times the
objective function value of the previous iteration. The
parameter τ is set to 0.001 in our experiments (see Sec-

tion 6.4). To compare, we use MATLAB implementation
of Lfda (Sugiyama, 2007) with default parameters.

6.1. Data Visualization

We compare Pca, Lfda, and our proposed Lpk for
data visualization on small benchmark data sets, namely
Iris, Thyroid Disease, Letter Recognition, and Im-

age Segmentation from the UCI machine learning repos-
itory (Asuncion and Newman, 2007). On these multiclass
data sets, we merge certain classes, as done by Sugiyama
(2007), to obtain multimodal two-class problems. In Pca

and Lfda methods, we extract two dimensions by using
the first two principal directions. In Lpk method using
Svm with the linear kernel, we use two regions (p = 2)
with the linear gating model and project data points to
one dimension (r = 1) in each region.

On Iris, we combine Setosa and Virginica into a sin-
gle class to obtain multimodality. Fig. 3 shows the two-
dimensional projected feature spaces found by each method.
Both Pca and Lfda preserve within-class modality but
could not achieve a clear between-class separation. How-
ever, our proposed Lpk achieves a clear between-class sep-
aration while preserving within-class modality.

On Thyroid Disease, we merge Hypothyroidism and
Hyperthyroidism classes into one class. As we can see from
Fig. 4, all three methods obtain similar results but Lpk has
better separation between within-class modalities.

On Letter Recognition, we construct a two-class
data set by combining ‘A’ and ‘C’ letters into one class ver-
sus ‘B’ letter in another class. Lfda achieves a good sep-
aration between clusters whereas Pca is not able to sepa-
rate the samples from ‘B’ and ‘C’ letters (see Fig. 5). Lpk

also achieves good separation between different classes but
it could not separate letters ‘A’ and ‘C’ as well as Lfda.
This is mainly because of the discriminative nature of Lpk,
the main goal is to separate different classes rather than
preserving multimodality in one class.

On Image Segmentation, we combine Brickface and
Sky classes into one class and treat Foilage as another
class. Fig. 6 shows that Pca and Lfda are not able to sep-
arate Brickface and Foilage classes, whereas Lpk obtains
three different clusters for each class while maintaining a
good between-class separation.

6.2. Face Recognition

We also compare Pca and Lpk on the Olivetti face
recognition data set in order to see the performance of Lpk

in a real-life scenario with a very high dimensional feature
space. Olivetti data set consists of 10 different 64 × 64
grayscale images of 40 subjects. We construct a two-class
data set by combining male subjects (36 subjects) into
one class versus female subjects (4 subjects) in another
class. In both methods, we project data points to a two-
dimensional space. Pca extracts these two dimensions by
using the first two principal directions, and Lpk using Svm

with the linear kernel divides the original feature space

6
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Figure 3: Data visualization for Iris data set.
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Figure 4: Data visualization for Thyroid Disease data set.
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Figure 5: Data visualization for Letter Recognition data set.
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Figure 6: Data visualization for Image Segmentation data set.
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Figure 7: Data visualization for Olivetti data set. (a) Pca: Two eigenface images obtained from the first two principal eigenvectors are
shown in the corners. (b) Lpk (p = 2 and r = 1): The face images obtained from the local projection matrices, W1 and W2, are shown in
the corners. We also produce a face image from the gating model parameters, {v1, v2}, in order to see which features are important when
dividing the input space into local regions. Only the image marked � is misclassified.

into two regions (p = 2) with the linear gating model and
projects data points to one dimension (r = 1) in each
region.

Fig. 7(a) illustrates the projection obtained by Pca.
We can see that Pca is not able to separate classes due
to its unsupervised nature. Eigenfaces obtained from the
first two principal eigenvectors are also shown on the two
corners and they look like two male subjects.

Lpk finds a better two-dimensional projected space as
shown in Fig. 7(b). Lpk is able to achieve a nearly per-
fect separation between classes except a single image. If
we look at the face image produced from gating model pa-
rameters, {v1, v2} ∈ R

4096×1, we can see that the gating
model puts more emphasis on eyes, eyebrows, nose, and
mouth to assign the weights to the local projection spaces
for a given data instance. The face image obtained from
the first local projection matrix, W 1 ∈ R

4096×1, is very
much like a male subject with relatively higher weights on
eyebrows and nose. The face image of the other local pro-
jection matrix, W 2 ∈ R

4096×1, looks like a female subject
with relatively higher weights on eyes and mouth. Lpk

identifies the important parts of the face images without
using any prior information while trying to optimize the
separation between classes in a supervised manner.

6.3. Classification Accuracy

We evaluate the performance of Pca, Lfda, and Lpk

on classification tasks using large benchmark data sets.
Table 1 lists the properties of the data sets. Waveform

from the UCI repository is selected due to its multimodal
structure and the first two classes are combined into a
single one. Usps-eo (Usps-sl) are generated from Usps

data set (16×16 grayscale digit images) by combining even
(small: ‘0’ - ‘4’) numbers and odd (large: ‘5’ - ‘9’) numbers
into different classes.

Table 1: Classification data sets used in the experiments.

Data set Dimensionality # of instances

Waveform 21 1500
Usps-eo 256 1500
Usps-sl 256 1500

Our experimental methodology is as follows: Given a
data set, a random one-third is reserved as the test set and
the remaining two-thirds is resampled using 5 × 2 cross-
validation to generate ten training and validation sets,
with stratification. Note that Gpk algorithm discussed in
Section 2 is equivalent to Lpk with p = 1. We also train
Svms after reducing dimensionality with Pca or Lfda us-
ing the same kernel in Gpk and Lpk (the linear kernel
in our experiments). The validation sets of all folds are
used to optimize C by trying values 0.01, 0.1, 1, 10, and
100. The best configuration (the one that has the highest
average accuracy on the validation folds) is used to train
the final Svms on the training folds and their performance
is measured over the test set. So, for each data set, we
have ten test set results; we display their averages and one
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Figure 8: Classification results for Waveform data set. The average test accuracy and the average percentage of support vectors versus the
dimensionality of the projected space are plotted.
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Figure 9: Classification results for Usps-eo data set.

standard deviation error bars.
On Waveform (see Fig. 8), Svm trained after Pca

and Lfda obtains nearly the same average accuracy re-
sults (around 89 per cent) after two dimensions. Gpk

achieves similar accuracy results with only one dimension.
If we use local projection matrices with Lpk (p = 2 or
p = 3), the average classification accuracy increases to 92
per cent using few dimensions. Because dimensionality
reduction is done separately in different regions, we can
work with much fewer dimensions attaining significantly
higher accuracy. For example, when r = 2 or r = 3, Lpk

(p = 2 or p = 3) stores significantly fewer support vectors
than Svm trained after Pca and Lfda while achieving sig-
nificantly higher accuracy. Fitting a simpler model while
attaining higher test accuracy is a clear indication of better
generalization. Svm without any dimensionality reduction
obtains 88.34 per cent average accuracy.

On Usps-eo (see Fig. 9), Svm trained after Lfda ob-
tains an average accuracy around 79 per cent for all dimen-
sion values tried. However, Svm trained after Pca obtains
better average accuracies after five dimensions and 86.10

per cent average accuracy with 15 dimensions. Gpk and
Lpk (p = 3) obtains more than 87 and 90 per cent average
accuracy, respectively, for all dimension values tried. Gpk

and Lpk achieve significantly higher accuracies and store
significantly fewer support vectors than Svm trained after
Pca for all configurations. Svm without any dimension-
ality reduction obtains 87.58 per cent average accuracy.

On Usps-sl (see Fig. 10), Svm trained after Pca has
more than 70 per cent average accuracy after 14 dimen-
sions whereas Svm trained after Lfda gets around 68 per
cent average accuracy. Gpk achieves average accuracy
more than 75 per cent. When we use local projection ma-
trices (p = 2 or p = 3), the average accuracy increases to
more than 86 per cent. Lpk achieves 11 per cent higher
accuracy than Gpk and stores only 5 per cent of training
instances as support vectors. Svm without any dimension-
ality reduction obtains 76.36 per cent average accuracy.

We also compare the classification performances of these
methods on Olivetti (see Fig. 11). We use a different
methodology for this data set. We select two images of
each subject randomly and reserve these total 80 images
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Figure 10: Classification results for Usps-sl data set.
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Figure 11: Classification results for Olivetti data set.

as the test set. Then, we apply 8-fold cross-validation on
the remaining 320 images by putting one image of each
subject to the validation set at each fold. In order to get
rid of singularity problems in Lfda method, we project
data instances into a 100-dimensional space with Pca be-
fore applying Lfda. Svm trained after Pca could not
achieve more than 96 per cent average accuracy whereas
Svm trained after Lfda gets around 98 per cent average
accuracy. Gpk achieves average accuracy more than 98
per cent with four and five dimensions. Lpk (p = 2 or
p = 3) achieves more than 98 per cent average accuracy
after two dimensions (r ≥ 2). For example, Lpk (p = 2
and r = 4) obtains 99.69 per cent average accuracy. Lpk

stores nearly the same amount of support vectors as Svm

trained after Lfda but achieves higher average accuracy.
Svm without any dimensionality reduction obtains 99.06
per cent average accuracy.

6.4. Convergence Analysis

We perform convergence analysis of Lpk on Wave-

form and Olivetti data sets. We train Lpk (p = 2,

r = 1, and C = 100) with the linear kernel for 25 itera-
tions and record the objective function value, training and
test set accuracies, and the percentage of support vectors
at each iteration.

Fig. 12 shows that Lpk converges on Waveform data
set after five iterations. If we use the stopping condition
based on the objective function value with τ = 0.01 or
0.001, Lpk stops respectively after 9 and 13 iterations
(shown with a square and a circle).

A similar behavior is also seen on Olivetti data set
(see Fig. 13). We see that even τ = 0.01 is too conserva-
tive. Note that on both data sets, Lpk does not overfit
even if we allow all 25 iterations.

7. Conclusions

In this work, we introduce a method for learning lo-
cal projections coupled with a kernel-based learning algo-
rithm. The proposed method has three main ingredients:
(a) the gating model assigns weights to projection matri-
ces for a data instance, (b) the local projection matrices
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Figure 12: Convergence analysis of Lpk on Waveform data set.
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Figure 13: Convergence analysis of Lpk on Olivetti data set.

perform dimensionality reduction separately in each re-
gion constructed by the gating model, (c) the kernel-based
learning algorithm combines these locally constructed fea-
tures.

The training of these three components are coupled,
are all supervised, and the parameters of components are
optimized together by using an alternating optimization
scheme. The result of combining these three components
is a local projection kernel which performs a locality pre-
serving projection while considering the accuracy of the
discriminant formed using such kernels. For binary clas-
sification tasks, the mathematical details of the proposed
framework with linear gating are given. We discuss how
the same derivation can be extended to regression estima-
tion and novelty detection problems.

The proposed method, Lpk, is tested and compared
with two other algorithms, Pca and Lfda, for data visu-
alization and classification tasks on benchmark data sets.

On visualization tasks, Lpk is able to maintain the mul-
timodality of a class by placing clusters of the same class
on the same side of the hyperplane while preserving a sep-
aration between them. This property is a direct result of
using a gating model in Lpk. On classification tasks, Lpk

achieves better results than Pca and Lfda by attaining
both higher test accuracy and storing fewer support vec-
tors due to the coupled optimization of the discriminant
and the local projection matrices used in dimensionality
reduction.
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