788

Letters

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 3, MAY 1996

Local Linear Perceptrons for Classification

Ethem Alpaydin and Michael 1. Jordan

Abstract— A 'structure composed of local linear perceptrons for ap-
proximating global class discriminants is investigated. Such local linear
models may be combined in a cooperative or competitive way. In the
cooperative model, a weighted sum of the outputs of the local perceptrons
is computed where the weight is a function of the distance between the
input and the position of the local perceptron. In the competitive medel,
the cost function dictates a mixture model where only one of the local
perceptrons give output. Learning of the local models’ positions and the
linear mappings they implement are coupled and both supervised. We
show that this is preferrable to the uncoupled case where the positions
are trained in an unsupervised manner before the separate, supervised
training of mappings. We use goodness criteria based on the cross-entropy
and give learning equations for both the cooperative and competitive
cases. The coupled and uncoupled versions of cooperative and compet-
itive approaches are compared among themselves and with multi-layer
perceptrons of sigmoidal hidden units and radial basis functions (RBF’s)
of Gaussian units on the application of recognition of handwritten digits.
The criteria of comparison are the generalization accuracy, learning time,
and the number of free parameters. We conclude that even on such a high-
dimensional problem, such local models are promising. They generalize
much better than RBF’s and use much less memory. When compared
with multilayer perceptrons, we note that local models learn much faster
and generalize as well and sometimes better with comparable number of
parameters.

I. INTRODUCTION

The relative advantages of local and distributed representations
have been frequently discussed in neural-network literature. Local
methods, like kernel estimators and radial basis functions (RBF’s),
learn fast as only few hidden units respond to a given input, thus
only a small percentage of weights need be updated at each iteration.
But more hidden units are used with local coding and larger training
samples are needed for good generalization. Distributed methods like
the multilayer perceptrons (MLP’s) with sigmoidal hidden units learn
slowly but find compact representations with few parameters and do
not require large samples. -

In a usual multilayer network, local or distributed, the response of
each hidden unit is scaled by a constant value which is the weight
from the hidden unit to the output unit '

y=Y ungn(®)+uo. 0
h

up are the weights, uo is the “bias” weight, and gn(z) are the
hidden unit values for the d dimensional input z. Alternatively, ¥
is a superposition of the up, values where g (z) are the weights that
determine how much of each u; will be taken into account for input
x. Frequently g, (+) values are normalized to sum to one. This implies
that for any input, at least one of g, (-) is nonzero.

Manuscript received April 12, 1995; revised September 25, 1995. This
work was supported by a scholarship from TUBITAK, Turkish Scientific and
Technical Research Council, and TUBITAK Grant EEEAG-143. :

E. Alpaydm is with the Department of Computer Engineering, Bogazigi
University, TR-80815, Istanbul, Turkey.

M. L Jordan is with the Department of Brain and Cognitive Sciences,
Massachusetts Institute of Technology, Cambridge MA 02139 USA.

Publisher Item Identifier § 1045-9227(96)03192-X.

In the case of purely local representation where only one of the
gr(-) is one and all others are zero, ¥ is a piecewise constant function.
If as in Parzen windows and RBF’s; gx(-) are taken as Gaussians, -
we get a smoother function. The more the Gaussians overlap, the
smoother is the final approximation. It is evident that just like any
Boolean function can be represented as a disjunction of conjunctions,
any continuous function can be approximated to a desired precision
as a juxtaposition of piecewise constant functions. If the function is
varying considerably around a point, however, a piecewise constant
approximation may require many units. Taking into account one more
term in the Taylor expansion, we may also look at the linear function
of the input, denoted as wx ()

y = wa(@)gn(x) +unga(z)
h
=Y W@, @
h

We absorbed up, as constant “bias” into W and added a constant
dimension of one to . A higher-order function than linear is also
possible but we want to minimize variance and not have too many
free parameters. It is a good idea to have gy (-) local like the Gaussian
as only few of the W, are then updated at each iteration. Each of
the W1 z computation then is a linear “expert” which has a position
encoded by V', and g5, () measures the (normalized) distance of the
input z from this position. This requires an application-dependent
distance measure D(z, V)

- oeDE VIl
gr(z) = >, exp|D(z, vVl 3)

Possibilities for D(:, -) include (negative) Euclidean' distance, i.e.,
D(x, Vi) = —||#— V|| (possibly modulated by a spread parameter)
and Mahalanobis distance, i.e., D(z, Vi) = —(z — V)T Xz —
V&) where ¥ is the covariance matrix. V5, in this case corre-
sponds to a center, the mean, where gn(-) takes its maximum.
Another possibility that is simpler to compute is the dot product, i.e.,
D(z, Vi) = Viz where V), defines a hyperplane with a certain
orientation and distance from the origin. As long as the norms of V5,
are comparable, orderings given by the dot product and Euclidean
distance are equal.

Learning in such a framework is estimating the positions ¥V and
linear mappings W from a given labeled training sample. We make
distinction between two cases: In the case where learning is coupled,
there is a single cost function for supervised training of both sets
of parameters. In the uncoupled case, first proposed by Moody and
Darken [11, training the positions V' is an unsupervised process which
precedes the separate, supervised training of the linear mappings W.

A second type of distinction is by the degree of overlap of the
linear experts. In a competitive scheme, the architecture is so designed
that the final output is equal to the output of one of ‘the linear
mappings, i.e., one of gr(-) is one and all others are zero. This is
done either explicitly by choosing one, e.g., the closest and updating
its parameters only, or implicitly by a cost measure that favors
competition. In a cooperative scheme, there is no such requirement
and the final output is a blend of the outputs of separate linear
mappings.

In the next section, we review existing literature on the idea. Then
we formalize the architecture and discuss two ways of combining the

1045-9227/96$05.00 © 1996 IEEE

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO, 3, MAY 1996

TABLE 1
COMPARISON OF PREVIOUS APPROACHES ACCORDING TO THE LEARNING
STRATEGY AND THE TYPE OF COMBINING THE LOCAL MAPPINGS

Method Learning Combining

Hampshire and Waibel (1990) uncoupled cooperative
Stokbro et al. (1990) uficoupled cooperative
Jacobs et al. (1991) coupled competitive
Bottou and Vapnik {1992) uncoupled competitive
Martinetz et al. (1993) uncoupled competitive
Murray-Smith (1994) uncoupled = cooperative

local perceptrons. We then apply it to the problem of recognition of
handwritten digits and compare them empirically among themselves
and with a single perceptron, multilayer network of sigmoidal hidden
units, and RBF network of Gaussian hidden units. The three criteria
on which we base our comparisons are learning time, number of
free parameters, and generalization accuracy. In the final section, we
summarize our findings and conclude.

II. LITERATURE SURVEY

Constructs like used in (2) where there are multiplicative connec-
tions in which the output values of two units are multiplied, thus
allowing one unit to gate another, is known as a Sigma-Pi unit [2]
or a product unit [3]. Previously many authors proposed structures
composed of localized linear perceptrons both for classification and
function approximation. In Table I, we compare them according to the
two axes of coupled/uncoupled learning and competitive/cooperative
combination.

¢ The Meta-Pi Network proposed by Hampshire and Waibel [4]

for speech recognition contains a number of stimulus-specific
networks each separately trained to recognize the speech of
one individual. There is also an additional network that is
trained to integrate the outputs of the subnetworks to maximize
the phoneme recognition rate of the overall structure. The
recognition modules or the gating network are not restricted to
be linear perceptrons.

* Stokbro er al. [5] use a similar approach for predicting chaotic
time series. Instead of a “flat” layer of units, they first compute
a k-d tree using the input samples to compute the positions of
the Gaussians. The linear mappings are then learned.using least
squares where the means and spreads of the Gaussians are fixed.
Their method performs, as expected, better than the RBF’s.
Jacobs et al. [6] propose the “adaptive mixtures of local experts”
where each local expert is a linear perceptron and there is a
competitive gating mechanism that localizes the experts. The
gating network which uses the dot product can also be seen as
a set of perceptrons. This approach has later been generalized
to learn “hierarchies of experts” [7].

* Bottou and Vapnik [8] propose to use “local learning algorithms”
where simple systems are trained with a small subset of data
around the given input as opposed to training one big, complex
system with all of the data. They achieved significant improve-
ment for an optical character recognition problem with this
approach when for each test input, a fixed number of neighboring
samples are used to train a separate linear perceptron.

» The “neural-gas” architecture of Martinetz et al. [9] is similar
in that there is a competitive scheme where the input space
is quantized and then local linear mappings are fit to data.
These two steps are uncoupled, however. A soft competition
takes place for placing the clusters' that maximize the log-
likelihood and a separate least squares minimization is done
afterwards for fitting the linear mappings. For prediction of time
series, Martinetz ef al. find that the “neural-gas” performs better

789

than backpropagation and RBF networks. Previous work of the
same group [10] used Kohonen’s ‘self-organizing map that is a
hard competitive scheme for input quantization and was for the
control of a robot arm.

* Murray-Smith [11] similarly extends RBF networks where each
“local model net” is a linear function of the input. One can have
hierarchies of them -and a constructive method is given where
new models are incrementally added when needed. It is applied
to control problems with significant success.

II. FORMALISM

For each class C;;, we are given a set of data pairs {z’, y*}: where
z is a d-dimensional input vector and y is a binary value that is one if
z € C; and zero otherwise. Using this sample, we need to compute
the posterior probabilities of classes P(Cj|z, 8) for a novel input
x, where 6 is the set of modifiable parameters of our model. If we
assume that all errors are equally costly, to minimize risk we assign
the input to the most probable class

¢ = argmax [P(Cj|=, 8)]. 4)

For classification, we can write a “softmax” model for the posterior

- class probabilities [12], [13]

exp[4i(z)]
2ok exp [Ai ()]
A; denotes the total output for class j. One possibility is to take it
as a weighted sum of the responses of the » local experts

P(Cj|lz) =)

4;(@) =Y nje(®)g.(x)- ©®)

;- () is the output of expert r for class j and g,-(z) is the “weight”
of expert r. Each local expert is a simple perceptron whose output is a
linear function of the input (j ranges over classes and r over experts)

Hir ($) = W?rx' 0

The mappings implemented by the experts are defined by the pa-
rameter vectors W ;.. Each expert is responsible for inputs in a
certain region only. In the simplest case, this region is delimited
by a hyperplane. The softmax function is used again to make sure
that the gating values sum up to one
exp[V7a]

S exp[VFia]
The positions of the experts are coded by the parameter vectors V..
One can think of the gating network as another classifier where a
given input is assigned to one of the experts and in this regard g."
values can be seen as probabilities, P(w,|z), the posterior probability
that = is taken care of by expert r.

We use the cross-entropy measure that is more suited for classi-
fication tasks than least squares for optimization of the parameters
6 = {W;,, V,}, .. We favor coupled learning and use the same
goodness measure for optimizing both the expert positions and the
mappings. Experts can be combined in a competitive or cooperative
manner as discussed below.

gr(z) = ®)

A. Cooperating Learners
In the cooperative scheme, each expert decides on the output by

itself and then a weighted sum of the expert outputs is computed as
in (6) which is then converted to probabilities using softmax

0. = _ZP[A]

= Al 9
TN, exp[Ax] &

790

and we maximize the cross-entropy to decrease the Kullback—Leibler
distance between this value, O;, and the desired output, y; for all
classes

E =7 "y,logO;. (10)
J .
By gradient-ascent, taking the derivative of (10) with respect to
the parameters and with 5 denoting the learning factor, we get the
following update rules for the expert mappings:

AW]'T = n(yj - O]')g,«:l: (11)

and their positions
AV =n(y; — 07)gr (njr — Aj)z.

As seen in (12), when determining the expert positions, supervised
error is also taken into account and not only the input as done by
unsupervised procedures like k-means. Through coupled training of
expert mappings and positions, experts are placed in the input space
in such a way so as to minimize error. We discuss this in more detail
in Section III-C.

a1z

B. Competing Learners

First proposed by Jacobs et al. [6], a measure that forces competi-
tion is to view the architecture as a mixture model [14]. The gating
values are the mixture proportions and the expert perceptron outputs
are the means. If we take Gaussian components with equal variances,
the likelihood of the sample point % is given as

E=log) grexp [Zw log oh} :
r J

Equation (13) forces experts to compete because the likelihood is
higher when they overlap less. Thus generally for a given input, only
one g is close to one and others are close to zero and it is this expert
that is responsible from giving the whole correct output. That is we
want to minimize the distance between the required output and -the
output of expert r whose g, is close to one, after it is converted to
probabilities '

13

_ _ exp[pr]
ok €XD [pkr]

The update equations for the expert mappings and positions with
gradient-ascent are as follows:

AVV]T = nhr(yj — Ojr):v
AV, =n(hr —gr)z

0y

(14
with

‘ b = gr €Xp [Z] y;jlog Oj]
" Y giexp[X; yilog 05l

C. Coupled and Uncoupled Learners

.To make the mathematical connection between the coupled and the
uncoupled methods cléarer, let us consider a competitive model where
we reparameterize the gating network to describe the density directly
in the input space (rather than parameterizing the discriminant sur-
faces g, using softmax) where the distance measure is Euclidean, thus
getting a scepario similar to one used in unsupervised, competitive
learning for uncoupled learning. That is, let

gr = P(w,|z)
Plwr)p(z|w:)

T 5 Plwdp(aled ()

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 3, MAY 1996

where P(w,|z) is the posterior probability that input is handled by
expert 7 and P(w,) is the prior probability. We take the likelihoods,
p(xlwr), as Gaussians and we represent them directly by storing
their means and possibly covariances.

We want our learning algorithm to move the means of these
Gaussians, either in an uncoupled way, i.e., a clustering procedure,
or in a coupled way by making use of the experts’ outputs and th
supervised target y. '

We then have the following measure:

E= logZP(wr)p(:vIwr) exp [Zyj log Ojr:I (16)
T j : N

which differs from (13) in not having a softmax at the gating network.
We assume that the priors, P(w,) are equal; one can obviously also
adjust them as well as a part of the learning algorithm. Considering
the simplest case of hyperspheric Gaussians of unit variance, i.e.,
p(z|ws) ~ N(V,, 1), with gradient-ascent, one gets the following
update equations: '

AW, = nhe(y; — Ojr)a

AV =uhe (e = V) an
with
h = Irexpld; vlog Ourl
22 giexp [y y;log Oji]
which can also be written as
Plwrly, z) = (P(“’T|x)ll(y|$> wr) s)

T Y P(wilp)p(ylr, wi)’

An uncoupled learning algorithm sets up a separate uncoupled
mixture model for learning the likelihoods p(z|w;). That is, we use
a log likelihood that is local to the gating network, i.e., it does not
depend on the supervised targets y

Iy =log Y P(wr)p(z|w,). 19) -

Taking the derivative of [, with respect to V,, we obtain the
uncoupled learning rule ‘
AV, = 7]97”(3: - Vr) (20)

This is a soft competitive rule. A method like k-means is a hard-
competitive rule where g, is one if expert r is the closest to input
and zero otherwise.) '

The difference between is that (20) uses g, P(w,.|z), whereas (17)
uses hr, P(wr|y, =). From (18), we see that ignoring the likelihood
terms P(y|z, w,) reduces h. to g., and therefore reduces (17) to
(20). Thus the uncoupled learning algorithm is a special case of
the coupled learning algorithm where we are ignoring the likelihood
terms P(y|x, w,). That is, in uncoupled learning, we are ignoring the
supervised errors at the output of the network in deciding where to
place the cluster centers for the hidden units. Clearly, in general one
does not want to ignore these likelihoods, i.e., the coupled approach
is generally to be preferred.

IV.. SIMULATION RESULTS

We tested the approaches outlined above on a large handwritten
digit database taken from the CD-ROM made available by NIST
[15]."We used 10000 patterns for training, 5000 for cross-validation

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 3, MAY 1996

to determine the point to stop training, and another 5000 for testing.
After low-pass filtering and undersampling, 32 by 32 bitmaps are
reduced to 8 by 8 matrices where each element is an integer value in
the range 0- - - 16. This regularization step improves generalization.
Thus input dimensionality is 64 and there are 10 classes.

We implemented the cooperative and competitive approaches
where learning of expert positions and mappings are coupled, as
discussed in Section IIL.

For comparison purposes, we also implemented their uncoupled
versions. We have taken the model used in Section III-C and updated
expert positions using (20). This implements a soft competition
between experts. We also used a parameter for the spread of the
Gaussians that is computed as a function of the inter-expert distance
[1]. With the cooperative model, expert mappings are trained using
(11). With the competitive model, only the closest expert gives output
and is updated. That is, there is a hard competition with a winner-take

all .
- {1,
gr = 0,

and update the mapping of only the winner expert.

We also implemented one single perceptron, MLP with one layer
of hidden units and RBF’s where we also used gradient ascent on
the cross-entropy measure after softmaxing the output units. In the
RBF network, the Gaussian centers are trained using the unsupervised
procedure k-means. '

Each model is trained 10 times independently and we report
averages and standard deviations of the success on test set and the
learning epochs made. The learning factor, 7, is adaptive for improved
convergence, that is, it is decreased by multiplying with a factor less
than one when training error does not decrease and training stops
when the learning factor becomes less than 0.001. A momentum
factor of 0.7 is used. We test the network after each epoch till training
stops and we choose the one that performs best on the cross-validation
set and report its performance on the test set. This is better than
stopping when error on cross-validation increases.

In terms of the number of parameters, a single perceptron where d
is the dimensionality of the input and c is the number of classes has
(d+1) * ¢ parameters. With hidden units, a one-hidden-layer MLP
has (d + 1) * h + (h + 1) * ¢ parameters. RBF does not have a bias
unit in the first layer thus has'd * h + (h + 1) * ¢ parameters. One can
also initialize the Gaussian centers to random patterns chosen from
the training set thereby decreasing the number of free parameters to
(h 4 1) % c; success then is around 1% less on the test set for this
application. An adaptive mixture model, for each expert, has c*(d+1)
parameters for the classifiers and d + 1 for the gating.

All methods are compared based on the three criteria of general-
ization accuracy, memory requirement and learning time. Results are
reported in Table II.

if |V — || = min; ||V: — ||
otherwise

V. CONCLUSIONS

It can be noticed that local linear perceptrons learn faster than
MLP’s with sigmoid hidden units and generalize as well and some-
times better. RBF’s learn faster but do not generalize well. This is
due to the fact that in RBF’s only a one-layer perceptron is trained
in a supervised manner. In a local linear network, we train two one-
layer perceptrons and in a multilayer perceptron, we train a two-layer
network.

We note that a coupled approach where both the mappings and their
positions are trained in a supervised manner generalizes better than
the uncoupled case where the positions are trained in an unsupervised
manner. It seems like that in both the coupled and uncoupled cases,
the competitive model learns faster due to the localization of experts

791

TABLE II
COMPARISON OF VARIOUS APPROACHES FOR THE HANDWRITTEN DiGIT
RECOGNITION PROBLEM. THE THREE CRITERIA OF COMPARISON ARE THE
MEMORY REQUIREMENT MEASURED AS THE NUMBER OF FREE PARAMETERS,

LEARNING SPEED MEASURED AS THE NUMBER LEARNING EPOCHS, AND
GENERALIZATION ACCURACY MEASURED AS SUCCESS PERCENTAGE ON A

TEST SET UNSEEN DURING TRAINING OR CROSS-VALIDATION. VALUES
ARE AVERAGES AND STANDARD DEVIATIONS OF 10 INDEPENDENT RUNS

No of Learning Test
Method Parameters Epochs Success

Single Layer 650 2.80, 0.42 91.03, 0.21
MLP 10 units 760 6.90, 2.60 92.80, 0.46
20 units 1,510 6.80, 2.30 94.33,0.29
30 units 2,260 7.60, 2.27 94.83,0.16
40 units 3,010 5.90,1.37 94.89, 0.32
50 units 3,760 6.70, 2.36 94.92,0.31

60 units 4,510 7.00,1.33 95.00,0.18 .
RBF 50 units 3,710 2.00,0.00 87.35,0.81
100 units 7,410 1.70,0.48 89.91, 0.47
250 units 18,510 1.60, 0.52 ~ 92.10, 0.45
500 units 37,010 2.00,0.47 93.30, 0.41
Cooperative 2 experts 1,430 4,70,0.48 91.54,0.25
{uncoupled) 4 experts 2,860 4.90,0.32 91.51,0.34
6 experts 4,290 5.10,0.32 92.20,0.36
Competitive 2 experts 1,430 4.00, 0.47 91.14, 0.09
(uncoupled) 4 experts 2,860 3.40,0.97 91.31,0.21
' 6 experts 4,290 3.70, 0.67 91.29, 0.12
Cooperative 2 experts 1,430 4.50, 0.97 93.43, 0.30
{coupled) 4 experts 2,860 4.30,0.82 94.61, 0.26
6 experts 4,290 5.10,0.99 95.08, 0.28
Competitive 2 experts 1,430 3.60, 0.70 93.25, 0.60
(coupled) 4 experts 2,860 3.50, 0.85 93.75, 0.39
6 experts 4,290 3.20, 0.63 94.03, 0.35

and the cooperative model generalizes better due to the smoothness
introduced by averaging several experts.

We have also tested the approach using Euclidean distance as the
metric where separate networks have different spreads. The success
is somewhat lower in that case as the dimensionality is high and
spheric Gaussians assume equal variance on all dimensions. We have
not tested the method using the full covariance matrix as, in 64
dimensions the full covariance matrix has on the order of a thousand
parameters. This is both costly to compute and requires a much larger
training sample.

Here we used a gradient-based method for computing the param-
eters. When as in normal mixtures, there is a probabilistic setting
where the goodness function is maximum likelihood, the expectation-
maximization algorithm can also be used to train the networks [7].

To conclude, we believe that a structure composed of local linear
perceptrons, by allowing a good compromise between local and
distributed approaches, is a good alternative for difficult classification
tasks as it learns fast and generalizes quite well even when the input
dimensionality is high.

ACKNOWLEDGMENT

The authors thank Z. Ghahramani and R. Murray-Smith for stimu-
lating discussions. The preprocessing routines for the NIST database
were made available by F. Masulli of the University of Genoa, Italy.
The authors also thank two anonymous reviewers for constructive
comments.

792 . IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 3, MAY 1996

REFERENCES [8] L. Bottou and V. Vapnik, “Local learning algorithms,” Neural Computa.,
vol. 4, pp. 888-900, 1992.
[1] J. Moody and C. Darken, “Fast learning in networks of locally tuned {91 T. M. Martinetz, S. G. Berkovich, and K. J, Schulten, “‘Neural-

processing units,” Neural Computa., vol. 1, pp. 281-294, 1989. gas’ network for vector quantization and its application to time-series

[2] D. E. Rumelhart, G. E. Hinton, and J. L. McClelland, “A framework - prediction,” IEEE Trans. Neural Networks, vol. 4, 558-569, 1993.
for PDP,” in Parallel Distributed Processing—Explorations in the Mi- [10] H. Ritter, T. Martinetz, and K. Schulten, “Topology-conserving maps
crostructure of Cognition, vol. 1, D. E: Rumelhart and J. L. McClelland, for learning visuomotor coordination,” Newural Networks, vol. 2, pp.
Eds.. Cambridge, MA: MIT Press, 1986, pp. 45-76. 159-168, 1988.

[3] R. Durbin and D. E. Rumelhart, “Product units: A computationally pow- [11] R. Murray-Smith, “A local model network approach to nonlinear mod-
erful and biologically plausible extension to backpropagation networks,” elling,” Ph.D. dissertation, Dep. Compute. Sci., Univ. Strathclyde, 1994.
Neural Computa., vol. 1, pp. 133-142, 1989. [12] J. S. Bridle, “Probabilistic interpretation of feedforward classification

[4] J. B. Hampshire, II and A. Waibel, “Connectionist architectures for network outputs, with relationships to statistical pattern recognition,”
multispeaker phoneme recognition,” in Advances in Neural Information in Neurocomputing, F. Fogelman-Soulié and J. Hérault, Eds. Berlin:
Processing Systems, vol. 2, D, Touretzky, Ed. San Mateo, CA: Morgan Springer-Verlag, 1990, pp. 227-236. -

Kaufmann, 1990, pp. 203-210. [13] B. D. Ripley, “Neural networks and related methods for classification,”

[5] K. Stokbro, D. K. Umberger, and J. A. Hertz, “Exploiting neurons with J. Roy. Statist. Soc. B, vol. 56, pp. 409-456, 1994,
localized receptive fields to learn chaos,” Complex Syst., vol. 4, pp. [14] S. J. Nowlan, “Soft competitive adaptation: Neural network learning
603-622, 1990. algorithms based on fitting statistical mixtures,” Ph.D. dlssertauon

[6] R..A.Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive School Comput. Sci., Carnegie Mellon Univ., 1990.
mixtures of local experts,” Neural Computa., vol. 3, pp. 79-87, 1991. [15] M. D. Garris, J. L. Blue, G. T. Candela, D. L. Dimmick, J. Geist, P.

[71 M. I Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and J. Grother, S. A. Janet, and C. L. Wilson, NIST Form-Based Handprint

the EM algorithm,” Neural Computa., vol. 6, pp. 181-214, 1994, Recognition System, NISTIR 5469, 1994.

