Regularizing Soft Decision Trees

Olcay Taner Yildiz and Ethem Alpaydin

Abstract Recently, we have proposed a new decision tree family catiédiecision
trees where a node chooses both its left and right childréndifferent probabilities
as given by a gating function, different from a hard decisiode which chooses
one of the two. In this paper, we extend the original algamithy introducing local
dimension reduction vil; andL, regularization for feature selection and smoother
fitting. We compare our novel approach with the standardsitatitree algorithms
over 27 classification data sets. We see that both regutbvizsions have similar
generalization ability with less complexity in terms of niben of nodes, wherk,
seems to work slightly better than.

1 Introduction

A decision tree is an hierarchical structure made up of iratledecision nodes and
terminal leaves. For classification, the leaves carry thellaf one oK classes. The
input vector is composed af attributes,x = [xq,...,%g]". Each decision nodm
implements functiowm,(x) and chooses one of the children accordingly. Egfx)
be the output generated by the subtree whose root @d in a binary tree, let
FL(x) andFR(x) denote respectively its left and right children agx) hence has
two outcomes:

1)

Fin(X) = Fnlﬁ(x) if Vm(X) > 0 /* true */
MY FR(x)  otherwise /* false */
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Given an input to classify, starting from the root node, oppli@s the function at
each internal node and the input is forwarded to one of thebt@aches depending
on the outcome. This process is repeated recursively ulei@fanode is hit at which
point the class label of the leaf constitutes the output.ddejng on the model they
assume folFy(X), decision trees are subcategorized into univariate detisees
[1], multivariate linear decision trees [2], multivariatenlinear decision trees [3],
and omnivariate decision trees [4].

In our recent work [5], we generalized decision trees ang@sed soft decision
trees. A node at a hard decision tree forwards the input beeits left or the right
subtree, whereas a soft decision tree node utilizes a gfatimogion to assign proba-
bilities to its children and merges the decision of its ctaldby these probabilities.
That is, we follow all the paths to all the leaves and all thevés contribute to the
final decision but with different probabilities.

In this paper, we extend soft decision trees by adding a aegation term (linear
for L1 regularization, quadratic fdr, regularization) to handle a localized dimen-
sionality reduction in the nodes, since as we go deeperligtdree, the scope of a
node becomes more localized. This paper is organized asvi&lln Section 2, we
briefly review the original soft tree algorithm. We give thetails of our regularized
version of the original approach in Section 3. We give ouregipental results in
Section 4 and conclude in Section 5.

2 Soft Decision Trees

As opposed to the (hard) decision mode which redirectsnastto its left or right
subtree depending on the node functi@ix), soft decision node redirects instances
both to the left and right subtree with probabilities cadtatl by the gating function

Vm(X):
Fin(X) = Fm (X)Vim(X) + FR (%) (1 — Vim()) 2)

and to choose among two children, we takgx) € [0, 1] as thesigmoid function:

1
T 14 exg— (WX +Wip)]

Vim(X) )

Learning the tree is incremental and recursive, as with #nd tecision tree. The
algorithm starts with one node and fits a constant model. Tagtong as there is
improvement, it replaces the leaf by a subtree. This in®b@imizing the gating
parameters and the values of its children leaf nodes bygm&diescent over an error
function. The error function is cross-entropy for classifion, and the final output
of the tree is filtered through a sigmoid at the root to coniéota probability:

E =rlogy+ (1—r)log(1—y)
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3 Regularized Soft Decision Trees

In general, model selection problem in decision trees haeefaces. On the one
hand, keeping the node model fixed, one can delve into thenigatiion of the tree
structure and use either pre or post-pruning techniquesh®ather hand, one can
try to solve the model selection problem at the node levelsaielct one among
candidate models based on both complexity and performdice [

Our approach in this paper falls into the second categoryvemdisel; and
L>-norm regularization techniques to combine the model cerityl and error term
into one single value. The function we want to minimize is

:_Z ) logy® ®)log(1 -y Z}IWmI

for L1 regularization, and

= —Z ) logy® r)log(1 -y +5 Z)WZ

for L, regularization, where £ A andA correspond to the weight factor of cross-
entropy and model complexity respectively. From a Bayeg&spectivel ; andL,
regularization corresponds to Laplacian and Gaussiamspoiow,; and the equa-
tions above correspond to maximum a posteriori estimates.

In gradient-descent, we use the following update equations

p!=root
Om = I_l Op,p. parent leftVp(X) + Op p.parent.right (1 — Vp(X))
p=m. parent
OB, _1-A  sgn(wi))
i = (1= V) (FR00 = RR00)Gmvm(X) (1 = Vin(30) + === (L)
OE, 1-2A AW
oW N (r = V) (Fm (X) = FR () amVim(X) (1 — Vin(X X)X+ (L2)

wheredyy is the Kronecker delta and sgifs the sign function.

4 Experiments

To compare the generalization error and model complexityusfregularized soft
trees with both soft trees (without regularization) anddh@#.5 trees, we use 27
two-class data sets from UCI repository [6]. We also compéte a multivariate
linear tree algorithm (Ldt) [7]. We first separate one thifdh® data set as the test
set over which we evaluate the final performance. On the mEnmatwo thirds, we
apply 5x2-fold cross validation, which gives a total of 10 folds fack data set. We
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Table 1 On the classification data sets, the average error of saft, limear discriminant trees
(Ldt). Pairwise comparisons of error rate of soft and haagilen tree algorithms are shown in the
second table.

Dataset Hard Ldt Soft Soft(1) Soft(Ly)
acceptors 16.1+2.0 9.6+0.8 8.7-0.7 7.5+0.3 7.3+0.3
artificial 11+£18 15+19 11+18 0.7£1.6 0.4+1.2
breast 6.7+1.1 49+0.6 3.5+0.7 4.1+0.8 3.5+0.7
bupa 38.64+ 4.1 39.1+ 3.4 39.7+ 4.2 41.44+ 3.0 39.0+ 2.4
donors 7.7+04 54+0.3 57+0.4 5.6+0.3 55+0.3
german 29.94 0.0 25.8+ 2.0 24.0+ 3.0 25.9+- 2.4 24.3+ 1.4
haberman 26.6+ 0.3 27.2+ 1.5 25.94+ 1.8 25.0+ 2.5 24.7+ 2.4
heart 28.3+ 4.7 18.4+£ 2.3 19.7+ 3.4 18.1+ 2.5 18.3£ 2.5
hepatitis 22.1+4+ 4.4 20.4+ 2.9 20.2+ 2.4 20.4+ 4.2 19.0+ 3.6
ionosphere 13.1+£1.912.3+2211.5+2011.5£1.9 12.6+ 1.1
krvskp 12+04 45+0.7 18+06 3.6+£0.6 3.0+0.7
magic 17.5+£ 0.6 16.9+ 0.1 14.7+ 0.5 21.6+ 0.2 20.8+ 0.2
monks 12.8+7.8 23.8+8.2 0.0+ 0.0 3.4+53 3.5+7.4
mushroom 0.0+£0.1 1.8+£0.5 0.1+0.0 0.1£0.0 0.0£0.0
musk?2 554+ 0.6 6.4+0.3 4.3+0.7 6.3+0.7 5.7+£0.7
parkinsons 13.8+£2.3 13.5+ 2.5 14.3+ 2.7 13.7£ 2.7 12.3+ 2.4
pima 27.94 3.4 23.1+ 1.4 24.9+ 2.0 23.1+ 0.8 23.1+ 1.0
polyadenylation30.5+ 1.3 22.64+ 0.6 22.9+ 0.5 22.2+ 0.5 22.3+ 0.5]
promoters 26.1+9.9 34.4+ 9.4 15.3+ 6.7 13.1+ 7.6 16.7+ 9.3
ringnorm 12.2+1.1 22.8+ 0.3 9.9+ 1.7 22.4+ 0.3 22.4+ 0.4
satellite47 154+ 1.5 16.7+ 1.4 12.4+ 1.4 16.4+ 1.4 15.4+ 0.9
spambase 9.94+0.7 10.1+£ 0.7 7.5+05 82+0.3 7.6£0.3
spect 19.1+ 2.8 20.1+ 2.4 19.6+ 2.4 16.9+ 2.6 16.6+ 1.8
tictactoe 238+22319+24 18+0.3 1.8+04 1.7£0.3
titanic 21.84+ 0.5 22.4+ 0.4 21.5+ 0.2 21.6+ 0.3 22.1+ 0.2
twonorm 17.0£0.7 2.0+£0.1 21+0.2 2.1+£0.2 2.1+0.2
vote 52407 6.7£2.6 5.1+0.9 6.7+0.9 5.6+1.1
Hard Ldt Soft Soft(;) Soft(L,)
Hard 6 O 5 4
Ldt 5 0 1 1
Soft 9 11 5 4
Soft(Ly) 7 4 1 q
Soft(Lz) 8 4 1 2

use parametric 62 pairedr-test [8] and nonparametric Nemenyi’s test to compare
algorithms.

Table 1 shows the average and standard deviation of errecftdnd hard deci-
sion trees. The table below it shows the pairwise comparissults of error rates—
entry (i, j) in this second table gives the number of datasets (out of 2%ytdch
methodi is statistically significantly better than methgavith at least 95% confi-
dence using &2 pairedF-test. Figure 1 shows the result of post-hoc Nemenyi's test
applied on the error rates of the algorithms.

We see that the soft tree and its extensions are significamihg accurate than
both hard and linear discriminant trees. Soft tree variargsbetter than hard trees
and Ldt on eight and six datasets respectively; hard treegmly better on three
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datasets and Ldt are better only on one datdsetegularization is significantly
better tharl; on two datasets. If we compare nonparametrically, on 18degaput
of 27,L, normalization has smaller error rate, wherkeabhas smaller error rate only
on 9 datasets. Overall, regularization is slightly better thdn, in terms of error
rate (p-value = 0.06).

: T ? 7
Soft(L2) ]
Soft(L1) C45
Soft L Ldt

Fig. 1 The result of post-hoc Nemenyi’s test applied on the err@sraf soft, hard, linear discrim-
inant trees (Ldt).

: . 3 ? 7
Soft(L1)
Soft(L2) ——— Soft
Ldt 45

Fig. 2 The result of post-hoc Nemenyi’s test applied on the numbeodes of trees generated by
soft, hard, linear discriminant trees (Ldt).

Table 2 shows the average and standard deviation of numibedes of soft and
hard decision trees. Again the table below shows the paradsnparison results
in terms of number of nodes. Figure 2 shows the result of postNemenyi’s test
applied on the number of nodes of tree generated by the tigwsi

As expected, soft tree variants are simpler than hard tt@eshe average, soft
tree variants are significantly smaller than hard trees odatasets, whereas hard
trees are smaller only on one dataset. The results also $fabwegularization pays
off. Regularized soft trees are simpler than the originélltsees on three datasets.
L; regularization is significantly better thdrp on one dataset according to<3
pairedF-test. If we compare nonparametrically, on 24 datasets o270, regu-
larization generates smaller trees thanwvhereas the opposite is true on only one
dataset. We can conclude that regularization leads to significantly smaller trees
thanL (p-value< 10°9).
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Table 2 On the classification data sets, the average number of deaisides of soft, hard, linear
discriminant trees (Ldt). Pairwise comparisons are shawthe second table.

Dataset Hard Ldt Soft Softl(;) Soft(,)
acceptors 71+69 1.1+£0.3 7.0£3.94.0+£1.42.2+0.8
artificial 44410 2.0+0.5 1.0+0.01.0+0.01.0+0.0
breast 41+22 16+0.7 1.3+051.7+0.71.3£0.5
bupa 54437 1.7+£0.7 4.0+2.33.5+1.2 2.4+ 0.8
donors 21.04+£3.7 3.7£19 6.4+3.232+1.01.8£0.9
german 0.0+0.0 3.1+35 4.1+2.04.1+1.81.7+ 0.5
haberman 10+£32 12+18 2.0+£1.625+1.11.2+1.0
heart 3.5+27 1.0+0.0 1.6+0.81.7+0.8 1.2+ 0.4
hepatitis 0.7+0.9 0.9+0.6 2.0+£0.81.8+0.9 1.2+ 0.4
ionosphere 38+19 22+08 25+1.421+1.415+0.8
krvskp 23.7+4.2 6.2£29 6.8+£2535+1227+£15
magic 30.1+ 16.5 19.4+ 8.1 26.4+ 6.1 5.3+ 1.4 2.5+ 0.7]
monks 11.2+ 2.4 35+3.3 3.0£0.04.8£1.835+1.4
mushroom 49+0.310.9+25 1.0+£0.01.3+0.7 1.0£0.0
musk?2 285+ 7.0 6.8+3.8 16.5+4.0 7.4+-4.0 4.7+ 3.0
parkinsons 33+17 1.2+£0.4 3.6+1.41.8+0.81.4+0.5
polyadenylatiof22.5+ 18.4 2.2+ 2.4 8.9+ 3.6 5.5+ 2.7 3.1+ 2.5
pima 3.8+26 22+12 34+2424+1.01.7+£0.8
promoters 20+13 0.8+04 1.44+0.51.9+0.7 1.5+ 0.5
ringnorm 457+5.2 1.3+0.539.9+£7.2 2.8+ 0.9 2.5+ 1.2
satellite47 119445 4.0+1.9 12.7+ 4.3 5.6+ 3.1 3.6+ 2.3
spambase 20.3+8.4 6.0£2.7 55+2.149+20 3.1+ 1.4
spect 52458 11+16 1.4+1.31.8+0.6 1.3+0.5
tictactoe 22.2+6.8 6.2£34 13+0512+041.1£0.3
titanic 42+06 1.7+05 1.1+0.31.3+0.51.3+0.5
twonorm 799480 1.1+£03 3.1+1.219+0.622+1.1
vote 29+17 18+09 1.7+0.7 1.6+ 0.5 1.4+ 0.5
Hard Ldt Soft Soft(;) Soft(L,)
Hard 0 1 1 1
Ldt 11 4 2 (0
Soft 10 2 1 a
Softl;)] 12 3 2 g
Softlz)] 13 4 4 1

5 Conclusions

We extend the soft decision tree model by addingndL, regularization to penal-
ize unnnecessary complexity. The extended model is ewsluat 27 classification
data sets. We see that both versions improve accuracylglad decrease com-
plexity significantly; overallL, regularization seems to work slightly better than
L.
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