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Abstract Recently, we have proposed a new decision tree family calledsoft decision
trees where a node chooses both its left and right children with different probabilities
as given by a gating function, different from a hard decisionnode which chooses
one of the two. In this paper, we extend the original algorithm by introducing local
dimension reduction viaL1 andL2 regularization for feature selection and smoother
fitting. We compare our novel approach with the standard decision tree algorithms
over 27 classification data sets. We see that both regularized versions have similar
generalization ability with less complexity in terms of number of nodes, whereL2

seems to work slightly better thanL1.

1 Introduction

A decision tree is an hierarchical structure made up of internal decision nodes and
terminal leaves. For classification, the leaves carry the label of one ofK classes. The
input vector is composed ofd attributes,x = [x1, . . . ,xd ]

T . Each decision nodem
implements functionvm(x) and chooses one of the children accordingly. LetFm(x)
be the output generated by the subtree whose root ism and in a binary tree, let
FL

m(x) andFR
m (x) denote respectively its left and right children andvm(x) hence has

two outcomes:

Fm(x) =

{

FL
m(x) if vm(x)> 0 /* true */

FR
m (x) otherwise /* false */

(1)
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Department of Computer Engineering, Boğaziçi University, TR-34342, Istanbul, Turkey e-mail:
alpaydin@boun.edu.tr

1



2 Olcay Taner Yıldız and Ethem Alpaydın

Given an input to classify, starting from the root node, one applies the function at
each internal node and the input is forwarded to one of the twobranches depending
on the outcome. This process is repeated recursively until aleaf node is hit at which
point the class label of the leaf constitutes the output. Depending on the model they
assume forFm(x), decision trees are subcategorized into univariate decision trees
[1], multivariate linear decision trees [2], multivariatenonlinear decision trees [3],
and omnivariate decision trees [4].

In our recent work [5], we generalized decision trees and proposed soft decision
trees. A node at a hard decision tree forwards the input to either its left or the right
subtree, whereas a soft decision tree node utilizes a gatingfunction to assign proba-
bilities to its children and merges the decision of its children by these probabilities.
That is, we follow all the paths to all the leaves and all the leaves contribute to the
final decision but with different probabilities.

In this paper, we extend soft decision trees by adding a regularization term (linear
for L1 regularization, quadratic forL2 regularization) to handle a localized dimen-
sionality reduction in the nodes, since as we go deeper into the tree, the scope of a
node becomes more localized. This paper is organized as follows: In Section 2, we
briefly review the original soft tree algorithm. We give the details of our regularized
version of the original approach in Section 3. We give our experimental results in
Section 4 and conclude in Section 5.

2 Soft Decision Trees

As opposed to the (hard) decision mode which redirects instances to its left or right
subtree depending on the node functionFm(x), soft decision node redirects instances
both to the left and right subtree with probabilities calculated by the gating function
vm(x):

Fm(x) = FL
m(x)vm(x)+FR

m (x)(1− vm(x)) (2)

and to choose among two children, we takevm(x) ∈ [0,1] as thesigmoid function:

vm(x) =
1

1+exp[−(wT
mx+wm0)]

(3)

Learning the tree is incremental and recursive, as with the hard decision tree. The
algorithm starts with one node and fits a constant model. Then, as long as there is
improvement, it replaces the leaf by a subtree. This involves optimizing the gating
parameters and the values of its children leaf nodes by gradient-descent over an error
function. The error function is cross-entropy for classification, and the final output
of the tree is filtered through a sigmoid at the root to convertit to a probability:

E = r logy+(1− r) log(1− y)
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3 Regularized Soft Decision Trees

In general, model selection problem in decision trees have two faces. On the one
hand, keeping the node model fixed, one can delve into the optimization of the tree
structure and use either pre or post-pruning techniques. Onthe other hand, one can
try to solve the model selection problem at the node level andselect one amongL
candidate models based on both complexity and performance [4].

Our approach in this paper falls into the second category andwe useL1 and
L2-norm regularization techniques to combine the model complexity and error term
into one single value. The function we want to minimize is

EL1 =
1−λ

N ∑
t
(r(t) logy(t)+(1− r(t)) log(1− y(t)))+

λ
d

d

∑
i=0

|wmi|

for L1 regularization, and

EL2 =
1−λ

N ∑
t
(r(t) logy(t)+(1− r(t)) log(1− y(t)))+

λ
d

d

∑
i=0

w2
mi

for L2 regularization, where 1−λ andλ correspond to the weight factor of cross-
entropy and model complexity respectively. From a Bayesianperspective,L1 andL2

regularization corresponds to Laplacian and Gaussian priors onwmi and the equa-
tions above correspond to maximum a posteriori estimates.

In gradient-descent, we use the following update equations:

αm =
p!=root

∏
p=m.parent

δp,p.parent.le f tvp(x)+ δp,p.parent.right(1− vp(x))

∂EL1

∂wmi
=

1−λ
N

(r− y)(FL
m(x)−FR

m (x))αmvm(x)(1− vm(x))xi +
sgn(wmi)λ

d
(L1)

∂EL2

∂wmi
=

1−λ
N

(r− y)(FL
m(x)−FR

m (x))αmvm(x)(1− vm(x))xi +
λ wmi

d
(L2)

whereδx,y is the Kronecker delta and sgn(x) is the sign function.

4 Experiments

To compare the generalization error and model complexity ofour regularized soft
trees with both soft trees (without regularization) and hard C4.5 trees, we use 27
two-class data sets from UCI repository [6]. We also comparewith a multivariate
linear tree algorithm (Ldt) [7]. We first separate one third of the data set as the test
set over which we evaluate the final performance. On the remaining two thirds, we
apply 5×2-fold cross validation, which gives a total of 10 folds for each data set. We
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Table 1 On the classification data sets, the average error of soft, hard, linear discriminant trees
(Ldt). Pairwise comparisons of error rate of soft and hard decision tree algorithms are shown in the
second table.

Dataset Hard Ldt Soft Soft(L1) Soft(L2)
acceptors 16.1± 2.0 9.6± 0.8 8.7± 0.7 7.5± 0.3 7.3± 0.3
artificial 1.1± 1.8 1.5± 1.9 1.1± 1.8 0.7± 1.6 0.4± 1.2
breast 6.7± 1.1 4.9± 0.6 3.5± 0.7 4.1± 0.8 3.5± 0.7
bupa 38.6± 4.1 39.1± 3.4 39.7± 4.2 41.4± 3.0 39.0± 2.4
donors 7.7± 0.4 5.4± 0.3 5.7± 0.4 5.6± 0.3 5.5± 0.3
german 29.9± 0.0 25.8± 2.0 24.0± 3.0 25.9± 2.4 24.3± 1.4
haberman 26.6± 0.3 27.2± 1.5 25.9± 1.8 25.0± 2.5 24.7± 2.4
heart 28.3± 4.7 18.4± 2.3 19.7± 3.4 18.1± 2.5 18.3± 2.5
hepatitis 22.1± 4.4 20.4± 2.9 20.2± 2.4 20.4± 4.2 19.0± 3.6
ionosphere 13.1± 1.9 12.3± 2.2 11.5± 2.0 11.5± 1.9 12.6± 1.1
krvskp 1.2± 0.4 4.5± 0.7 1.8± 0.6 3.6± 0.6 3.0± 0.7
magic 17.5± 0.6 16.9± 0.1 14.7± 0.5 21.6± 0.2 20.8± 0.2
monks 12.8± 7.8 23.8± 8.2 0.0± 0.0 3.4± 5.3 3.5± 7.4
mushroom 0.0± 0.1 1.8± 0.5 0.1± 0.0 0.1± 0.0 0.0± 0.0
musk2 5.5± 0.6 6.4± 0.3 4.3± 0.7 6.3± 0.7 5.7± 0.7
parkinsons 13.8± 2.3 13.5± 2.5 14.3± 2.7 13.7± 2.7 12.3± 2.4
pima 27.9± 3.4 23.1± 1.4 24.9± 2.0 23.1± 0.8 23.1± 1.0
polyadenylation30.5± 1.3 22.6± 0.6 22.9± 0.5 22.2± 0.5 22.3± 0.5
promoters 26.1± 9.9 34.4± 9.4 15.3± 6.7 13.1± 7.6 16.7± 9.3
ringnorm 12.2± 1.1 22.8± 0.3 9.9± 1.7 22.4± 0.3 22.4± 0.4
satellite47 15.4± 1.5 16.7± 1.4 12.4± 1.4 16.4± 1.4 15.4± 0.9
spambase 9.9± 0.7 10.1± 0.7 7.5± 0.5 8.2± 0.3 7.6± 0.3
spect 19.1± 2.8 20.1± 2.4 19.6± 2.4 16.9± 2.6 16.6± 1.8
tictactoe 23.8± 2.2 31.9± 2.4 1.8± 0.3 1.8± 0.4 1.7± 0.3
titanic 21.8± 0.5 22.4± 0.4 21.5± 0.2 21.6± 0.3 22.1± 0.2
twonorm 17.0± 0.7 2.0± 0.1 2.1± 0.2 2.1± 0.2 2.1± 0.2
vote 5.2± 0.7 6.7± 2.6 5.1± 0.9 6.7± 0.9 5.6± 1.1

Hard Ldt Soft Soft(L1) Soft(L2)
Hard 6 0 5 4
Ldt 5 0 1 1
Soft 9 11 5 4
Soft(L1) 7 4 1 0
Soft(L2) 8 4 1 2

use parametric 5×2 pairedF-test [8] and nonparametric Nemenyi’s test to compare
algorithms.

Table 1 shows the average and standard deviation of errors ofsoft and hard deci-
sion trees. The table below it shows the pairwise comparisonresults of error rates—
entry (i, j) in this second table gives the number of datasets (out of 27) on which
methodi is statistically significantly better than methodj with at least 95% confi-
dence using 5×2 pairedF-test. Figure 1 shows the result of post-hoc Nemenyi’s test
applied on the error rates of the algorithms.

We see that the soft tree and its extensions are significantlymore accurate than
both hard and linear discriminant trees. Soft tree variantsare better than hard trees
and Ldt on eight and six datasets respectively; hard trees are only better on three
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datasets and Ldt are better only on one dataset.L2 regularization is significantly
better thanL1 on two datasets. If we compare nonparametrically, on 18 datasets out
of 27,L2 normalization has smaller error rate, whereasL1 has smaller error rate only
on 9 datasets. Overall,L2 regularization is slightly better thanL1 in terms of error
rate (p-value = 0.06).

1 2 3 4 5

Ldt

C45

Soft

Soft(L1)

Soft(L2)

Fig. 1 The result of post-hoc Nemenyi’s test applied on the error rates of soft, hard, linear discrim-
inant trees (Ldt).

1 2 3 4 5

Ldt C45

Soft

Soft(L1)

Soft(L2)

Fig. 2 The result of post-hoc Nemenyi’s test applied on the number of nodes of trees generated by
soft, hard, linear discriminant trees (Ldt).

Table 2 shows the average and standard deviation of number ofnodes of soft and
hard decision trees. Again the table below shows the pairwise comparison results
in terms of number of nodes. Figure 2 shows the result of post-hoc Nemenyi’s test
applied on the number of nodes of tree generated by the algorithms.

As expected, soft tree variants are simpler than hard trees.On the average, soft
tree variants are significantly smaller than hard trees on 12datasets, whereas hard
trees are smaller only on one dataset. The results also show that regularization pays
off. Regularized soft trees are simpler than the original soft trees on three datasets.
L1 regularization is significantly better thanL2 on one dataset according to 5×2
pairedF-test. If we compare nonparametrically, on 24 datasets out of 27, L2 regu-
larization generates smaller trees thanL1 whereas the opposite is true on only one
dataset. We can conclude thatL2 regularization leads to significantly smaller trees
thanL1 (p-value< 10−6).
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Table 2 On the classification data sets, the average number of decision nodes of soft, hard, linear
discriminant trees (Ldt). Pairwise comparisons are shown in the second table.

Dataset Hard Ldt Soft Soft(L1) Soft(L2)
acceptors 7.1± 6.9 1.1± 0.3 7.0± 3.9 4.0± 1.4 2.2± 0.8
artificial 4.4± 1.0 2.0± 0.5 1.0± 0.0 1.0± 0.0 1.0± 0.0
breast 4.1± 2.2 1.6± 0.7 1.3± 0.5 1.7± 0.7 1.3± 0.5
bupa 5.4± 3.7 1.7± 0.7 4.0± 2.3 3.5± 1.2 2.4± 0.8
donors 21.0± 3.7 3.7± 1.9 6.4± 3.2 3.2± 1.0 1.8± 0.9
german 0.0± 0.0 3.1± 3.5 4.1± 2.0 4.1± 1.8 1.7± 0.5
haberman 1.0± 3.2 1.2± 1.8 2.0± 1.6 2.5± 1.1 1.2± 1.0
heart 3.5± 2.7 1.0± 0.0 1.6± 0.8 1.7± 0.8 1.2± 0.4
hepatitis 0.7± 0.9 0.9± 0.6 2.0± 0.8 1.8± 0.9 1.2± 0.4
ionosphere 3.8± 1.9 2.2± 0.8 2.5± 1.4 2.1± 1.4 1.5± 0.8
krvskp 23.7± 4.2 6.2± 2.9 6.8± 2.5 3.5± 1.2 2.7± 1.5
magic 30.1± 16.5 19.4± 8.1 26.4± 6.1 5.3± 1.4 2.5± 0.7
monks 11.2± 2.4 3.5± 3.3 3.0± 0.0 4.8± 1.8 3.5± 1.4
mushroom 4.9± 0.3 10.9± 2.5 1.0± 0.0 1.3± 0.7 1.0± 0.0
musk2 28.5± 7.0 6.8± 3.8 16.5± 4.0 7.4± 4.0 4.7± 3.0
parkinsons 3.3± 1.7 1.2± 0.4 3.6± 1.4 1.8± 0.8 1.4± 0.5
polyadenylation22.5± 18.4 2.2± 2.4 8.9± 3.6 5.5± 2.7 3.1± 2.5
pima 3.8± 2.6 2.2± 1.2 3.4± 2.4 2.4± 1.0 1.7± 0.8
promoters 2.0± 1.3 0.8± 0.4 1.4± 0.5 1.9± 0.7 1.5± 0.5
ringnorm 45.7± 5.2 1.3± 0.5 39.9± 7.2 2.8± 0.9 2.5± 1.2
satellite47 11.9± 4.5 4.0± 1.9 12.7± 4.3 5.6± 3.1 3.6± 2.3
spambase 20.3± 8.4 6.0± 2.7 5.5± 2.1 4.9± 2.0 3.1± 1.4
spect 5.2± 5.8 1.1± 1.6 1.4± 1.3 1.8± 0.6 1.3± 0.5
tictactoe 22.2± 6.8 6.2± 3.4 1.3± 0.5 1.2± 0.4 1.1± 0.3
titanic 4.2± 0.6 1.7± 0.5 1.1± 0.3 1.3± 0.5 1.3± 0.5
twonorm 79.9± 8.0 1.1± 0.3 3.1± 1.2 1.9± 0.6 2.2± 1.1
vote 2.9± 1.7 1.8± 0.9 1.7± 0.7 1.6± 0.5 1.4± 0.5

Hard Ldt Soft Soft(L1) Soft(L2)
Hard 0 1 1 1
Ldt 11 4 2 0
Soft 10 2 1 0
Soft(L1) 12 3 2 0
Soft(L2) 13 4 4 1

5 Conclusions

We extend the soft decision tree model by addingL1 andL2 regularization to penal-
ize unnnecessary complexity. The extended model is evaluated on 27 classification
data sets. We see that both versions improve accuracy slightly and decrease com-
plexity significantly; overallL2 regularization seems to work slightly better than
L1.
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