
Soft Decision Trees

Ozan İrsoy1, Olcay Taner Yıldız2, Ethem Alpaydın1

1Department of Computer Engineering, Boğaziçi University, 34342, İstanbul Turkey
2Department of Computer Engineering, Işık University, 34980, İstanbul Turkey

Abstract

We discuss a novel decision tree architecture with

soft decisions at the internal nodes where we choose

both children with probabilities given by a sigmoid

gating function. Our algorithm is incremental where

new nodes are added when needed and parameters are

learned using gradient-descent. We visualize the soft

tree fit on a toy data set and then compare it with the

canonical, hard decision tree over ten regression and

classification data sets. Our proposed model has signif-

icantly higher accuracy using fewer nodes.

1. Introduction

A decision tree is an hierarchical structure composed

of internal decision nodes and terminal leaves [3, 7].

For classification, the leaves carry the label of one of K
classes, whereas for regression, the leaves carry a con-

stant which is the numeric regression value. The input

vector is composed of d attributes, x = [x1, . . . , xd]
T .

In the canonical hard binary decision tree, each de-

cision node m applies a test gm(x) and chooses one of

the children accordingly. Let Fm(x) be the output gen-

erated by the subtree whose root is m and in a binary

tree, let FL
m(x) and FR

m(x) denote respectively its left

and right children and gm(x) hence has two outcomes:

Fm(x) =

{

FL
m(x) if gm(x) > 0 /* true */

FR
m(x) otherwise /* false */

(1)

Given an input, starting from the root node, one ap-

plies the test at each internal node and the input is for-

warded to one of the two branches depending on the

outcome. This process is repeated recursively until a

leaf node is hit at which point the class label or the nu-

meric regression value of the leaf constitutes the output.

In the hard decision tree, therefore, a single path from

the root to one of the leaves is traversed.

There are different decision tree architectures de-

pending on the model they assume for gm(x): The most

typical is the univariate tree where gm(x) uses a single

input attribute and compares it against a threshold value

[7]. In the multivariate linear tree, gm(x) defines a lin-

ear discriminant in the d-dimensional space [6, 10]. In

the multivariate nonlinear tree, gm(x) can be a nonlin-

ear discriminant, e.g., a multilayer perceptron [4]. In

the omnivariate tree, gm(x) can be any of the above,

chosen by a statistical model selection procedure [9].

In this paper, we discuss the soft decision tree where

unlike the hard internal node, all children are selected

but all with a certain probability. That is, we follow all

the paths to all the leaves and all the leaves contribute

to the final decision but with different probabilities. We

discuss how such a model can be trained incrementally

both for classification and regression, and also compare

it experimentally with the hard version and show that it

leads to trees that are both accurate and simpler in terms

of the number of nodes.

This paper is organized as follows: In Section 2, we

explain our proposed soft tree construction algorithm

for classification and regression. We give our experi-

mental results in Section 3 and conclude in Section 4.

2. Training a Soft Decision Tree

As opposed to the hard decision node which redi-

rects instances to one of its children depending on the

outcome of gm(x), a soft decision node redirects in-

stances to all its children with probabilities calculated

by a gating function gm(x). Let us consider a binary

node where we have left and right children:

Fm(x) = FL
m(x)gm(x) + FR

m(x)(1− gm(x)) (2)

and to choose among the two outcomes, we take

gm(x) ∈ [0, 1] as the sigmoid function:

gm(x) =
1

1 + exp[−(wT
mx+wm0)]

(3)

Separating the regions of responsibility of the left

and right children can be seen as two-class classi-

fication problem and from that perspective, the gat-

ing model implements a discriminative (logistic linear)

21st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan

978-4-9906441-1-6 ©2012 IAPR 1819

model estimating the posterior probability of the left

child: P (L|x) ≡ gm(x) and P (R|x) ≡ 1− gm(x).

1 function Fm(x)
2 if m is leaf node

3 y = zm /* leaf value at m */

4 else

5 gm(x) = 1/(1 + exp(−(wT
mx+ wm0)))

6 y = FL
m(x)gm(x) + FR

m(x)(1 − gm(x))
7 return y

Figure 1. Pseudocode for calculating the

response of the subtree rooted at node m

Figure 1 shows the pseudocode for calculating the

response of the subtree rooted at node m. If m is a

leaf node (Line 2), the response is constant (Line 3).

If m is an internal node (Line 4), the response of an

internal node is the weighted sum of responses of its

left and right subtrees (Line 6) weighted by the sigmoid

gating (Line 5). Note that the function calls itself recur-

sively both for its left and right children and returns the

weighted average of the values they return. This implies

that all the paths to all the leaves are traversed and all

the leaves contribute to the overall output weighted by

the product of the gating values on their paths.

Learning the tree is incremental and recursive, as

with the hard decision tree. The algorithm starts with

one node and fits a constant model. Then, as long as

there is improvement, it replaces the leaf by a subtree.

This involves optimizing the gating parameters and the

values of its children leaf nodes by gradient-descent

over an error function.

The error function is cross-entropy for classification

and square loss for regression (In classification, the final

output should be a probability and that is why for a two-

class task, the final output of the tree is filtered through

a sigmoid at the root):

E =

{

(r − y)2 Regression

r log y + (1− r) log(1− y) Classification

Figure 2 shows the pseudocode for finding the best

split for node m using training set X and validation set

V . The gating parameters (wm) and the numeric leaf

values of the children nodes (zLm, zRm) are set to small

random values initially (Lines 3-6) and are then updated

using gradient-descent. Note that only these last three

nodes (current decision node and its leaf children) are

updated and all the other nodes are fixed. But keep also

in mind that since soft trees use a gating function, all

the data points have an effect on these parameters (Line

1 function LearnSoftTree(m, X , V)

2 Ebefore = ErrorOfTree(V)

3 for j = 0, . . . , d
4 wmj = rand(−0.01, 0.01)

5 zLm = rand(−0.01, 0.01)

6 zRm = rand(−0.01, 0.01)

7 repeat

8 for all (x, r) ∈ X
9 δ = Froot(x)− r
10 t = m
11 while t! = root do

12 p = t.parent
13 if t == p.left
14 δ = δgp(x)
15 else

16 δ = δ(1 − gp(x))
17 t = p
18 β = δ(FL

m(x)− FR
m(x))

19 for j = 0, . . . , d
20 wmj = wmj − ηβvm(x)(1 − vm(x))xj

21 zLm = zLm − ηδvm(x)
22 zRm = zRm − ηδ(1 − vm(x))
23 until convergence

24 Eafter = ErrorOfTree(V)

25 if Eafter < Ebefore

26 LearnSoftTree(m.left, X , V)

27 LearnSoftTree(m.right,X , V)

Figure 2. Pseudocode for finding the best

split for node m using training set X and
validation set V .

8), whereas in a hard tree, only those data points that

fall in the partition of the current node have an effect.

Any instance should pass through all the intermediate

decision nodes until it reaches the added node and its

leaves and the error (Line 9) should be discounted by

all the gating values along the way to find the “back-

propagated error” for that instance, denoted by δ (Lines

10-17). This value is then used to update the gating

parameters (Line 20) and the leaf values (Lines 21 and

22), where η is the step size of gradient-descent.

As the tree grows deeper, the updates become

smaller due to the multiplication of gating functions in

the update rules. Hence to avoid very small updates,

we adapt step size, starting from a fixed value and ex-

ponentially decreasing it by half at each time. This re-

duces the dependency of the algorithm on the step size

and increases stability. The best step size is chosen for

each split over the training set, and the decision to split

that node is made by checking whether there is improve-

1820

ment over the validation set (Lines 24-25). If so, the tree

is updated with the new parameters, and tree construc-

tion continues recursively for the left and right children

(Lines 26-27); otherwise, the node stays as a leaf.

Our initial experiments indicate that gradient descent

with random initial point performs relatively poorly. In-

stead to initialize, we first find the best split as if it were

a hard decision node and then we assign wmj = −1
where j is the split dimension, take wm0 = 1 and we

assign wmk = 0 for all k 6= j. This initializes the

oblique split by the axis-aligned split of the hard node

except that it has a finite slope. The values of the chil-

dren leaves are simply copied from their hard counter-

parts. Online gradient descent starts from this point on.

Similar models have been proposed in the past. In

the hierarchical mixture of experts, Jordan and Jacobs

[5] replace each expert with a complete system of mix-

ture of experts in a recursive manner. This architecture

is a soft decision tree where gating networks are the de-

cision nodes. The difference is that in the former, the

tree structure is fixed and the whole tree is learned using

gradient-descent or expected maximization, whereas in

our case, the tree is built incrementally.

One recent work by Ruta and Li [8] is the fuzzy re-

gression tree which is different from our work in sev-

eral aspects. First, their splits are defined over ker-

nel responses, hence, are inherently one-dimensional,

whereas our gating functions are defined directly over

the input space. Second, they apply an exhaustive

search to learn the parameters (as in the hard univari-

ate tree) whereas we use gradient descent.

3. Experiments

The difference between a hard and soft fit is best seen

in Figure 3 which shows a toy data sampled from a si-

nusoidal with added Gaussian noise and soft and hard

tree fits. Soft tree achieves comparable accuracy using

seven nodes (four leaves) compared to the hard tree with

37 nodes (19 leaves). Both the tree structure and the fits

are shown; note that the sigmoid gating allows a smooth

interpolation between neighboring leaves and lead to a

smoother fit; this automatic interpolation leads to bet-

ter generalization and also makes intermediary leaves

redundant thereby simplifying the tree.

To compare the generalization error and model com-

plexity of soft and hard trees, we use ten regression

(ABAlone, ADD10, BOSton, CALifornia, COMp, CON-

crete, puma8FH, puma8FM, puma8NH, puma8NM)

and ten two-class classification data sets (BREast, GER-

man, MAGic, MUSk2, PIMa, POLyadenylation, RINg-

norm, SATellite47, SPAmbase, TWOnorm) from the

UCI repository [2]. We also compare soft trees with

(a) Hard fit

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6

(b) Soft fit

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6

Figure 3. Hard and soft tree fits

a multivariate linear tree algorithm, namely linear dis-

criminant trees (LDT) [10].

We first separate one third of the data set as the test

set over which we evaluate and report the final perfor-

mance. With the remaining two thirds, we apply 5×2-

fold cross validation, which gives a total of ten folds for

each data set. We use the 5×2 paired F -test [1] to com-

pare the errors and Wilcoxon’s rank sum test to compare

tree complexities, as measured by the number of nodes;

the best result is shown in boldface in the figures.

Table 1 shows the average error and tree size (num-

ber of nodes) of soft and hard regression trees. On all

data sets, the soft tree has significantly fewer nodes and

except four ties, soft tree has significantly smaller mean

square error. Though the nodes in a soft tree are more

multivariate and all paths are visited, the drastic reduc-

tion in tree size makes up for the added complexity.

Table 2 shows the comparison on classification data

sets. In terms of accuracy, the soft tree has three wins

(twonorm, german, polyadenylation), the hard tree has

two wins (spambase, magic) and there are five ties—

no overall significant difference. LDT is better than the

soft tree on three datasets (spambase, magic, pima) and

the hard tree on three datasets (twonorm, polyadenyla-

tion, pima). On the other hand, both hard and soft tree

have a single common win over LDT, namely ringnorm.

1821

Table 1. On the regression data sets, the
average error and the number of nodes of

soft and hard decision trees.

Mean Square Error Tree Size

Soft Hard Soft Hard

ABA 0.439 0.557 7 32

ADD 0.094 0.267 15 202

BOS 0.271 0.344 11 18

CAL 0.312 0.326 3 201

COM 0.037 0.046 5 30

CON 0.264 0.286 13 69

8FH 0.383 0.418 3 40

8FM 0.057 0.074 3 92

8NH 0.388 0.416 9 52

8NM 0.054 0.084 13 144

Table 2. On the classification data sets,

the average error and the number of

nodes of soft, hard, and linear discrimi-
nant trees (LDT).

Accuracy Tree Size

Soft Hard LDT Soft Hard LDT

BRE 95.34 93.80 95.09 17 47 4

GER 75.74 69.07 74.16 16 142 7

MAG 81.27 84.09 83.07 17 1072 40

MUS 92.25 94.62 93.59 22 202 15

PIM 70.85 69.41 76.89 26 111 5

POL 77.41 69.81 77.45 21 558 5

RIN 88.94 87.54 77.25 368 354 4

SAT 83.90 84.01 83.30 11 163 9

SPA 78.38 90.14 89.86 22 155 13

TWO 97.92 87.59 98.00 41 429 3

In terms of tree size, LDT is significantly better than

soft tree which is also significantly better than the hard

tree except on magic where soft tree is significantly bet-

ter than LDT and hard tree, on musk2 and satellite47

where there is no difference between soft tree and LDT.

LDT uses post-pruning whereas hard and soft trees use

pre-pruning; post-pruning may be more aggresive than

pre-pruning which can sometimes deteriorate perfor-

mance.

4. Conclusions

We discuss a decision tree model with soft decisions,

which makes use of a soft gating function to merge the

decisions of the subtrees. The proposed model is visu-

alized on a toy data set and evaluated on ten regression

and ten classification data sets. The model is shown to

have better or comparable performance to hard trees,

while having fewer nodes.

Soft trees have several advantages: First, they pro-

vide a soft response whereas hard trees have discontin-

uous response at the leaf boundaries. This enables soft

tree to have smoother fits and hence lower bias around

the split boundaries. Second, a linear gating function

enables soft trees to make oblique splits in contrast to

the axis-orthogonal splits made by hard trees. In our ex-

periments, we see that these two properties reduce the

number of nodes required to solve a regression or a clas-

sification problem. In terms of accuracy, soft trees seem

suited to regression problems where the gating function

allows a smooth interpolation between its children.

One drawback of soft trees is gradient-descent which

is prone to get stuck at local minima. In our experi-

ments, initialization derived from the split which would

have been made by a hard node work quite well.

Acknowledgments. This work is supported by

TÜBİTAK 109E186 and Boğaziçi University Scientific

Research Project BAP5701.

References

[1] E. Alpaydın. Combined 5×2 cv F test for comparing su-

pervised classification learning classifiers. Neural Com-

putation, 11:1975–1982, 1999.

[2] C. Blake and C. Merz. UCI repository of machine learn-

ing databases, 2000.

[3] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.

Stone. Classification and Regression Trees. John Wiley

and Sons, 1984.

[4] H. Guo and S. B. Gelfand. Classification trees with neu-

ral network feature extraction. IEEE Transactions on

Neural Networks, 3:923–933, 1992.

[5] M. I. Jordan and R. A. Jacobs. Hierarchical mixtures

of experts and the em algorithm. Neural Computation,

6:181–214, 1994.

[6] S. K. Murthy, S. Kasif, and S. Salzberg. A system for

induction of oblique decision trees. Journal of Artificial

Intelligence Research, 2:1–32, 1994.

[7] J. R. Quinlan. C4.5: Programs for Machine Learning.

Morgan Kaufmann, San Meteo, CA, 1993.

[8] A. Ruta and Y. Li. Learning pairwise image simi-

larities for multi-classification using kernel regression

trees. Pattern Recognition, 45:1396–1408, 2011.

[9] O. T. Yıldız and E. Alpaydın. Omnivariate deci-

sion trees. IEEE Transactions on Neural Networks,

12(6):1539–1546, 2001.

[10] O. T. Yıldız and E. Alpaydın. Linear discriminant trees.

International Journal of Pattern Recognition and Artifi-

cial Intelligence, 19(3):323–353, 2005.

1822

