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Abstract

Multiple kernel learning (MKL) uses a weighted
combination of kernels where the weight of each kernel
is optimized during training. However, MKL assigns
the same weight to a kernel over the whole input space.
Our main objective is the formulation of the localized
multiple kernel learning (LMKL) framework that al-
lows kernels to be combined with different weights in
different regions of the input space by using a gating
model. In this paper, we apply the LMKL framework to
regression estimation and derive a learning algorithm
for this extension. Canonical support vector regression
may overfit unless the kernel parameters are selected
appropriately; we see that even if provide more kernels
than necessary, LMKL uses only as many as needed
and does not overfit due to its inherent regularization.

1. Introduction

Recently, methods have been proposed for combin-
ing multiple kernels instead of selecting a single one.
The simplest approach is to use an unweighted sum of
kernels that gives equal importance to each kernel [5].
Using a weighted sum (e.g., convex combination) is
more reasonable, and the estimated weights also corre-
spond to the overall importance of kernels. The multiple
kernel learning (MKL) framework uses an unweighted
summation of discriminant values in different feature
spaces [1], which corresponds to a weighted summation
of kernel values:

f(x) =
P∑

m=1

〈wm,Φm(x)〉+ b

where m indexes feature spaces, {wm}Pm=1 are the
weight coefficients, Φm(·) is the mapping function for
feature space m, and b is the bias term. After elim-
inating {wm}Pm=1 from the model by using the dual-
ity conditions, the discriminant function uses a convex

combination of kernels obtained from different feature
spaces.

Using a global combination rule (unweighted or
weighted) has the disadvantage of assigning the same
weight to a kernel over the whole input space. If
kernel weights can be assigned in a data-dependent
way by considering the underlying localities in train-
ing data, a better learner may be produced. This paper
is an extension to the localized multiple kernel learn-
ing (LMKL) framework [2], where the idea is to divide
the input space into regions by using a parametric gat-
ing model that assigns higher combination weights to
kernels which are suitable for each region.

In Section 2, we give a brief overview of the LMKL
framework and then generalize it for regression estima-
tion. We describe an algorithm with a two-step alternat-
ing optimization method for regression problems using
the localized kernel idea. In Section 3, we describe our
experimental procedure and list our empirical results.
We summarize and conclude in Section 4.

2. Localized multiple kernel regression

The LMKL framework divides the input space into
regions and assigns combination weights to kernels in
a data-dependent way. The decision function for binary
classification is rewritten as

fC(x) =
P∑

m=1

ηm(x|V)〈wm,Φm(x)〉+ b

where ηm(x|V) is a parametric gating model that as-
signs a weight to feature space m as a function of the
input x and V is the vector of gating model parameters.
A similar architecture has been previously proposed un-
der the name “mixture of experts” in the neural network
literature [3]. Note that unlike in MKL, in LMKL it
is not obligatory to use different feature spaces; we can
also use multiple copies of the same feature space in
different regions of the input space in order to obtain
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a more complex discriminant function. LMKL learns
both the support vector coefficients and gating model
parameters in a coupled manner using a two-step alter-
nating optimization method [2].

2.1. Regression estimation

In this paper, our objective is to generalize the dis-
criminative LMKL model [2] to regression estimation.
The decision function for regression estimation is

fR(x) =
P∑

m=1

ηm(x|V)〈wm,Φm(x)〉+ b

and the optimization problem becomes

min.
1

2

P∑
m=1

‖wm‖22 + C
N∑
i=1

(ξ+i + ξ−i )

w.r.t. wm, b, ξ
+, ξ−,V

s.t. ε+ ξ+i ≥ yi − fR(xi) ∀i
ε+ ξ−i ≥ fR(xi)− yi ∀i
ξ+i ≥ 0 ∀i
ξ−i ≥ 0 ∀i (1)

where C is the regularization parameter, {ξ+, ξ−} are
the vectors of slack variables, and ε is the tube width.
The optimization problem in (1) is not convex due to the
nonlinearity formed by using the gating model outputs
in the constraints. For a given V, (1) becomes a con-
vex optimization problem and we can obtain the dual
formulation as

max. J(V) =
N∑
i=1

yi(α
+
i − α

−
i )− ε

N∑
i=1

(α+
i + α−i )

− 1

2

N∑
i=1

N∑
j=1

(α+
i − α

−
i )(α+

j − α
−
j )kη(xi,xj)

w.r.t. α+,α−

s.t.
N∑
i=1

(α+
i − α

−
i ) = 0

C ≥ α+
i ≥ 0 ∀i

C ≥ α−i ≥ 0 ∀i (2)

where the locally combined kernel function is

kη(xi,xj) =

P∑
m=1

ηm(xi|V)km(xi,xj)ηm(xj |V)

and the resulting decision function is

fR(x) =
N∑
i=1

(α+
i − α

−
i )kη(xi,x) + b.

2.2. Gating models

We can use different gating models. Generally, we
want to obtain sparse gating outputs for each data in-
stance; that is, the number of kernels whose correspond-
ing gating outputs are nonzero should be small in order
to reduce computational complexity and to provide ex-
tra regularization. This is usually achieved by using the
softmax function at the output

ηm(x|V) =
(〈vm,xG〉+ vm0)

P∑
h=1

exp(〈vh,xG〉+ vh0)

(3)

where V = {vm, vm0}Pm=1 and there are P (DG + 1)
parameters where DG is the dimensionality of the gat-
ing feature space.

Using xG ≡ x in the gating model corresponds to a
linear gating model that divides the input space into re-
gions with linear boundaries. If the linear gating model
is not adequate, we can use a more complex gating
model by extracting nonlinear features from the origi-
nal features.

2.3. Training with alternating optimization

We can not perform the joint-optimization of the
support vector coefficients and gating model parame-
ters in (1) efficiently because of non-convexity. We use
a two-step alternating optimization procedure in order
to solve (1), as also used for obtaining ηm parameters
of MKL in a previous study [6]. There are two steps:
(a) solving the model with a fixed gating model, and,
(b) updating the gating model parameters with the gra-
dients calculated from the current solution.

Due to convexity, for a given V, the gradients of the
objective function J(V) in (2) are equal to the gradients
of the objective function in (1). These gradients are used
to update the gating model parameters at each step.

2.4. Regularization

The main advantage of LMKL over canonical multi-
ple kernel machines is the inherent regularization effect
of the gating model. Canonical methods learn sparse
models as a result of regularization on the weight vector
but the underlying complexity of the kernel function is
the main factor for determining the model complexity.
MKL can combine only different kernel functions and
more complex kernels are favored over the simpler ones
in order to get better performance. However, LMKL
can also combine multiple copies of the same kernel
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and it can dynamically construct a more complex lo-
cally combined kernel by using the kernels in a data-
dependent way. LMKL eliminates some of the kernels
by assigning zero weights to the corresponding gating
outputs in order to get a more regularized solution.

3. Experiments

We implement the algorithm in MATLAB and solve
the optimization problem (2) with MOSEK optimiza-
tion software [4]. The linear kernel (kL), the polyno-
mial kernel (kP ), and the Gaussian kernel (kG) are used
in the experiments:

kL(xi,xj) = 〈xi,xj〉
kP (xi,xj) = (〈xi,xj〉+ 1)q q ∈ N
kG(xi,xj) = exp(−‖xi − xj‖22/s2) s ∈ R++.

We compare support vector regression (SVR) and
LMKL on the MOTORCYCLE data set discussed in [7].
The data set has 133 instances and we use 10-fold cross
validation to create 10 different training sets. For SVR
and LMKL, we take the tube width, ε, as 16 and the reg-
ularization parameter, C, as 1000. For SVR, kP with
q = 1, 2, . . . , 20 and kG with s = 0.05, 0.10, . . . , 1.00
are used. For LMKL, we combine multiple copies of
kL with P = 1, 2, . . . , 20.

Figure 1 illustrates the idea behind LMKL for re-
gression problems. We learn a piecewise linear fit
through three local models that are obtained using lin-
ear kernels in each region and we combine them by us-
ing the softmax gating model (shown by dashed lines,
which are multiplied by 50 for visual clarity). The soft-
max model divides the input space between kernels and
generally selects a single model to use; we need to eval-
uate the kernel function between a test instance and only
the support vectors in this region. The softmax gating
also ensures a smooth transition between local fits.

Figure 2 shows the average of 10 fitted curves with
changing parameters on the MOTORCYCLE data set.
SVR with kP (q = 5 or 7) overshoot at the bound-
aries and overfit. SVR with kG obtains a good fit if the
radius, s, is chosen appropriately. LMKL with kL ob-
tains very similar fits for P = 6, 13, and 20 due to its
inherent regularization property.

Figure 3 shows the average mean square error val-
ues on the test data and the support vector percentages.
SVR with kP overfits the training data with increas-
ing model complexity and performs very badly in terms
of mean square error. We see that LMKL with three
or more linear kernels is enough to learn the MOTOR-
CYCLE data set. LMKL obtains nearly the same mean
square error with three or more linear kernels and is not
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Figure 1. LMKL with three linear kernels.

prone to overfitting. The number of stored support vec-
tors does not increase significantly if we increase the
number of kernels combined.

We also perform experiments on ABALONE, CON-
CRETE, HOUSING, REDWINE and WHITEWINE data
sets from the UCI repository. For each data set, a ran-
dom one-third is reserved as the test set and the remain-
ing two-thirds is resampled using 5×2 cross-validation
to generate ten training and validation sets. The vali-
dation sets of all folds are used to optimize C by try-
ing values 0.01, 0.1, 1, 10, and 100. ε is selected
from {0.08, 0.16, 0.32, 0.64, 1.28} for the REDWINE
and WHITEWINE data sets, and from {1, 2, 4, 8, 16} for
the other data sets. The best configuration over the val-
idation sets is used to train the final regressors on the
training folds and their performance is measured over
the test set. So, for each data set, we have ten test set re-
sults and we report their averages. For SVR, kL and kP
with q = 2, 3, 4, 5 are used. For LMKL, we combine
multiple copies of kL with P = 5.

Table 1 lists the average mean square errors on the
test data and the support vector percentages for the UCI
data sets. We see that LMKL obtains statistically com-
parable mean square error values by using significantly
fewer support vectors on all data sets.

Table 1. Results on the UCI data sets.

SVR LMKL
Data Set MSE SV MSE SV

ABALONE 4.5564 50.89 4.7399 16.03
CONCRETE 58.3216 73.16 51.8043 58.76
HOUSING 14.5893 53.23 16.4055 32.82
REDWINE 0.4376 62.40 0.4569 29.14
WHITEWINE 0.5160 66.27 0.5274 48.90
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Figure 2. Fits on the MOTORCYLE data set.

4. Conclusions

We generalize the LMKL framework to regression
estimation and test it on six benchmark regression data
sets. We see that LMKL uses enough number of ker-
nels to match the complexity of the underlying prob-
lem. Even if we provide more kernels than necessary,
the proposed method uses only as many as required and
does not overfit, unlike canonical SVR that may overfit
if the kernel parameters are not selected appropriately.
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under Grant EEEAG 107E222. The work of M. Gönen
was supported by the Ph.D. scholarship (2211) from
TÜBİTAK.
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