
Localized Multiple Kernel Learning

Mehmet Gönen gonen@boun.edu.tr
Ethem Alpaydın alpaydin@boun.edu.tr

Department of Computer Engineering, Boğaziçi University, TR-34342, Bebek, İstanbul, Turkey

Abstract

Recently, instead of selecting a single kernel,
multiple kernel learning (MKL) has been pro-
posed which uses a convex combination of
kernels, where the weight of each kernel is
optimized during training. However, MKL
assigns the same weight to a kernel over the
whole input space. In this paper, we develop
a localized multiple kernel learning (LMKL)
algorithm using a gating model for select-
ing the appropriate kernel function locally.
The localizing gating model and the kernel-
based classifier are coupled and their opti-
mization is done in a joint manner. Empiri-
cal results on ten benchmark and two bioin-
formatics data sets validate the applicability
of our approach. LMKL achieves statistically
similar accuracy results compared with MKL
by storing fewer support vectors. LMKL can
also combine multiple copies of the same ker-
nel function localized in different parts. For
example, LMKL with multiple linear kernels
gives better accuracy results than using a sin-
gle linear kernel on bioinformatics data sets.

1. Introduction

Kernel-based methods such as the support vector ma-
chine (SVM) gained much popularity due to their suc-
cess. For classification tasks, the basic idea is to map
the training instances from the input space to a feature
space (generally a higher dimensional space than the
input space) where they are linearly separable. The
SVM discriminant function obtained after training is:

f(x) = 〈w, Φ(x)〉+ b (1)

where w is the weight coefficients, b is the threshold,
and Φ(x) is the mapping function to the corresponding

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

feature space. We do not need to define the mapping
function explicitly and if we plug w vector from dual
formulation into (1), we obtain the discriminant:

f(x) =
n∑

i=1

αiyi 〈Φ(x),Φ(xi)〉︸ ︷︷ ︸
K(x, xi)

+b

where n is the number of training instances, xi, and
K(x, xi) = 〈Φ(x), Φ(xi)〉 is the corresponding kernel.

Each Φ(x) function has its own characteristics and cor-
responds to a different kernel function and leads to a
different discriminant function in the original space.
Selecting the kernel function (i.e., selecting the map-
ping function) is an important step in SVM training
and is generally performed using cross-validation.

In recent studies (Lanckriet et al., 2004a; Sonnenburg
et al., 2006), it is reported that using multiple different
kernels instead of a single kernel improves the classifi-
cation performance. The simplest way is to use an un-
weighted sum of kernel functions (Pavlidis et al., 2001;
Moguerza et al., 2004). Using an unweighted sum gives
equal preference to all kernels and this may not be
ideal. A better strategy is to learn a weighted sum
(e.g., convex combination); this also allows extract-
ing information from the weights assigned to kernels.
Lanckriet et al. (2004b) formulate this as a semidef-
inite programming problem which allows finding the
combination weights and support vector coefficients
together. Bach et al. (2004) reformulate the prob-
lem and propose an efficient algorithm using sequen-
tial minimal optimization (SMO). Their discriminant
function can be seen as an unweighted summation of
discriminant values (but a weighted summation of ker-
nel functions) in different feature spaces:

f(x) =
p∑

m=1

〈wm,Φm(x)〉+ b (2)

where m indexes kernels, wm is the weight coefficients,
Φm(x) is the mapping function for feature space m,
and p is the number of kernels. By plugging wm de-



Localized Multiple Kernel Learning

rived from duality conditions into (2), we obtain:

f(x) =
p∑

m=1

ηm

n∑

i=1

αiyi 〈Φm(x), Φm(xi)〉︸ ︷︷ ︸
Km(x,xi)

+b (3)

where the kernel weights satisfy ηm ≥ 0 and∑p
m=1 ηm = 1. The kernels we combine can be the

same kernel with different hyperparameters (e.g., de-
gree in polynomial kernel) or different kernels (e.g., lin-
ear, polynomial, and Gaussian kernels). We can also
combine kernels over different data representations or
different feature subsets.

Using a fixed combination rule (unweighted or
weighted) assigns the same weight to a kernel over the
whole input space. Assigning different weights to a
kernel in different regions of the input space may pro-
duce a better classifier. If data has underlying locali-
ties, we should give higher weights to appropriate ker-
nel functions (i.e., kernels which match the complexity
of data distribution) for each local region. Lewis et al.
(2006) propose to use a nonstationary combination
method derived with a large-margin latent variable
generative method. They use a log-ratio of Gaussian
mixtures as the classifier. Lee et al. (2007) combine
Gaussian kernels with different width parameters to
capture the underlying local distributions, by forming
a compositional kernel matrix from Gaussian kernels
and using it to train a single classifier.

In this paper, we introduce a localized formulation
of the multiple kernel learning (MKL) problem. In
Section 2, we modify the discriminant function of the
MKL framework proposed by Bach et al. (2004) with a
localized one and describe how to optimize the parame-
ters with a two-step optimization procedure. Section 3
explains the key properties of the proposed algorithm.
We then demonstrate the performance of our local-
ized multiple kernel learning (LMKL) method on toy,
benchmark, and bioinformatics data sets in Section 4.
We conclude in Section 5.

2. Localized Multiple Kernel Learning

We describe the LMKL framework for binary classi-
fication SVM but the derivations in this section can
easily be extended to other kernel-based learning algo-
rithms. We propose to rewrite the discriminant func-
tion (2) of Bach et al. (2004) as follows, in order to
allow local combinations of kernels:

f(x) =
p∑

m=1

ηm(x)〈wm, Φm(x)〉+ b (4)

where ηm(x) is the gating function which chooses fea-
ture space m as a function of input x. ηm(x) is de-

fined up to a set of parameters which are also learned
from data, as we will discuss below. By modifying the
original SVM formulation with this new discriminant
function, we get the following optimization problem:

min
1
2

p∑
m=1

‖wm‖2 + C

n∑

i=1

ξi

w.r.t. wm, b, ξ, ηm(x)

s.t. yi

(
p∑

m=1

ηm(xi)〈wm, Φm(xi)〉+ b

)
≥ 1− ξi ∀i

ξi ≥ 0 ∀i (5)

where C is the regularization parameter and ξ is the
slack variables as usual. Note that the optimization
problem in (5) is not convex due to the nonlinearity
introduced in the separation constraints.

Instead of trying to solve (5) directly, we can use a two-
step alternate optimization algorithm inspired from
Rakotomamonjy et al. (2007), to find the parameters
of ηm(x) and the discriminant function. The first step
is to solve (5) with respect to wm, b, and ξ while fixing
ηm(x) and the second step is to update the parame-
ters of ηm(x) using a gradient-descent step calculated
from the objective function in (5). The objective value
obtained for a fixed ηm(x) is an upper bound for (5)
and the parameters of ηm(x) are updated according
to the current solution. The objective value obtained
at the next iteration can not be greater than the cur-
rent one due to the use of gradient-descent procedure
and as iterations progress with a proper step size se-
lection procedure (see Section 3.1), the objective value
of (5) never increases. Note that this does not guaran-
tee convergence to the global optimum and the initial
parameters of ηm(x) may affect the solution quality.

For a fixed ηm(x), we obtain the Lagrangian of the
primal problem in (5) as follows:

LD =
1
2

p∑
m=1

‖wm‖2 +
n∑

i=1

(C − αi − βi)ξi +
n∑

i=1

αi

−
n∑

i=1

αiyi

(
p∑

m=1

ηm(xi)〈wm,Φm(xi)〉+ b

)

and taking the derivatives of LD with respect to the
primal variables gives:

∂LD

∂wm
⇒ wm =

n∑

i=1

αiyiηm(xi)Φm(xi) ∀m

∂LD

∂b
⇒

n∑

i=1

αiyi = 0

∂LD

∂ξi
⇒ C = αi + βi ∀i . (6)



Localized Multiple Kernel Learning

From (5) and (6), the dual formulation is obtained as:

max
n∑

i=1

αi − 1
2

n∑

i=1

n∑

j=1

αiαjyiyjKη(xi, xj)

w.r.t. α

s.t.
n∑

i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i (7)

where the locally combined kernel matrix is defined as:

Kη(xi, xj) =
p∑

m=1

ηm(xi) 〈Φm(xi), Φm(xj)〉︸ ︷︷ ︸
Km(xi, xj)

ηm(xj) .

This formulation corresponds to solving a canonical
SVM dual problem with the kernel matrix Kη(xi, xj),
which should be positive semidefinite. We know that
multiplying a kernel function with outputs of a non-
negative function for both input instances, known
as quasi-conformal transformation, gives a positive
semidefinite kernel matrix (Amari & Wu, 1998). So,
the locally combined kernel matrix can be viewed as
applying a quasi-conformal transformation to each ker-
nel function and summing them to construct a com-
bined kernel matrix. The only restriction is to have
nonnegative ηm(x) to get a positive semidefinite ker-
nel matrix.

Choosing among possible kernels can be considered as
a classification problem and we assume that the re-
gions of use of kernels are linearly separable. In this
case, the gating model can be expressed as:

ηm(x) =
exp(〈vm,x〉+ vm0)
p∑

k=1

exp(〈vk, x〉+ vk0)

where vm, vm0 are the parameters of this gating model
and the softmax guarantees nonnegativity. One can
use more complex gating models for ηm(x) or equiva-
lently implement the gating not in the original input
space but in a space defined by a basis function, which
can be one or some combination of the Φm(x) in which
the SVM works (thereby also allowing the use of non-
vectorial data). If we use a gating model which is
constant (not a function of x), our algorithm finds a
fixed combination over the whole input space, similar
to the original MKL formulation.

The proposed method differs from taking subsets of
the training set and training a classifier in each subset
then combining them. For example, Collobert et al.
(2001) define such a procedure which learns an inde-
pendent SVM for each subset and reassigns instances

to subsets by training a gating model with a cost func-
tion. Our approach is different in that LMKL couples
subset selection and combination of local classifiers in
a joint optimization problem. LMKL is similar to but
also different from the mixture of experts framework
(Jacobs et al., 1991) in the sense that the gating model
combines kernel-based experts and is learned together
with experts; the difference is that in the mixture of
experts, experts individually are classifiers whereas in
our formulation, there is no discriminant per kernel.

For a given ηm(x), we can say that the objective value
of (7) is equal to the objective value of (5) due to
strong duality. We can safely use the objective func-
tion of (7) as J(η) function to calculate the gradients
of the primal objective with respect to the parame-
ters of ηm(x). To train the gating model, we take
derivatives of J(η) with respect to vm, vm0 and use
gradient-descent:

∂J(η)
∂vm0

= −1
2

n∑

i=1

n∑

j=1

p∑

k=1

αiαjyiyjηk(xi)Kk(xi, xj)

ηk(xj)
(
δk
m − ηm(xi) + δk

m − ηm(xj)
)

∂J(η)
∂vm

= −1
2

n∑

i=1

n∑

j=1

p∑

k=1

αiαjyiyjηk(xi)Kk(xi, xj)

ηk(xj)
(
xi

[
δk
m − ηm(xi)

]
+ xj

[
δk
m − ηm(xj)

])

where δk
m is 1 if m = k and 0 otherwise. After updating

the parameters of ηm(x), we are required to solve a
single kernel SVM with Kη(xi, xj) at each step.

The complete algorithm of LMKL with the linear gat-
ing model is summarized in Algorithm 1. Convergence
of the algorithm can be determined by observing the
change in α or the parameters of ηm(x).

Algorithm 1 LMKL with the linear gating model
1: Initialize vm and vm0 to small random numbers

for m = 1, . . . , p
2: repeat
3: Calculate Kη(xi,xj) with gating model
4: Solve canonical SVM with Kη(xi, xj)

5: v
(t+1)
m0 ⇐ v

(t)
m0 − µ(t) ∂J(η)

∂vm0
for m = 1, . . . , p

6: v
(t+1)
m ⇐ v

(t)
m − µ(t) ∂J(η)

∂vm
for m = 1, . . . , p

7: until convergence

After determining the final ηm(x) and SVM solution,
the resulting discriminant function is:

f(x) =
n∑

i=1

p∑
m=1

αiyiηm(x)Km(x, xi)ηm(xi) + b . (8)



Localized Multiple Kernel Learning

3. Discussions

We explain the key properties and possible extensions
of the proposed algorithm in this section.

3.1. Computational Complexity

In each iteration, we are required to solve a canoni-
cal SVM problem with the combined kernel obtained
with the current gating model and to calculate the gra-
dients of J(η). The gradient calculation step has ig-
norable time complexity compared to the SVM solver.
The step size of each iteration, µ(t), should be deter-
mined with a line search method which requires addi-
tional SVM optimizations for better convergence. The
computational complexity of our algorithm mainly de-
pends on the complexity of the canonical SVM solver
used in the main loop, which can be reduced by using
hot-start (i.e., giving previous α as input). The num-
ber of iterations before convergence clearly depends
on the training data and the step size selection proce-
dure. The time complexity for testing is also reduced
as a result of localizing. Km(x,xi) in (8) needs to be
evaluated only if both ηm(x) and ηm(xi) are nonzero.

3.2. Extensions to Other Kernel-Based
Algorithms

LMKL can also be applied to kernel-based algorithms
other than binary classification SVM, such as regres-
sion and one-class SVMs. We need to make two basic
changes: (a) optimization problem and (b) gradient
calculations from the objective value found. Other-
wise, the same algorithm applies.

3.3. Knowledge Extraction

The MKL framework is used to extract knowledge
about the relative contributions of kernel functions
used in combination. If kernel functions are evaluated
over different feature subsets or data representations,
the important ones have higher combination weights.
With our LMKL framework, we can deduce similar in-
formation based on different regions of the input space.

Our proposed method also allows combining multiple
copies of the same kernel to obtain localized discrim-
inants, thanks to the nonlinearity introduced by the
gating model. For example, we can combine linear
kernels with the gating model to obtain nearly piece-
wise linear boundaries.

4. Experiments

We implement the main body of our algorithm in C++
and solve the optimization problems with MOSEK op-

timization software (Mosek, 2008). Our experimental
methodology is as follows: Given a data set, a random
one-third is reserved as the test set and the remaining
two-thirds is resampled using 5× 2 cross-validation to
generate ten training and validation sets, with strat-
ification. The validation sets of all folds are used to
optimize C by trying values 0.01, 0.1, 1, 10, and 100.
The best configuration (the one that has the highest
average accuracy on the validation folds) is used to
train the final SVMs on the training folds and their
performance is measured over the test set. So, for
each data set, we have ten test set results.

We perform simulations with three commonly used
kernels: linear kernel (KL), polynomial kernel (KP ),
and Gaussian kernel (KG):

KL(xi, xj) = 〈xi,xj〉
KP (xi, xj) = (〈xi, xj〉+ 1)q

KG(xi, xj) = exp
(
−‖xi − xj‖2 /s2

)
.

We use the second degree (q = 2) polynomial ker-
nel and estimate s in the Gaussian kernel as the av-
erage nearest neighbor distance between instances of
the training set. All kernel matrices are calculated and
normalized to unit trace before training. The step size
of each iteration, µ(t), is fixed as 0.01 without per-
forming line search and a total of 50 iterations are
performed.

4.1. Toy Data Set

In order to illustrate our proposed algorithm, we create
a toy data set, named Gauss4, which consists of 1200
data instances generated from four Gaussian compo-
nents (two for each class) with the following prior prob-
abilities, mean vectors and covariance matrices:

p11 = 0.25 µ11 =
(−3.0

+1.0

)
Σ11 =

(
0.8 0.0
0.0 2.0

)

p12 = 0.25 µ12 =
(

+1.0
+1.0

)
Σ12 =

(
0.8 0.0
0.0 2.0

)

p21 = 0.25 µ21 =
(−1.0
−2.2

)
Σ21 =

(
0.8 0.0
0.0 4.0

)

p22 = 0.25 µ22 =
(

+3.0
−2.2

)
Σ22 =

(
0.8 0.0
0.0 4.0

)

where data instances from the first two components
are of class 1 (labeled as positive) and others are of
class 2 (labeled as negative)1. We perform two sets of
experiments on Gauss4 data set: (KL-KP ) and (KL-
KL-KL).

1MATLAB implementation of LMKL with an SMO-
based canonical SVM solver and Gauss4 dataset are avail-
able at http://www.cmpe.boun.edu.tr/~gonen/lmkl.



Localized Multiple Kernel Learning

First, we train both MKL and LMKL for (KL-KP )
combination. Figure 1(a) shows the classification
boundaries calculated and the support vectors stored
by MKL which assigns combination weights 0.30 and
0.70 to KL and KP , respectively. Using the kernel
matrix obtained combining KL and KP with these
weights, we do not achieve a good approximation to
the optimal Bayes’ boundary. As we see in Figure 1(b),
LMKL divides the input space into two regions and
uses the polynomial kernel to separate one component
from two others quadratically and the linear kernel for
the other component. We see that the locally com-
bined kernel matrix obtained from KL and KP with
the linear gating model learns a classification bound-
ary very similar to the optimal Bayes’ boundary. Note
that the softmax function in the gating model achieves
a smooth transition between kernels.

The effect of combining multiple copies of the same
kernel can be seen in Figure 1(c) which shows the
classification and gating model boundaries of LMKL
with (KL-KL-KL) combination. Using linear kernels
in three different regions enables us to approximate the
optimal Bayes’ boundary in a piecewise linear man-
ner. Instead of using complex kernels such as the
Gaussian kernel, local combination of simple kernels
(e.g., linear and polynomial kernels) can produce ac-
curate classifiers and avoid overfitting. For example,
the Gaussian kernel achieves 89.67 per cent average
testing accuracy by storing all training instances as
support vectors. However, LMKL with three linear
kernels achieves 92.00 per cent average testing accu-
racy by storing 23.18 per cent of training instances as
support vectors on the average.

Initially, we assign small random numbers to the gat-
ing model parameters and this gives nearly equal com-
bination weights for each kernel. This is equivalent to
taking an unweighted summation of the original kernel
matrices. The gating model starts to give crisp outputs
as iterations progress and the locally combined kernel
matrix becomes more sparse (see Figure 2). The ker-
nel function values between data instances from differ-
ent regions become 0 due to the multiplication of the
gating model outputs. This localizing characteristics
is also effective for the test instances. If the gating
model gives crisp outputs for a test instance, the dis-
criminant function in (8) is calculated over only the
support vectors having nonzero gating model outputs
for the selected kernels. Hence, discriminant function
value for a data instance is mainly determined by the
neighboring training instances and the active kernel
function in its region.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(a) MKL with (KL-KP ).

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

P L

(b) LMKL with (KL-KP ).

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

L L L

(c) LMKL with (KL-KL-KL).

Figure 1. Separating hyperplanes (black solid lines) and
support vectors (filled points) on Gauss4 data set. Dashed
lines show the Gaussians from which data are sampled and
the optimal Bayes’ discriminant. The gray solid lines shows
the boundaries calculated from the gating models by con-
sidering them as classifiers which select a kernel function.



Localized Multiple Kernel Learning

(a) First iteration (b) Last iteration

Figure 2. Locally combined kernel matrices, Kη(xi, xj), of
LMKL with (KL-KP ) on Gauss4 data set.

4.2. Benchmark Data Sets

We perform experiments on ten two-class benchmark
data sets from the UCI machine learning repository
and Statlog collection. In the result tables, we report
the average testing accuracies and support vector per-
centages. The average accuracies and support vector
percentages are made bold if the difference between the
two compared classifiers is significant using the 5 × 2
cross-validation paired F test (Alpaydın, 1999).

Figure 3(a)-(b) illustrate the difference between MKL
and LMKL on Banana data set with (KL-KP ) com-
bination. We can see that MKL can not capture the
localities exist in the data by combining linear and
polynomial kernels with fixed combination weights (it
assigns 1.00 to KP ignoring the linear kernel). How-
ever, LMKL finds a more reasonable decision bound-
ary using much fewer support vectors by dividing the
input space into two regions using the linear gating
model. The average testing accuracy increases from
70.52 to 84.46 per cent and the support vector count
is halved (decreases from 82.36 to 41.28 per cent).

The classification and gating model boundaries found
by LMKL with (KL-KL-KL) combination on Banana
data set can be seen in Figure 3(c). The gating model
divides the input space into three regions and in each
region a local and (nearly) linear decision boundary is
induced. Combination of these local boundaries with
softmax gating gives us a more complex boundary.

The results by MKL and LMKL for (KP -KG) and
canonical SVMs with KL, KP , KG are given in Ta-
ble 1. LMKL achieves statistically similar accuracies
compared with MKL on all data sets. LMKL stores
significantly fewer support vectors on Heart, Pima,
and Wdbc data sets. With direct comparison of av-
erage values, the localized variant performs better on
seven and eight out of ten data sets in terms of testing
accuracy and support vector percentage, respectively.
Other kernel combinations behave similarly.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(a) MKL with (KL-KP ).

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

P L

(b) LMKL with (KL-KP ).

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

L

L

L

(c) LMKL with (KL-KL-KL).

Figure 3. Separating hyperplanes (black solid lines) and
support vectors (filled points) on Banana data set. The
gray solid lines shows the boundaries calculated from the
gating models by considering them as classifiers which se-
lect a kernel function. Both accuracy increases and support
vector count decreases.



Localized Multiple Kernel Learning

We also combine p = 2, . . . , 5 linear kernels on bench-
mark data sets with LMKL. Table 1 (to the right)
compares the results of canonical SVM with the lin-
ear kernel and LMKL with three linear kernels. LMKL
uses statistically fewer support vectors on six out of ten
data sets and on three of these (Banana, Pima, and
Spambase), accuracy is significantly improved. With
direct comparison of average values, LMKL performs
better than canonical SVM on seven and eight out of
ten data sets in terms of accuracy and support vec-
tor percentages, respectively. Using localized linear
kernels also improves testing time due to evaluating
linear kernels over only neighboring support vectors,
instead of evaluating it over all support vectors.

Using Wilcoxon’s signed rank test on ten data sets (see
Table 1), when different kernels are combined, LMKL
stores significantly fewer support vectors than MKL;
when multiple copies of the same (linear) kernel are
combined, LMKL achieves significantly higher accu-
racy than canonical SVM using a single kernel.

4.3. Bioinformatics Data Sets

We perform experiments on two bioinformatics data
sets in order to see the applicability of LMKL to real-
life problems. These translation initiation site data
sets are constructed by using the same procedure de-
scribed by Pedersen and Nielsen (1997). Each data in-
stance is represented by a window of 200 nucleotides.
Each nucleotide is encoded by five bits and the posi-
tion of the set bit indicates whether the nucleotide is
A, T, G, C, or N (for unknown).

As in benchmark data sets when combining different
kernels, LMKL achieves statistically similar accuracy
results compared with MKL by storing fewer support
vectors for all combinations (see Table 2). For exam-
ple, using (KP -KG), LMKL needs on the average 24.55
and 22.32 per cent fewer support vectors on Ara-
bidopsis and Vertebrates data sets, respectively.

We combine p = 2, . . . , 5 linear kernels on bioinformat-
ics data sets using LMKL. Table 2 shows that LMKL
with three linear kernels improves the average accu-
racy statistically significantly. LMKL also uses signif-
icantly fewer support vectors (the decrease is almost
one-third) on these data sets.

5. Conclusions

This work introduces a localized multiple kernel learn-
ing framework for kernel-based algorithms. The pro-
posed algorithm consists of: (a) a gating model which
assigns weights to kernels for a data instance, (b) a
kernel-based learning algorithm with the locally com-

bined kernel matrix. The training of these two com-
ponents are coupled and the parameters of both com-
ponents are optimized together by using a two-step
alternate optimization procedure in a joint manner.

For binary classification tasks, the algorithm of the
proposed framework with linear gating is derived and
tested on ten benchmark and two bioinformatics data
sets. LMKL achieves statistically similar accuracy re-
sults compared with MKL by storing fewer support
vectors. Because kernels are evaluated locally (i.e.,
zero weighted kernels for a test instance are not calcu-
lated), the whole testing process is also much faster.
This framework allows using multiple copies of the
same kernel in different regions of the input space, ob-
taining more complex boundaries than what the un-
derlying kernel is capable of. In order to illustrate
this advantage, we combine different number of lin-
ear kernels on all data sets and learn piecewise linear
boundaries. LMKL with three linear kernels gives sig-
nificantly better accuracy results than canonical SVM
with linear kernel on bioinformatics data sets.

Acknowledgments

This work was supported by the Turkish Academy
of Sciences in the framework of the Young Scien-
tist Award Program under EA-TÜBA-GEBİP/2001-
1-1, Boğaziçi University Scientific Research Project
07HA101 and the Turkish Scientific Technical Re-
search Council (TÜBİTAK) under Grant EEEAG
107E222. The work of M. Gönen was supported by
the PhD scholarship (2211) from TÜBİTAK.

References

Alpaydın, E. (1999). Combined 5×2 cv F test for com-
paring supervised classification learning algorithms.
Neural Computation, 11, 1885–1892.

Amari, S., & Wu, S. (1998). Improving support vector
machine classifiers by modifying kernel functions.
Neural Networks, 12, 783–789.

Bach, F. R., Lanckriet, G. R. G., & Jordan, M. I.
(2004). Multiple kernel learning, conic duality, and
the SMO algorithm. Proceedings of the 21st Interna-
tional Conference on Machine Learning (pp. 41–48).

Collobert, R., Bengio, S., & Bengio, Y. (2001). A par-
allel mixture of SVMs for very large scale problems.
Advances in Neural Information Processing Systems
(NIPS) (pp. 633–640).

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton,



Localized Multiple Kernel Learning

Table 1. The average testing accuracies and support vector percentages on benchmark data sets. Comparisons are per-
formed between MKL and LMKL for (KP -KG). LMKL with (KL-KL-KL) is compared to canonical SVM with KL.

SVM MKL LMKL SVM LMKL
KP KG (KP -KG) (KP -KG) KL (KL-KL-KL)

Data Set Acc. SV Acc. SV Acc. SV Acc. SV Acc. SV Acc. SV

Banana 56.51 75.99 83.57 92.67 81.99 93.39 83.84 83.97 59.18 93.99 81.39 54.03
Germannumeric 71.80 54.17 68.65 58.44 73.32 84.89 73.92 80.90 74.58 97.09 75.09 57.21
Heart 72.78 73.89 77.67 79.11 75.78 87.89 79.44 81.44 78.33 67.00 77.00 58.44
Ionosphere 91.54 38.55 94.36 61.71 93.68 64.10 93.33 53.33 86.15 36.58 87.86 49.06
Liverdisorder 60.35 69.83 64.26 74.43 63.39 93.57 64.87 92.52 64.78 85.65 64.78 78.35
Pima 66.95 24.26 71.91 74.26 72.62 80.39 72.89 73.63 70.04 100.00 73.98 53.09
Ringnorm 70.66 53.91 98.82 40.68 98.86 57.68 98.69 56.69 76.91 78.68 78.92 52.53
Sonar 65.29 67.54 72.71 73.48 80.29 89.57 79.57 90.00 73.86 68.41 77.14 60.43
Spambase 84.18 47.92 79.80 49.50 90.46 57.47 91.41 58.24 85.98 77.43 91.18 34.93
Wdbc 88.73 27.11 94.44 54.74 95.50 58.11 95.98 42.95 95.08 13.11 94.34 21.89

5× 2 cv Paired F Test (W-T-L) 0-10-0 3-7-0 3-7-0 6-4-0
Direct Comparison (W-T-L) 7-0-3 8-0-2 7-1-2 8-0-2

Wilcoxon’s Signed Rank Test (W/T/L) T W W T

Table 2. The average testing accuracies and support vector percentages on bioinformatics data sets.

SVM MKL LMKL SVM LMKL
KP KG (KP -KG) (KP -KG) KL (KL-KL-KL)

Data Set Acc. SV Acc. SV Acc. SV Acc. SV Acc. SV Acc. SV

Arabidopsis 74.30 68.08 77.41 42.36 80.10 89.96 80.82 65.41 74.30 99.64 81.29 68.66
Vertebrates 75.50 68.54 75.72 41.64 78.67 90.46 77.67 68.14 75.50 99.02 78.69 67.41

G. E. (1991). Adaptive mixtures of local experts.
Neural Computation, 3, 79–87.

Lanckriet, G. R. G., Bie, T. D., Cristianini, N., Jor-
dan, M. I., & Noble, W. S. (2004a). A statistical
framework for genomic data fusion. Bioinformatics,
20, 2626–2635.

Lanckriet, G. R. G., Cristianini, N., Bartlett, P.,
Ghaoui, L. E., & Jordan, M. I. (2004b). Learning
the kernel matrix with semidefinite programming.
Journal of Machine Learning Research, 5, 27–72.

Lee, W., Verzakov, S., & Duin, R. P. W. (2007). Kernel
combination versus classifier combination. Proceed-
ings of the 7th International Workshop on Multiple
Classifier Systems (pp. 22–31).

Lewis, D. P., Jebara, T., & Noble, W. S. (2006). Non-
stationary kernel combination. Proceedings of the
23rd International Conference on Machine Learning
(pp. 553–560).

Moguerza, J. M., Muñoz, A., & de Diego, I. M. (2004).
Improving support vector classification via the com-
bination of multiple sources of information. Proceed-
ings of Structural, Syntactic, and Statistical Pattern

Recognition, Joint IAPR International Workshops
(pp. 592–600).

Mosek (2008). The MOSEK optimization tools manual
version 5.0 (revision 79). MOSEK ApS, Denmark.

Pavlidis, P., Weston, J., Cai, J., & Grundy, W. N.
(2001). Gene functional classification from hetero-
geneous data. Proceedings of the 5th Annual In-
ternational Conference on Computational Molecular
Biology (pp. 242–248).

Pedersen, A. G., & Nielsen, H. (1997). Neural net-
work prediction of translation initiation sites in eu-
karyotes: Perspectives for EST and genome analysis.
Proceedings of the 5th International Conference on
Intelligent Systems for Molecular Biology (pp. 226–
233).

Rakotomamonjy, A., Bach, F., Canu, S., & Grand-
valet, Y. (2007). More efficiency in multiple kernel
learning. Proceedings of the 24th International Con-
ference on Machine Learning (pp. 775–782).

Sonnenburg, S., Rätsch, G., Schäfer, C., & Schölkopf,
B. (2006). Large scale multiple kernel learning.
Journal of Machine Learning Research, 7, 1531–
1565.


