
Weight Quantization for Multi-layer Perceptrons
Using Soft Weight Sharing

Fatih Köksal1, Ethem Alpaydın1, and Günhan Dündar2

1 Department of Computer Engineering
2 Department of Electrical and Electronics Engineering

Boğaziçi University, Istanbul Turkey

Abstract. We propose a novel approach for quantizing the weights of
a multi-layer perceptron (MLP) for efficient VLSI implementation. Our
approach uses soft weight sharing, previously proposed for improved gen-
eralization and considers the weights not as constant numbers but as
random variables drawn from a Gaussian mixture distribution; which in-
cludes as its special cases k-means clustering and uniform quantization.
This approach couples the training of weights for reduced error with their
quantization. Simulations on synthetic and real regression and classifi-
cation data sets compare various quantization schemes and demonstrate
the advantage of the coupled training of distribution parameters.

1 Introduction

Since VLSI circuits must be produced in large amounts for economy of scale, it is
necessary to keep the storage capacity as low as possible to come up with cheaper
products. In an artificial neural network, the parameters are the connection
weights and if they can be stored using fewer bits, storage need will be reduced
and we gain from memory.

In this work, we try to find a good quantization scheme to achieve a reason-
able compression ratio for parameters of the network, without significantly de-
grading accuracy. Our proposed method finds a method to partition the weights
of a neural network into a number of clusters so that only one value is used for
one cluster of weights. Thus, the actual memory which stores the real-numbered
values will be small and weights will be pointers to this memory. Then, the
weights in a cluster will point to the same location in the real memory. For ex-
ample, given an MLP with 10,000 weights that can be grouped into 32 clusters,
for each weight only five bits are used.

An analogy is the color map. To get 16 million colors, one requires 24 bits
for each pixel. Graphics adapters have color maps, e.g., of size 256, where each
entry is 24 bits and is one of 16 million colors. Then using eight bits for each
pixel, we can index one entry in the color map. So the storage requirement for
an image is one third. Although this means that an image can contain only 256
of the 16 million possible colors, if quantization [1] is done well, there will not
be a degradation of quality. Our aim is to do a similar quantization of weights
of a large MLP.

G. Dorffner, H. Bischof, and K. Hornik (Eds.): ICANN 2001, LNCS 2130, pp. 211–216, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

212 Fatih Köksal, Ethem Alpaydın, and Günhan Dündar

The benefit is obvious for digital storage in reducing the memory size. For
analog storage of weights, capacitors are perhaps the most popular method, and
in such circuits, the area of the capacitors generally dominates the total area.
Thus, it is very important to reduce the number of weights.

There is a great amount of research on the quantization and efficient hardware
implementation of neural networks (specifically MLP). The aim is to get an MLP
with weights which are represented by less number of bits, which consumes
less memory at the expense of loss of precision; example studies are given in
[2,3,4,5,6]. In our approach which is novel, we do not reduce the precision; the
operations are still with full precision. We decrease storage by clustering of the
weights.

The organization of the paper is as follows: In Section 2, we discuss the
possible methods for quantization and divide them into two groups: after-training
methods and during-training methods. Section 3 contains experimental design
and the results of these methods, and in Section 4, we conclude and discuss
future work.

2 Soft Weight Sharing

We can generally classify the applicable methods for weight quantization into
two. The simplest method would be training the neural network normally and
then directly applying quantization to the weights of the trained network. We call
these after-training methods. However, the application of quantization without
considering the effect of quantization leads to large error and therefore combining
quantization and training is a better alternative which we call during-training
methods [5].

The methodology we use is soft weight sharing [7] where it is assumed that
the weights of an MLP are not constants but are random variables drawn from
a mixture of Gaussians

p(w) =
M∑

j=1

αjφj(w) (1)

where w is a weight, αj are the mixing coefficients (prior probabilities), and the
component densities φj(w) are Gaussians, i.e., of the form φj(w) ∼ N (µj , σ

2
j).

The main reason for choosing this type of distribution for weights is its general-
ity and analytical simplicity. There are three types of parameters in the mixture
distribution, namely, prior probabilities, αj , means, µj , and variances, σj . As-
suming that the weights are independent, the likelihood of the sample of weights
is given by

L =
W∏
i=1

p(wi) (2)

In after-training, once the training of the MLP is complete, Expectation-Maximi-
zation (EM) method can be used to determine the parameters [8]. It is known
that when all priors and variances are equal, the well-known quantization method
k-means clustering is equivalent to EM. One can even view uniform quantization

Weight Quantization for Multi-layer Perceptrons 213

Table 1. The test set error values (average±standard deviation) on the regression
dataset for several quantization levels. The unquantized MLP has an error of 4.10±0.06.

1 Bit 2 Bits 3 Bits
Uniform 245.33±137.60 104.87±60.33 40.64±23.01
K-means 173.34±87.59 57.60±20.97 16.85±13.71
SWS 18.85±2.27 9.99±4.91 4.61±1.05

in this framework where additional to all priors and variances being equal, means
are equally spaced and fixed.

In during-training methods, to couple the training of weights with their quan-
tization, we take the negative log likelihood converting it to an error function to
be minimized

Ω = −
∑

i

ln

M∑
j=1

αjφj(wi)

 (3)

This then is added as a penalty term to the usual error function (mean square
error in regression and cross-entropy in classification)

E = E + υΩ (4)

to get the augmented error function E which is then minimized, e.g., using
gradient-descent, to learn both the weights wi, and also the parameters of their
distribution, i.e., µj , σj , and αj . We do not give the update equations here due
to lack of space but they can be found in [7].

3 Experimental Results

We have used one synthetic regression dataset for visualization and two real
datasets for speech phoneme and handwritten digit recognition. All datasets are
divided as training and test sets. For all problems, we first train MLPs and find
the optimum number of hidden units and the number of parameters, then they
are quantized with different number of bits. We have run each model ten times,
starting gradient-descent from different random initial weights and report the
average and standard deviation of error on the test set.

The MLP of regression problem has one input, one output and four hidden
units thus using 13 weights. Thus without any quantization, we need four bits.
We try quantizing with two, four, and eight clusters (Gaussians) corresponding
to one, two, and three bits. An example graph of regression function as quantized
by soft weight sharing is given in Figure 1. In this figure, the effect of quantization
on the regression function is easily observed.

The means and the variances of error with the three methods are given in
Table 1. k-means is an after-training method and works better than uniform
quantization. Still better though is the result with soft weight sharing (SWS),
which is a during-training method and clearly demonstrates the advantage of
coupled training.

214 Fatih Köksal, Ethem Alpaydın, and Günhan Dündar

−10 −5 0 5 10
−1

−0.5

0

0.5

1

1.5
 Unquantized MLP

−10 −5 0 5 10
−1

−0.5

0

0.5

1

1.5
 MLP Quantized to 1 bit by SWS

−10 −5 0 5 10
−1

−0.5

0

0.5

1

1.5
 MLP Quantized to 2 bits by SWS

−10 −5 0 5 10
−1

−0.5

0

0.5

1

1.5
 MLP Quantized to 3 bits by SWS

Fig. 1. The graphs of regression function; unquantized and quantized by soft weight
sharing (SWS) with one, two, and three bits.

The speech phoneme is represented as a 112 dimensional input which contains
200 samples from six distinct classes (six speech phonemes) and is equally divided
into two as training and test sets. The MLP has ten hidden units with 1196
parameters and thus unquantized, we need 10 bits. We have used one, two,
three, four and five bits for our performance evaluation. Table 2 reports the
simulation results. In Figure 2, we draw the scatter of weights and the fitted
probability distribution using soft weight sharing.

Note that the probability distribution of weights is clearly a Gaussian dis-
tribution centered near zero. Although, there are some papers (e.g. [3]) which
claim and assume that the weights of an MLP are distributed uniformly, we
face a zero-mean normal distribution. This must not be surprising because there
are more than 1000 parameters and they are initialized randomly to be close
to zero and a large majority are not much updated later on. Note that if we
were using a pruning strategy, the connections belonging to a cluster which is
centered very close to zero would be the ones to be pruned. The significant ones
are those which are distant from zero, since they have large error gradient and
are updated much larger than the other parameters.

Weight Quantization for Multi-layer Perceptrons 215

−5 0 5
0

0.2

0.4

0.6

0.8
 1 Bit (2 Gaussians)

−5 0 5
0

0.1

0.2

0.3

0.4
 2 Bits (4 Gaussians)

−5 0 5
0

0.1

0.2

0.3

0.4
(3 Bits (8 Gaussians))

−5 0 5
0

0.05

0.1

0.15

0.2
(4 Bits (16 Gaussians))

−5 0 5
0

0.05

0.1

0.15

0.2
(5 Bits (32 Gaussians))

Fig. 2. The distribution of weights of the MLP used for speech phoneme recognition
and the fitted Gaussian mixture probability distribution by soft weight sharing. Vertical
bars are the weights; circles are the centers of the Gaussians.

The handwritten digit dataset contains 1,200 samples each of which is a
16 × 16 bitmap. The MLP has ten hidden units and we have 2,680 parameters
for quantization. The distribution of weight values after the training phase of
MLP is again a normal distribution like with the speech data set. Table 3 contains
the quantization results.

We see in both classification datasets that when the number of bits is large,
even uniform quantization is good; the advantage of soft weight sharing, i.e.,
coupled training, becomes apparent with small number of clusters.

4 Conclusions

We propose to use soft weight sharing, previously proposed for improved general-
ization, for quantizing the weights of an MLP for efficient VLSI implementation
and compare it with the previously proposed methods of uniform quantization
and k-means. Our results indicate that soft weight sharing, because it couples
the training of the MLP with quantization, leads to more accurate networks at
the same level of quantization. Once quantization is done, the results also indi-

216 Fatih Köksal, Ethem Alpaydın, and Günhan Dündar

Table 2. On the speech phoneme recognition problem, average±standard deviation of
number of misclassifications out of 600 on the test set are given. For comparison, with
the unquantized MLP using 10 bits, the misclassification error is 40.70±3.79.

1 Bit 2 Bits 3 Bits 4 Bits 5 Bits
Uniform 409.29±80.36 376.50±77.40 219.89±55.35 104.19±33.69 55.50±8.96
K-means 365.10±82.93 248.00±69.31 123.40±48.74 51.59±8.66 45.50±5.93
SWS 387.50±74.10 209.39±37.55 89.00±45.40 52.00±9.85 44.79±5.92

Table 3. On the handwritten digit recognition problem, average±standard deviation
of number of misclassifications out of 600 of the MLP on the test set are given. For
comparison, with the unquantized MLP, the misclassification error is 23.50±3.58.

1 Bit 2 Bits 3 Bits 4 Bits 5 Bits
Uniform 526.70±21.75 512.70±42.37 441.70±70.21 95.19±37.08 29.29±5.67
K-means 448.39±114.14 263.29±75.21 58.79±27.43 27.70±5.38 24.50±2.80
SWS 397.20±139.41 244.19±53.66 64.19±37.24 30.70±7.28 27.90±6.47

cate the saliency of weights which can be used further to prune the unnecessary
connections; we leave this as future work.

Acknowledgment

This work is supported by Grant 00A0101D from Boğaziçi University Research
Funds.

References

1. Gersho, A. and R. Gray, Vector Quantization and Signal Compression Norwell,
MA:Kluwer, 1992.

2. Choi, J. Y. and C. H. Choi, “Sensitivity Analysis of Multilayer Perceptron with Dif-
ferentiable Activation Functions,” IEEE Transactions on Neural Networks, Vol. 3,
pp. 101–107, 1992.

3. Xie, Y. and M. A. Jabri, “Analysis of the Effects of Quantization in Multi-Layer
Neural Networks Using a Statistical Model,” IEEE Transactions on Neural Net-
works, Vol. 3, pp. 334–338, 1992.

4. Skaue, S., T. Kohda, H. Yamamato, S. Maruno, and Y. Shimeki, “Reduction of
Required Precision Bits for Back Propagation Applied to Pattern Recognition,”
IEEE Transactions on Neural Networks, Vol. 4, pp. 270–275, 1993.

5. Dündar, G. and K. Rose, “The Effects of Quantization on Multi Layer Neural
Networks,” IEEE Transactions on Neural Networks, Vol. 6, pp. 1446–1451, 1995.

6. Anguita, D., S. Ridella and S. Rovetta, “Worst Case Analysis of Weight Inaccu-
racy Effects in Multilayer Perceptrons,” IEEE Transactions on Neural Networks,
Vol. 10, pp. 415–418, 1999.

7. Nowlan, S. J. and G. E. Hinton, “Simplifying Neural Networks by Soft Weight
Sharing,” Neural Computation, Vol. 4, pp. 473–493, 1992.

8. Alpaydın, E. “Soft Vector Quantization and the EM Algorithm,” Neural Networks,
Vol. 11, pp. 467–477, 1998.

	Introduction
	Soft Weight Sharing
	Experimental Results
	Conclusions

