IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 21, NO. 2, FEBRUARY 2013 291

Classification and Ranking Approaches to
Discriminative Language Modeling for ASR

Ering Dikici, Student Member, IEEE, Murat Semerci, Student Member, IEEE, Murat Saraclar, Member, IEEFE,
and Ethem Alpaydin, Senior Member, IEEE

Abstract—Discriminative language modeling (DLM) is a fea-
ture-based approach that is used as an error-correcting step after
hypothesis generation in automatic speech recognition (ASR).
We formulate this both as a classification and a ranking problem
and employ the perceptron, the margin infused relaxed algorithm
(MIRA) and the support vector machine (SVM). To decrease
training complexity, we try count-based thresholding for feature
selection and data sampling from the list of hypotheses. On a
Turkish morphology based feature set we examine the use of first
and higher order n-grams and present an extensive analysis on
the complexity and accuracy of the models with an emphasis
on statistical significance. We find that we can save significantly
from computation by feature selection and data sampling, without
significant loss in accuracy. Using the MIRA or SVM does not
lead to any further improvement over the perceptron but the use
of ranking as opposed to classification leads to a 0.4% reduction
in word error rate (WER) which is statistically significant.

Index Terms—Discriminative language modeling (DLM),
feature selection, data sampling, language modeling, ranking per-
ceptron, ranking support vector machine (SVM), margin infused
relaxed algorithm (MIRA), ranking MIRA, speech recognition.

I. INTRODUCTION

IVEN an acoustic speech signal, an automatic speech
G recognition (ASR) system generates multiple hypotheses
(possible transcriptions), either in the form of a lattice or an
N -best list. The hypotheses in the list are ordered with respect
to their recognition scores, but the hypothesis having the highest
score is not necessarily the most accurate transcription. Discrim-
inative language modeling (DLM) was proposed as a post-pro-
cessing step to determine the most accurate hypothesis from this
list by considering other linguistic factors besides the recogni-
tion score.
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Classical DLM approaches define this as a classification
problem where the aim is to discriminate the best possible
transcription from the others while optimizing an objective
function that is directly related to the word error rate (WER).
But the hypotheses that are not the best transcription are not all
equally bad, and the first of our contributions in this paper is to
formulate this as a ranking problem which promises to be more
informative [2]. In such a formulation, each hypothesis has a
rank based on an accuracy measure, ¢.g., the number of word
errors, and the aim is to try to reorder these in such a way that
more accurate hypotheses are pushed towards the top of the list,
as opposed to simply separating the best from all the bad ones.

A common model used for discriminative language modeling
is the linear perceptron [3]. The margin infused relaxed algo-
rithm (MIRA) updates the parameter of a linear model by en-
forcing a margin over multiple prototypes where one prototype
is trained for each class [4]. The support vector machine (SVM)
with the linear kernel is also a linear model but the formulation
uses a convex program that can be solved optimally [5]. The
second line of this paper is to compare these three models both
for classification and ranking.

Data sets used in speech recognition are very large and for
each instance, discriminative training uses the hypotheses in the
N -best list. As the third direction, we investigate whether we
can decrease complexity without loss in accuracy. For this, we
try two possibilities: (1) With the high-order n-grams that we
use as the input features, most will appear rarely in training
and would not be informative; a simple count-based thresh-
olding prunes the rare combinations, decreases the input di-
mensionality considerably and hence the training complexity of
the learner that follows it. (2) In the N-best list, it is possible
that most of the hypotheses will be very similar and the idea is
that we can get the same discriminative power by using a small
subset from the list, which will lead to significant saving from
computation especially in the case of ranking.

In our previous work [1], we compared perceptron and SVM
algorithms for ranking and proposed several data sampling and
feature selection approaches for reranking ASR outputs in a
Turkish broadcast news transcription task. In this paper, we ex-
tend these earlier results by including the SVM classifier and
classification and ranking versions of the MIRA algorithm for
completeness. We also increase the feature space by incorpo-
rating higher order n-grams, present the relationship between
ranking versions of perceptron and SVM, and give a thorough
statistical analysis and comparison of the results.

This paper is organized as follows: In Section II, we discuss
the methods used in this study and give a brief literature review.

1558-7916/$31.00 © 2012 IEEE
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The experimental setup and results are given in Section III,
which is followed by their discussion in Section IV. Section V
concludes and contains some possible future work.

II. METHODS

A. Discriminative Language Modeling Using Linear Models

The DLM approach can be viewed as a complementary
method to baseline generative language modeling. In a DLM
setup, the aim is to distinguish the good examples of an ASR
output from the bad ones, while trying to optimize an objective
function that is directly related to the word error rate (WER).
The parameters of such a model are estimated in a discrimina-
tive setting.

DLM setup uses the outputs of an ASR system as its training
examples. This set, ordered with respect to the generative
recognition score, is called the N-best list. Each example
of the training set is represented by a feature vector of the
acoustic input, 2, and the candidate hypothesis, y, denoted
by ®(z,y). Each feature is associated with a weight repre-
senting the contribution of that feature and the model itself
is defined by the associated weight vector, w. In testing,
this vector is used to select the highest scoring hypothesis:
y* = argmax, (w,®(z,y)). Learning here corresponds to
optimizing the weight vector w and this can be defined as a
classification or ranking problem.

Discriminative estimation of language models has been
around for over ten years. The linear model framework we use
in this study was first outlined in [6]. Feature-based structure
of the linear model eases incorporating syntactic, semantic,
morphological and n-gram information sources in a single
mathematical representation [7], [8].

B. Classification Algorithms

1) Perceptron: The perceptron algorithm used in DLM is a
multi-class perceptron variant used for structured prediction [3].
Given x;, the acoustic input of utterance ¢ and H;, the list of all
possible hypotheses (/V-best list) for this utterance, the aim is to
pick a hypothesis out of the set defined by ;. Let us define the
gold standard (y;) as the hypothesis having the lowest WER,
i.e., the oracle—if there are more than one such, the one having
the highest recognition score is used. The current best is chosen
as

Zi = argnmx(w, §($i7 Z)>
z€H;

(1)

The idea of the perceptron algorithm is to reward features as-
sociated with the gold-standard and to penalize features associ-
ated with the current best:

w=w+®(r;,y)— ®(r;2) 2)

The algorithm requires several epochs (passes) over the

training set but it has been shown that three epochs are ade-

quate for practical purposes [3]. In the averaged perceptron
which we also use in our experiments, once training is com-

pleted, the weights are averaged over the number of utterances
(I) and epochs (7T') to increase model robustness:

1
=YW

it

)

Wavg

The perceptron algorithm in a classification setting is one of
the most studied methods to estimate the parameters of the linear
model [3], [9], [10].

2) Margin Infused Relaxed Algorithm (MIRA): The MIRA
[4] trains a prototype for each class such that the dot product
of an instance with the prototype belonging to its class,
(We,, ®(2,,y:)), is higher than the dot product with any other
class prototype, (ws,. ®(x;,4;)), where ¢; is the class of
P(x;,y:), W, is its class prototype (weight vector), and wr,
are the prototypes of other classes. The margin is defined as the
minimum difference between the dot products and the aim is to
train a classifier with a large margin.

For a two-class problem with ¢; € {£1}, the binary MIRA
iteratively updates a single prototype w, just like the perceptron.

w =W+ 7;¢;® (2, yi) “4)
Here the learning rates 7; are hypothesis-specific, and are found
by solving the following optimization problem:

min || Sz, 43) |2 77+ 2cimi(w, B (w4, 1))
st. 0< ;<1 v
which gives
ci{w, ®(zi. 1:)) )
=G| e ©
( | ® (i, y:) |12

The function G( - ) determines how much to update the proto-
type if it misclassifies the instance.

0 u<0
Gu) = { u 0<u<1 (7)
1 1<u

Note that binary MIRA cannot be directly applied to our
problem since we do not have the true labels of the instances;
we predict the best hypothesis among many (N-best list)
candidates. We propose single and multiple update versions of
MIRA for structured prediction, similar to those proposed in
[11] and [12].

The single update version updates only when the current best
z; 1s not the oracle y;:

w=w+ 7 (®(rs,y:) — By, 7)) (®
s o f W, Bz, y) — ‘I’(l’iszi)>>
s — G5 — 9
( %) — B 2) O
; [0 u<0
G (u) = {71, otherwise (10)

The multiple update version scans over pairs of the oracle y;
and all other hypotheses y, € H;, and updates as:

w=w+T1(®(zi,y) — Plrp, vs)) (11)
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® (2, i)
e, ) ||2) (12)

(w, ®(wi,y;) —
| ®(zi,y:) —

0 u <0
{u
u/(N —1)

u > 0and yp = z;
u > 0and yi # 2z

The MIRA algorithm has been applied to statistical machine

translation in [11] and [12] and to parsing in [13].

3) Support Vector Machine (SVM): The SVM is also a linear
classifier and its aim is to find a separating hyperplane that max-
imizes the margin between the nearest samples of two classes.
The constrained optimization problem is defined as:

Tli,n — G’"l- (

G™(u) = (13)

1
min §<W, w)+C zj: 3
subject to ¢ {w, ®,(z,¥)) >1 - and §; >0 (14)
where ¢; € {%1} are the class labels and &; are the slack
variables for violations of the margin constraints for the lin-
early nonseparable case. Note that here, the index j is not con-
strained within an N -best list and covers the whole sample set.
C is a user-defined trade-off parameter between violations and
smoothness. It is possible to assign different C' values to the
positive and negative classes, especially when the classes are
not balanced: C; = SC_. The major advantage of SVM is that
this is a convex optimization problem that can be solved analyt-
ically unlike the perceptron that uses gradient-descent and risks
getting stuck in local optima.

The labeling of training examples in an SVM setup is not
straightforward. One can divide the hypotheses into positive
and negative classes by setting a threshold either on the base-
line recognition score, or the WER. In our implementation,
we choose all hypotheses having the lowest error rate of their
N -best list as the positive examples, and the rest as the negative
examples.

SVMs have also been used as an alternative discrimination
method. Using an English word n-gram setup, [14] applies the
SVM classifier over an equal number of positive and (artifi-
cially generated) negative examples. It is reported that the accu-
racy of the system increases if negative sentences are disrupted
more, and if the total number of examples is increased. Several
modified versions of the SVM algorithm are also used for other
language modeling tasks such as lexical disambiguation [15],
parsing and machine translation [16].

C. Ranking Algorithms

Using classification, we define DLM as the separation of
better examples from worse. But we know that the entries in
the list have different degrees of goodness and hence it seems
more natural to regard DLM as the reranking of the list where
the number of word errors provides the target ranking for
each possible transcription. This problem is similar to ordinal
regression in that all examples ®(x,y) of the training set are
given a rank r instead of a class label. However, unlike ordinal
regression, in reranking the ranks are defined only between the
examples of the same utterance, i.e., the /NV-best list.

In a reranking scenario, we would like to find w such that for
any two hypotheses a and b from the same NV -best list, if ¢ has
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fewer word errors than b, it has a higher rank (is closer to the
top of the list) than b. The model output differences should then
be greater than some separation threshold A > 0:

ro = 15 = (W, P (24, ya) — Plap,yp)) > A (15)
It must be noted that ranking ordering is the opposite of numeric
ordering. For instance, if r, = 1 and v, = 2, then r, > 7.

1) Ranking Perceptron: The ranking perceptron algorithm
integrates the reranking methodology into the perceptron setup
[2]. Here the margin depends on the ranks and is proportional
to the difference in ranks:

Ta = Tp == (W, ®(2a,Ya) — P(Tp,90)) > T9(7as7h)

(16)
where T is a positive constant. We use the same g( - )} function
as in [2]:

11
9(rasm) =N ra 7
0

Ta ™ Th

a7

ra <7

This selection of the ranking function aims to achieve a greater
separation between the hypotheses that are close to the top of the
list than those at the bottom!. It also ensures that the following
margin-rank relation is preserved:

.q(raa Tc) > g(ru, 7”b)

.q(raarc) > g(rbvrc) (18)

Tg = Th = Te {
Unlike [2], we use an additional learning rate parameter, 7,
and the update rule is:

w =W+ 19", 76)(®(2a, va) — ®(zs, 1))  (19)

This learning rate is decreased by multiplying with a decay
rate of v < 1 at the end of each epoch and the weights are
finally averaged, as done in Section I1.B1.

Ranking and reranking adaptations of the perceptron algo-
rithm have been around for some time: In [18], a perceptron
ranking (PRanking) algorithm that divides the space into re-
gions bounded by threshold levels is proposed. Each example
is assigned a rank, and two neighboring ranks are set apart by
a biased boundary. Note that this algorithm cannot be applied
to DLM, as it needs global ranks, i.e., the ranks of hypotheses
in different utterances need to be comparable with each other.
Another study includes a review of reranking and introduces
two perceptron-based ranking algorithms to decrease data com-
plexity and training time [2]. Such algorithms have been ap-
plied to parse reranking and machine translation tasks in [19]
and [20]. To the best of our knowledge, what we propose here,
namely, ranking perceptron variants have not been applied to
ASR output reranking before.

2) Ranking MIRA: We apply a modified ranking version of
MIRA which updates the prototype if any pair of hypotheses
with r, > 74 do not satisfy the margin requirement of g(r,, 74 ).

w=Ww + Tab((ﬁ(maa :Ua) - ‘I)(.TJ[,, 7/1))) (20)

IThe effects of choosing another function in a different training setup is
studied in [17].
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=G g(/"m"'b) - (W, CI’(IL'asya) - (I)(:["Myb))
w=0 ( [ @ (@arya) — ®(ws ) |12 )

21)
0 u <0
G () = { 0< < g(rars) (22)
g(Tuv Tb) _l](?"d, rb) <u

3) Ranking SVM: The ranking SVM algorithm is a modifica-
tion of the classical SVM setup to handle the reranking problem,
defined as

1
min §<W, w) + Ozg‘fub
8.0. (Wv CI’(LL‘G, 'Ua,) - (I)("L'b'/ yb)) >1- gab
V(a,b) € P, &4 >0 (23)

Here, C is again the trade-off value and P is the set of (a, b)
pairs for which r, > 7. The constraint in (23) implies that
the ranking optimization can also be viewed as an SVM clas-
sification problem on pairwise difference vectors, ® (x4, yq) —
® (4, yp). In that sense, the algorithm tries to find a large margin
linear function which minimizes the number of pairs of training
examples that need to be swapped to achieve the desired ranking
[21].

The relationship between the ranking perceptron and ranking
SVM algorithms is given in the Appendix.

In [22] the ranking SVM algorithm is compared with three
other discriminative algorithms, namely perceptron, boosting,
and minimum sample risk (an algorithm which applies line
search to minimize the total error over a useful subset of fea-
tures), in terms of accuracy and training time. Because of the
long training time, the authors had to use 20-best lists instead
of 100-best for their ranking SVM implementation. Despite
this limitation, they show that this algorithm generalizes better,
based on its performance on an unseen test set.

D. Data Sampling

The ranking algorithms include examples in a pairwise
manner and complexity increases fast as the sample size and
the number of unique ranks are increased. Our aim in this
section is to investigate data sampling to relax some of these
constraints and to decrease the complexity of the algorithm.
We propose three approaches that work on the /N-best lists,
sorted first with respect to the number of word errors (WE) in
ascending order, and then if WE are equal, with respect to the
recognition scores in descending order. For the first and second
approaches, the rank is taken as 1 + WE:

* In Uniform Sampling (US), we select n = {2,3,5,9} in-
stances in uniform intervals from this ordered list. For in-
stance in US-5 with a 50-best list, the hypotheses with the
indices 1, 13, 25, 37 and 50 are used only (The best and the
worst hypotheses are always in the shortlist).

* Rank Grouping (RG) groups the hypotheses having the
same unique WE and selects one or two examples as rep-
resentatives from each group. In RG-1, this representative
is the one having the highest score. In RG-2, we add the
example with the lowest score.

TABLE I
AN EXAMPLE OF SAMPLING SCHEMES

[Order | WE | US-2 | US3 | US5 | RG1 | RC-2x3 |

1 0 1 1 1 1 1
2 1 2 1
3 2 3 3 1
4 2

5 2 3 3

6 3 4

7 3 4 2
8 4 5 2
9 4 5 5 5 2

e In Rank Clustering (RC), we generate artificial rank clus-
ters. We try RC-2 x 3 and RC-2 x 10, where we select 3
and 10 examples, respectively, from the top and bottom of
the ordered list. Positive integers ({1, 2}) are assigned to
these clusters as their ranks.

A simplified example of these sampling schemes is presented
in Table I. The first column denotes the ordered hypotheses,
with their WE shown in the second column. In the columns
that follow, the rank values associated with these hypotheses
are given.

The aim of uniform selection is to decrease directly the
number of instances. It should be noted that each US scheme
with increasing 7 also contains the instances from the previous
ones. In RG, we would like to keep at least one instance from
all available ranks, whereas in RC, we guarantee decreasing
both the number of instances and ranks. Note that the sampling
strategy we use here considers only single hypotheses but not
hypothesis pairs.

Similar hypothesis selection schemes by sampling from an
N-best list are investigated in [23] where it is argued that the se-
lection of hypotheses based on WER should be preferred over
the recognition score. Using the perceptron algorithm, the au-
thors achieve an accurate and compact corrective model. In [20],
a perceptron-like algorithm has been proposed that splits the
training data into top r-ranked and bottom k-ranked transla-
tions. The same study also includes an ordinal regression algo-
rithm for reranking in an machine translation task and improve-
ments in BLEU of up to 0.3% are reported.

III. EXPERIMENTS

A. Experimental Setup

In this study, discriminative language modeling techniques
are used in a Turkish broadcast news transcription task. We use
a Turkish broadcast news data set constituted of approximately
194 hours of speech recorded from news channels. The data are
divided into disjoint training (188 hours), held-out (3.1 hours)
and test (3.3 hours) subsets, having 105 355, 1947 and 1 784 ut-
terances, respectively. The held-out and test sets contain about
23k words and 32k morphs. The acoustic model and the baseline
ASR system were developed with the AT&T tools2 and the gen-
erative language models were built using the SRILM toolkit3.
These setups are the same as mentioned in [8], where a decrease

Zhttp://www?2.research.att.com/~fsmtools {fsm,dcd}/
3http://www.speech.sri.com/projects/srilm/
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TABLE II
PERCEPTRON HELD-OUT WER (%)
(THE BEST RESULT IS SHOWN IN BOLDFACE)

0.0
27.09

1.0
22.14

2.0
22.26

4.0
22.38

8.0
22.39

16.0
22.47

Wo
WER

in word error rate of up to 0.8% has been reported with the
averaged perceptron algorithm using basic sub-lexical features
for the same task.

We use a statistical morph based ASR setup, as morphs ob-
tained via the Morfessor algorithm* were shown to be more suit-
able and effective for the agglutinative nature of Turkish [24].
We use unigram, bigram and trigram morph models. There exist
a total of 45889 unique morphs, 2272714 morph pairs, and
9242 126 morph triples in the dataset.

The hypotheses extracted from the ASR lattice are output as
50-best lists. The first element of the feature vector, ®(x, y), is
the log-probability of & in the lattice obtained from the baseline
recognizer, and includes the contribution of baseline acoustic
and generative language models. The rest of the feature vector
consists of counts showing the number of times a particular
morph n-gram occurs in the hypothesis. With such a large
number of unique features, we have highly sparse feature
vectors.

Using this setup, the generative baseline word error rates on
the held-out and test set are 22.93% and 22.37%, respectively.
If we were to select the oracle hypothesis for each utterance,
the best rates that could be obtained from the same N -best list
would be 14.18% and 13.92%, respectively.

B. Classification Algorithms

1)  Perceptron:  The perceptron (Per) algorithm
(Section I1.B1) with the 50-best morph unigram setup is the
first of our discriminative training experiments. Unlike [1] and
[8], to make sure that the perceptron considers the same set of
candidate hypotheses for processing as the ranking variants,
here we update w only if the WE of the current best is not equal
to that of the oracle. The weight wy associated with ® has a
different range than the rest and empirical results have shown
that it is better to keep it fixed (unchanged) during perceptron
training. Table II presents the held-out word error rates for
different values of weight w, over at most three epochs over
the data. Here, and in the tables that follow, the best result is
shown in boldface.

For the optimal choice of wg and the number of epochs, the
error rate on the held-out set still gives 22.14% as in [8], im-
plying a reduction of 0.8% over the generative baseline. The
same model yields 21.84% on the test data. An overall analysis
on the test data and statistical significance information is given
in Section IV.

2) MIRA: We experiment both with the single and multiple
update MIRA variants. Similar to the perceptron setting, we
keep wy fixed. We use ®q in evaluating the score of the hy-
pothesis with the models but we do not use it in the norm calcu-
lations. Table III represents the best WERs obtained for single
and multiple updates for different values of wy.

4http://www.cis.hut.fi/projects/morpho/
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TABLE III
(S)INGLE AND (M)ULTIPLE MIRA HELD-OUT WER (%)
wWo 0.0 1.0 2.0 4.0 8.0 16.0
WER(S) 2293 | 2226 | 2226 | 2226 | 22.26 | 22.26
WERM) || 22.93 | 2224 | 2224 | 2224 | 2224 | 22.24
TABLE IV
CLASSIFICATION SVM HELD-OUT WER (%)
C=1|C=10]| C =100
B8 =0.01| 2285 22.85 22.85
8 =0.1 22.78 22.78 22.78
g=1 22.50 22.81 22.52
8 =10 24.80 2491 24.90
B8 =100 29.28 29.63 29.26
TABLE V

RANKING PERCEPTRON HELD-OUT WER (%)

[ Updates | wo fixed | wo free |
21.75 21.84
21.80 21.81

Online
Batch

We see that if wq is used (it is not zero), its value does not
influence the result both in single and multiple update variants.
We also see no significant difference between the accuracies of
single and multiple MIRA and from now on, we report only
single update results because it is simpler. The test set WER for
this case is 21.83%.

3) SVM: Two-class SVM tests are evaluated using the LIB-
LINEAR toolbox [5]. The sample labeling method explained in
Section I1.B3 assigns approximately 10% of the examples to the
positive class. Table IV shows the held-out set WERs with re-
spect to some combinations of the trade-off parameter (C') and
minority (positive) class weight (3).

With the optimal selection of parameters (penalty value and
its weight across two classes), the lowest WER that could be
obtained on the held-out set is 22.50%, which is better than the
baseline but worse than the perceptron’s and the MIRA’s best.
On the test set, the WER is calculated as 22.08%.

C. Ranking Algorithms

1) Ranking Perceptron: We have several factors to optimize
during the training of the ranking perceptron (PerRank). The
weight updates can be made in an online manner at each new
instance (sample level), or in batch (cluster level) [2]. Further-
more, we have the option to choose whether to fix the weight wy,
just like in the perceptron, or update it with the other weights.
Finally, optimal values of the algorithm parameters, 7, v, and 7
must be searched for.

Table V shows the held-out WERs for different setup com-
binations with respect to the optimal choices of algorithm pa-
rameters and (at most) 20 epochs. Comparing the results with
the ones in Table II, we see that the ranking perceptron per-
forms better than the perceptron, and that the online update
strategy with the wq parameter fixed must be preferred. The
lowest WER of 21.75% is obtained using the parameter set
wy = 14.0,n =1,y = 0.9, 7 = 64. Fig. 1 shows the change in
WER with respect to the number of epochs for this setup. The
test set error rate for the same experiment is 21.47%.
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Fig. 1. PerRank held-out WER (%) with respect to the number of epochs.

TABLE VI
RANKING MIRA HELD-OUT WER (%)

wo 0.0 1.0 2.0 4.0 8.0 16.0
WER || 28.08 | 22.16 | 22.19 | 22.19 | 22.19 | 22.20
TABLE VII
RANKING SVM HELD-OUT WER (%)
C 1 100 1000 | 10000 | 20000
WER 2234 | 2226 | 22.13 22.14 22.11

2) Ranking MIRA: The held-out ranking MIRA (MIR Arank)
results shown in Table VI are close to those of the perceptron.
Just like MIRA, the value of wy (unless zero) does not have
a drastic influence. The test set error rate for the best case is
21.74%.

3) Ranking SVM: For the ranking SVM experiments, we
use the SVM*™@¥ tool5 which provides a fast implementation
of the algorithm. Table VII shows the WERs obtained from the
held-out set for different trade-off (C') values. The results sug-
gest that ranking SVM leads to better results than the two-class
SVM and is able to yield comparable results to those of the
perceptron. Furthermore, on the test set it gives 21.61%, an ad-
ditional improvement of 0.2%, which indicates that the model
learned from the reranker generalizes better.

D. Increasing the Number of Features

Up to now we did experiments using a morph unigram (1g)
setup, and obtained a lowest WER of 21.75% using the ranking
perceptron. In this section we try to see how these six algorithms
behave if we extend the feature space by adding higher order
n-grams. Fig. 2 shows the held-out WERs of these experiments,
all optimized within their parameter space.

As we can see from the figure, for all algorithms, adding bi-
gram (2g) and trigram (3g) features does not decrease but in-
crease the error rates, most possibly due to the lack of suffi-
cient training data which leads to overfitting. This finding is co-
herent with the observations of [8]. Note that even in this case,
the ranking perceptron algorithm shows superior performance
to the other five.

E. Dimensionality Reduction

We know that reducing the number of dimensions eases the
curse of dimensionality and drastically decreases space and time

Shttp://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
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Fig. 3. Count-based thresholding held-out WER (%) for different thresholds
and dimensions.

complexity. It also provides a better generalization by elimi-
nating the effects of noise in redundant features. In this sec-
tion, we go the other way around and apply feature selection®.
In this study, we count the number of times each specific feature
(morph n-gram) occurs in the training set, and set a threshold,
below which that feature will be discarded. We call this ap-
proach Count-Based Thresholding (CBT).

We tried this with the perceptron and ranking perceptron.
Fig. 3 shows the 50-best morph unigram held-out set results for
different values of the threshold, along with the number of di-
mensions in the reduced space. We see that the performance of
Per is not degraded drastically even if we reduce the number of
dimensions by one fifth, with the threshold of 500. On the other
hand, a slight increase in WER is observed in PerRank, which
can be explained by the utilized number of features by the algo-
rithm. This finding will be explained in Section I'V.B. Note that
CBT results follow a similar trend for the bigram setup as well.

F. Sampling From the N -Best List

In Table VIII, we present held-out WERs of our three data
sampling approaches in Section II.D for six algorithms, with
an optimal parameter selection that yields the highest accuracy
on the same set. Results of the 50-best unigram setup are also
repeated for comparison.

The first notable result here is the 22.10% WER by the per-
ceptron, which suggests that using only two examples (the best
and worst in terms of WE) is as good as using all the exam-
ples in the list. This finding corroborates the result presented
in [23]. Adding more examples to the training set does not de-
crease the error rate further with this method. SVM, being the

6To decrease the dimensionality, we also tried feature extraction: In our earlier
study [1], we tried applying online PCA, but did not obtain any considerable
gain due most probably to the restriction to a linear feature extractor.
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TABLE VIII
SAMPLING SCHEMES HELD-OUT WER (%)

[ Method | Per | MIRA [ SVM [ PerRank | MIRArank | SVMrank |
All (50) 22.14 | 22.26 | 22.50 21.75 22.16 22.11
US-2 22.10 | 22.68 | 22.36 21.99 22.62 22.66
US-3 22.14 | 2251 22.46 21.94 22.28 2221
US-5 2222 | 22.58 | 22.58 21.83 22.12 21.86
US-9 22.18 | 2237 | 22.59 21.77 21.97 21.89
RG-1 2226 | 2241 | 22.29 21.97 22.07 22.11
RG-2 2227 | 2245 | 22.49 21.90 22.01 23.04
RC-2x3 2229 | 22.58 | 22.40 21.93 22.28 22.39
RC-2x10 | 22.20 | 22.40 | 2248 21.81 22.12 22.10

weakest method in 50-best, prefers a sampled training set but
cannot compete with Per.

MIRA performs better with more hypotheses. Though it is
similar to Per, it is not as accurate, neither in classification nor
ranking.

Unlike Per, SVMrank benefits from increasing the number
of examples in the US and RC cases, but not in RG. The best
result obtained here is 21.86% with the US-5 sampling scheme.
This value is better than using 5-best lists (22.11%) or choosing
5 examples randomly (22.24%). The RG and RC schemes also
provide comparable results to the baseline.

The superiority of the ranking perceptron is once more ev-
ident in Table VIII. The algorithm outperforms others in all
schemes and responds positively to increasing the sample size.
As in SVMrank, the accuracy improves as the number of se-
lected hypotheses increases.

IV. DISCUSSION

So far we have only compared the models by looking at their
held-out set accuracies. However the learning process reveals
some other important side information about the performance
and working behavior of these methods. In this section, we com-
pare the algorithms with respect to their CPU times, model com-
plexities, test set accuracies, and we check for differences that
are statistically significant. In the following sections, we use the
50-best unigram setup in the experiments.

A. Comparison of CPU Times

We denoted earlier that ranking algorithms have higher com-
plexity than classification algorithms, and that they need more
computational resources as the number of instances and unique
ranks are increased. Training the models by processing all the
hypotheses takes <2 mins with Per, <3 mins with MIRA and
<5 mins with SVM, whereas it takes <30 mins with PerRank
and MIRArank.

In terms of running time, SVMrank is much more costly
than the other models. Even though SVM**** toolkit provides
a fast and efficient implementation, training is much slower. In
Table IX, the total number of training instances and the elapsed
CPU times for the SVMrank setup are shown with respect to
different data sampling methods. This time a fixed trade-off
value of ¢ = 1000 is used for fair comparison. We see that
although SVMrank training takes time in the ranges of hours,
by an intelligent sampling technique from the N -best list, it is
possible to decrease the number of training instances and thus
the CPU times considerably, while keeping the WERs still in a
tolerable region.
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TABLE IX
TRAINING CPU TIMES OF SVMRANK FOR FIXED C' = 1000

Number of Held-out
Method instances CPU hours WER(%)
All 4,939,368 25:00 22.26
US-2 209,675 0:14 22.77
US-3 313,120 0:51 22.50
US-5 518,234 1:42 22.05
US-9 923,770 3:34 22.20
RG-1 466,277 1:49 22.01
RG-2 867,045 4:26 23.14
RC-2x3 620,160 3:16 22.59
RC-2x10 2,020,450 16:45 2221

B. Comparison of Models

We also compare the performances of six models in terms of
their complexity and accuracy. Since all the models are linear,
simpler models are the ones which use fewer features. The
weights of unused features are zero at the end of the training
and the complexities of the models are compared in terms
of the features they use and they share; we consider weights
not exceeding the threshold 10™* as zero. In Table X(a)—(d),
we compare models with respect to the number of zero and
nonzero features they use.

Though the perceptron and MIRA use fewer than half of the
features, the other models use almost all of them, due to the fact
that the latter consider most of the hypotheses in their updates as
opposed to only two (the oracle and the current best). It should
also be noted that though two models might use the same fea-
tures, their weights can have different signs.

Feature comparisons of perceptron and MIRA variants for
2g and 3g datasets are given in Table XI(a) and (b) (SVM and
SVMrank results cannot be obtained here due to their infeasible
training times). Similar to the unigram case, ranking algorithms
use many more features.

C. Comparison of Test Set Accuracies

The models are also statistically compared in terms of their
accuracy on the test set. WERs shown in Table XII reveal some
other important information. The ranking perceptron general-
izes better than all the other methods except the ranking SVM.
As seen in Table XIII, the test error improvements over Per is
significant at p = 0.003 for PerRank, as measured by the NIST
MAPSSWE test’. The test shows that there is no statistically
significant difference between PerRank and SVMrank, nor be-
tween SVMrank and Per. But SVM has higher WER than both
PerRank (p < 0.001) and SVMrank (p = 0.004). MIRA does
not differ from the other methods except PerRank (p = 0.002).
MIRArank differs from SVM and PerRank. The ordering found
is

PerRank SVMrank MIRArank MIRA Per SVM

D. Comparison of Statistical Significance

Results in the previous section are over a single run. To av-
erage over randomness, we also apply 10-fold cross validation
by splitting the training dataset into 10-partitions, and results on
the test set are given in Table XIV. For each model, we use the

"http://www.itl.nist.gov/iad/mig/tools/
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TABLE X
PAIRWISE COMPARISON OF MODELS IN TERMS OF THE NUMBER
OF ZERO (Z) AND NONZERO (NZ) FEATURES THEY USE ON
UNIGRAMS. (a) PERCEPTRON AND SVM, (b) PERCEPTRON AND MIRA,
(c) SVM AND MIRA, (d) SVMRANK AND MIRARANK

(a)
Per SVMrank
NZ Z NZ | Z
NZ | 19,946 | 25,223 | 44,390 | 779
SVM Z 175 545 710 | 10
perRank | NZ_| 20,119 | 24,896 | 44291 | 724
Z 2 872 809 | 65
(b)
MIRA PerRank
NZ Z NZ | Z
NZ [ 20,540 | 23290 | 43,767 | 63
MIRArank -— T 2052 | 1.248 [ ST
Por NZ | 18,728 | 1,393
¢ Z | 1,819 | 23,949
(c)
MIRA
NZ Z
NZ | 20,481 | 24,688
SVM —> 66 | 654
(d)
MIRArank
NZ Z
NZ | 43,790 | 1310
SVMrank v 70 =49
TABLE XI

FEATURE COMPARISON FOR PERCEPTRON AND MIRA.
(a) BIGRAMS, (b) TRIGRAMS

(a)
PerRank MIRA
NZ v4 NZ Z
oor NZ | 257458 37 203,719 537783
7 [ 1923.116 [ 91,006 | 44954 | 1970258
NZ | 2,079,700 | 7,059 | 248,541 | 1,838,200
MIRArank ————167 8771821071 32 | 185841
(b)
PerRank MIRA
NZ v4 NZ v4
o NZ | 819233 550 | 703725 | 116,028
7 [ 7891.400 | 430964 | 127,667 | 8.194.706
NZ | 8,023,671 | 45,944 | 830,101 | 7,239,514
MIRArank e 7T T 385,590 | 1.201 | T.071.220
TABLE XII
TEST SET WER (%)
[ Per [ MIRA | SVM | PerRank | MIRArank | SVMrank |

(2084 | 2183 | 22.08 | 2147 | 2174 [ 2161 |

parameters which yield the minimum WER over the held-out
set. We apply 10-fold cross-validation paired ¢ test on the test
WERs and Table XV shows the p-values obtained by pairwise
t tests. This time all the differences are significant and we have
a clear ordering:

PerRank < SVMrank < MIRArank < Per< MIRA < SVM

TABLE XIII
RESULTS (P VALUES) OF MAPSSWE TEST

[ [ MIRArank [ PerRank | Per | SVMrank | SVM |

MIRA 0.638 0.002 0.795 0.121 0.156 ]
SVM 0.014 < 0.001 | 0.085 0.004
SVMrank 0.168 0.226 0.131
Per 0.764 0.003
PerRank 0.007

V. CONCLUSION

Being an agglutinative language with rich morpholog-
ical structure, Turkish is a challenging language in terms of
obtaining large vocabulary continuous speech recognition
(LVCSR) accuracy. The possibility of producing almost infin-
itely many words from a single stem results in very high WERs,
as compared to systems of similar vocabulary sizes in English.
It has been shown in previous studies that using sub-lexical
units such as statistical morphs instead of word-based models,
help enhance the recognition performance [25].

In this paper, we present some directions to enhance dis-
criminative language modeling performance for Turkish broad-
cast news transcription. We use and compare three algorithms,
namely, perceptron, MIRA and SVM, both for classification and
ranking. We apply thresholding as a dimensionality reduction
technique on the sparse feature set, and some sample selection
strategies to decrease the complexity of training.

We see first that ranking leads to lower WER than classifi-
cation; this is true for all algorithms. The disadvantage is that
ranking takes more time and this is where feature selection and
sampling becomes more interesting.

The use of SVM leads to no significant decrease in error and
may even worsen performance. SVM also takes longer to train.
The complexity of SVM training can also be curbed signifi-
cantly (from a day to minutes) by intelligent sampling from the
N -best list. We note however that these are SVM results using
the linear kernel, and with better, application-specific kernels,
SVM may provide more interesting results.

SVMrank uses constant penalty whereas perceptron ranker
uses the g(r,, ) function and that is how SVM ranker may
be improved; see the Appendix for a more detailed comparison
between the two rankers.

Ranking algorithms, though more accurate, use more fea-
tures than classification algorithms. The reason is that they do
more updates while the classification algorithms make only one
update for each hypothesis set. Another downside is that the
ranking algorithms take more time to train due to more updates.

MIRA variants do not show significant improvements com-
pared to their perceptron correspondents. A possible reason
might be that the normalizing effect of the norms causes smaller
updates diminishing their correcting effects. Another point is
that as long as @ is used (wy is not zero), the other coefficients
can adapt themselves accordingly and the same accuracy can
be attained.

Using higher order n-gram data does not improve the perfor-
mance but it increases the complexity and the training time. It is
possible to do feature selection and use a subset of the unigram
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TABLE XIV
10-FoLD TEST SET WER (%)
| Per | MIRA [ SVM [ PerRank [ SVMrank | MIRArank |
[21.87 £0.06 | 21.93 £ 0.05 [ 22.19 £ 0.12 [ 21.47 £ 0.05 [ 21.63 £ 0.09 [ 21.81 £ 0.03 |
TABLE XV and the total error is
RESULTS (P VALUES) OF 10-FOLD CROSS-VALIDATION T TESTS
( [ MiRArank | PerRank | Per | SVMrank | SVM ] i Z gab
MIRA [ 22X107° [ 6x107Y 0.0418 [ 24x107°> [3.2x10-" ] Tar Tt
SVM 03x107° [ 1.8x107% [ 2x 10~ 4x1077 ] subiect to a) > by — 27
SVMrank | 78 x 10°% | 21X 10°° | Ix 102 J fla) > f(b) — Eab 27)
Per 0.9 x 10~% 3x 10~ . . . .
PerRank | 1.9 X 107 If we require a difference of at least 1 unit as the margin, the

features thereby decreasing complexity without losing from ac-
curacy. The unigram representation is very sparse and high-di-
mensional and an interesting future research direction is to rep-
resent such a long sparse vector using fewer features.

We are currently investigating the effect of using larger
N -best and feature sets. Our future directions include trying
alternative definitions of the margin function, sampling from
the hypothesis cross-product space, using the perceptron and
ranking SVM for feature selection and data summarization,
together with (possibly nonlinear) dimensionality reduction
methods while hopefully preserving sparsity.

APPENDIX
RELATIONSHIP BETWEEN RANKING PERCEPTRON
AND RANKING SVM
If r, > 7, we require f(a) > f(b) where f(u) = (w,®,).
With the ranking perceptron, the update rule is
w=w+ g(ry,r)( Py — Pp) (24)

This is applied when f(a) < f(b). So the error function we
should minimize is

ra=1s, f (a)<F(b)

b= [£(b) = f(a)] (25)

If we use gradient-descent, we get
Aw = —n[Vw f(b) = Vw f(a)] = n(Ra — Bs)

If we penalize differences with respect to their rank differ-
ences as given by a function such as g(rq, 7 ):

>

a=ro,f(@)<f(b)

=

[f(b) — f(a)]g(ra,ms) (26)

when we use gradient-descent, we get
AW = 1g(ra, ) (B — Bp)

which is the update rule of (24) with n = 1.

Let us now consider the case of SVM. We require
fla) > f(b), so when this is not satisfied, we need slack
variables £,; to make up for the difference:

f0) < fla) + Eap,

Vre = 1

constraints become
subject to f(a) = f(b) +1— €uy

We can add a L, regularizer for smoothness and the error
becomes

1
min §(w7w) +C Z Eap

P T

where C' denotes the relative weights of the first regularizer and
the second data-misfit terms. With the perceptron too, if we like
we can add a similar term—this is known as “weight decay” in
neural network terminology.

So we see that, as would be expected, the ranking perceptron
and ranking SVM minimize very similar error functions with
some slight differences: (1) SVM enforces a minimum margin
between differences, (2) In perceptron, error terms are weighted
by the (7., 1) term whereas for SVM, all have the same weight
of C, and (3) SVM has an additional regularizer term—in per-
ceptron, we have tried a version with weight decay but this did
not a cause a significant difference.
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