Turk J Elec Engin, VOL.9, NO.1 2001, © TUBITAK

Combining Multiple Representations for Pen-based
Handwritten Digit Recognition

Fevzi ALIMOGLU, Ethem ALPAYDIN*
Department of Computer Engineering
Bogazi¢i University,

TR-80815, Istanbul-TURKEY

Abstract

We investigate techniques to combine multiple representations of a handwritten digit to increase
classification accuracy without significantly increasing system complexity or recognition time. In pen-based
recognition, the input is the dynamic movement of the pentip over the pressure sensitive tablet. There
is also the image formed as a result of this movement. On a real-world database of handwritten digits
containing more than 11,000 handwritten digits, we notice that the two multi-layer perceptron (MLP)
based classifiers using these representations make errors on different patterns implying that a suitable
combination of the two would lead to higher accuracy. We implement and compare voting, mixture of
experts, stacking and cascading. Combining the two MLP classifiers we indeed get higher accuracy because
the two classifiers/representations fail on different patterns. We especially advocate multistage cascading

scheme where the second costlier image-based classifier is employed only in a small percentage of cases.

1. Introduction

Handwritten character recognition has attracted enormous scientific interest due to its evident practical
utility. On-line handwriting is important where keyboards are difficult to use, e.g., when the writer is mobile
and the device needs to be portable [1]. To achieve high recognition accuracy, many different classification
methods have been proposed using statistical, syntactical, or neural approaches. These different methods
need not use the same representation but may extract different features to integrate different types of
sensors. The usual approach is to choose the one classifier and the particular representation that performs
best, discarding the rest. However, it is generally the case that the sets of patterns misclassified by different
classifiers do not necessarily overlap, implying that classifiers to a certain extent complement each other.
Recently with the cost of computation and memory getting cheaper, it has been possible to build systems
that are composed of multiple classifiers [2].

The primary goal of this work is to construct a high-performance system that exploits the difference
between two different representations of the same handwritten digit. One representation is dynamic, that

* A previous version of this paper appeared in the Proceedings of the Fourth International Conference on Document Analysis
and Recognition, 1997, IEEE Computer Society Press. This work is supported by Tiubitak Grant EEEAG-143 and Bogazici
University Research Funds Grant 00A101D. Francesco Masulli of University of Genova supplied programs for tablet interfacing.
Taylan Cemgil solved some of our problems with tablet hardware. Fevzi Alimoglu is now with the Department of Cognitive
and Neural Systems, Boston University, USA.

Turk J Elec Engin, VOL.9, NO.1, 2001

is, the movement of the pen as the digit is written on a pressure-sensitive tablet. The other representation
is static, that is, the image generated as a result of the movement of the pen tip. Two different hand
movements for the same character may lead to similar images or different images of the same character
may be generated by similar hand movements. Therefore, combining the two representations may improve
recognition accuracy. We indeed noticed during our experiments that classifiers using each of the two
representations made mistakes for different samples and investigated ways to combine them efficiently.
This paper is organized as follows: In Section 2, we discuss data collection and preprocessing stages
for the dynamic and static representations as well as first results with the base classifiers. In Section 3,
we advocate the idea of combining multiple classifiers, propose a common notation and discuss in detail
and in a comparative manner five different techniques for combining multiple learners. Section 4 contains

experimental results on our handwritten digit database and we conclude in Section 5.

2. Data Collection and First Results

We use a WACOM PL-100V pressure sensitive tablet with an integrated LCD display and a cordless stylus
attached to the serial port of a PC. The tablet sends = and y tablet coordinates of the pen at fixed time
intervals of 100 miliseconds. We collect samples of ten handwritten digits from 44 writers. These writers are
asked to write 25 examples from each of the digits in random order inside boxes of 500 by 500 tablet pixel
resolution. The raw data captured from the tablet contains enormous variations in writing speed. Various

preprocessing methods for on-line handwriting were discussed by Guerfali and Plamondon [3].

From a handwritten digit sample, we generate two feature vectors: The dynamic representation is a
sequence of (x¢,y:) coordinates in time and the static representation is the image formed once the writing
of the digit is finished (Figure 1). To get the dynamic representation, the coordinate sequence received
from the tablet is first normalized for invariance to translations and scale distortions. It is then spatially
resampled to get constant length feature vectors and we get a sequence of points regularly spaced in arc
length, as opposed to the input sequence, which is regularly spaced in time. The static representation
differs from dynamic representation in the sense that it does not incorporate pen motion. Instead, it is
based on solely the image of a character as in off-line recognition tasks. To get the static representation,
we first use the scan conversion algorithm to create bitmaps from normalized on-line handwriting data. We
then blur and downsample the image to get invariance to small translations and decrease dimensionality.
This preprocessing done on the two-dimensional image to get the static representation is costlier than the
preprocessing done on the one-dimensional sequence to get the dynamic representation.

After preprocessing, we divide our database from 44 writers into one containing 30 writers and another
containing 14 writers. The first part is divided into three sets with 3,748 digits for training (TR), 1,873 for
cross-validation (CV) to finetune parameters and 1,873 for writer-dependent testing (WD). 3,498 examples
from 14 writers constitute the writer-independent test set (WI) and are used to test performance on writers
unseen during training which is the important measure. We have recently donated the database to the UCI

Repository under the name pendigits and it is available over the internet [4].

We choose multilayer perceptron (MLP) as the base classifier as it is simple and fast once it has been
trained. We optimize the feature vector sizes for both dynamic and static representations and finally settle
on a sequence of 8 points (16 dimensional vector) and an image size of 8 x 8 (64 dimensional vector). The

results of the two classifiers are given in Table 1.

ALIMOGLU, ALPAYDIN: Combining Multiple Representations for Pen-based. . .

RAW DATA

Normalization

Spatial Converting
resampling to bitmap

DYNAMIC
REPRESENTATION

Blurring

e

Downsampling

<

)

STATIC
REPRESENTATION

Figure 1. The stages of preprocessing to get the dynamic (pen-movements) and static (image) representations.

We test to see if the two classifiers using the two representations make correlated errors, i.e., fail on
different samples or not. In Table 2, error percentages on the sets are given for the two representations.
In the same table, error percentage of the cases misclassified by both of the classifiers is also given. It can
be seen there that though both classifiers have around 5% error on the writer independent test set, if we

know which one to use for any pattern, the error percentage can be reduced to less than 2%! Even less error

Turk J Elec Engin, VOL.9, NO.1, 2001

Table 1. Results with MLP on the two representations. Values are average and standard deviations over ten inde-
pendent runs. TR: Training set, CV: Cross-validation set, WD: Writer-dependent test set, WI: Writer-independent
test set, PS: Number of free parameters, EP: Number of training epochs.

Set || Dynamic MLP | Static MLP |

TR 98.98, 0.16 98.76, 0.36
CvV 98.33, 0.34 96.24, 0.26
WD 98.26, 0.31 95.73, 0.37
WI 95.26, 0.37 94.25, 0.25
PS 280 760

EP 15.20, 3.29 12.10, 3.90

Table 2. Error percentages of samples misclassified by the two classifiers and by both. These indicate that if we
have an ideal selection system to choose which classifier to use, error percentage on WI can be reduced to 1.70% and
maybe even less.

| Set || Dynamic MLP | Static MLP | Both |

TR 1.02 1.24 0.25
Ccv 1.67 3.76 0.46
WD 1.74 4.27 0.70
WI 4.74 5.75 1.70

may be possible by better integrating the two pieces of information than selecting one of the two classifier
outputs.

3. Multiple Classifiers

3.1. Introduction

The performance of a classifier may be finetuned to get the highest possible accuracy on a validation set
but this finetuning is a complex task and still there are patterns misclassified even by the best classifier
and these patterns may be correctly classified by some other classifier. Because learning is an ill-posed
problem, there is no algorithm that can converge to the optimal solution with finite data and each algorithm
(or representation) depending on the biases built into it, converges to a different solution and fails under
different circumstances. Thus by suitably combining these different alternative solutions, accuracy may be
improved. As there is no point in combining multiple classifiers that always make similar decisions, the aim
is to be able to find a set of classifiers who differ in their decisions to complement each other.

Combination approaches can be divided into two depending on the representational methodology: In
Uni-Representation, all classifiers use the same representation. Thus the classifiers themselves should be
different to cause them make different decisions. In Multi- Representation, different classifiers use different
representations of the same input. This is either due to using different sensors or different features extracted
from the same input data. In this work, we are interested in multi-representation where there are multiple

sources of information and it is desirable to use all of these data to extract more information and achieve
higher accuracy in classification. This is similar to multisensor fusion where the data from different sensors

are integrated.

The simplest approach is early integration by concatenating all data vectors and treating it as one large

ALIMOGLU, ALPAYDIN: Combining Multiple Representations for Pen-based. . .

vector from a single source. This does not seem theoretically appropriate as this corresponds to modelling
data as sampled from one multivariate joint probability distribution. Moreover, larger input dimensionalities
make the systems more complex and require larger samples for the estimators to be accurate. The sources
also may have different reliabilities which should be taken into account.

The approach we take is late integration by making separate decisions using different sources and
then combining the decisions. From an algorithmic point of view, there are two possibilities: The classifiers
may use the same technique, e.g., MLP. But care must be taken to get different final classifiers. There
are different ways by which this can be done: (i) They may use inputs in different representations, i.e.,
multi-representation, (ii) Training sets may be distinct, e.g., by bootstrapping, (iii) Learning may start from
different initial conditions, e.g., in gradient-descent, (iv) Other parameters may be different, e.g., number of
hidden units in a MLP, cost function minimized, etc. The different classifiers may also be based on different
techniques. For example, one of the classifiers can be statistical and one neural, or one may be programmed
as opposed to a trained system.

Orthogonal to these two dimensions, there are two architectural methodologies: In multiezpert meth-
ods, the classifiers work in parallel. All the classifiers are trained on all patterns and given a pattern, they
all give their decisions and a separate combiner computes the final decision using these. Examples are voting
(aka committees, ensembles, linear opinion pools), mixture of experts, and stacked generalization. Multistage
methods use a serial apprach where the next classifier is trained/consulted only for patterns rejected by the
previous classifier(s). We advocate multistage methods which suit well to multi-representation where earlier
classifiers use simple-to-extract features and handle a majority of the patterns; complex features are only
extracted for a small percentage without much increasing the overall complexity. Examples are boosting and
cascading.

The gain to be had from combining classifiers depends on how much the classifiers are correlated or
dependent. The multiexpert methods assume this whereas the multistage methods actively try to generate

such classifiers.
In the present article, we adopt multi-representation where we have two classifiers using the two

dynamic and static representations and the approaches that we examine are Voting, Mizture of Fxperts,

Stacked Generalization, Boosting and Cascading.

3.2. Notation

Let us say that we have m learners and n classes. We denote by d;; the posterior probability estimate
of learner j for class ¢ given the input. In this present work, we will consider the case where different d;
use different representations of the input denoted as x;. The same approaches can also be used in uni-
representation if there is only one source in which case all d; see the same input x. For now we ignore how
d;; are calculated and instead we concentrate on the ways to combine them to find r; the final estimate for

class i, given input x.

ri = f(dvi(21), d2i(22), - - . dmi(Tm)[1) (1)

f is the combining function with ¢ denoting its parameters. Assuming that r; estimates the posterior
probability of class i, and that the zero-one loss function is used, to minimize Bayesian risk, we choose the

class with the highest probability:

i = arg max 7; (2)

Turk J Elec Engin, VOL.9, NO.1, 2001

3.3. Voting

Voting is the simplest way to combine multiple classifiers. This is also known as committees, ensembles, or
linear opinion pools. It corresponds to taking a linear combination of the learners. First, each classifier is
separately and independently trained, e.g., to minimize the cross-entropy between output of learner j on
class 4, d;; and the desired output y;, using its own representation x; over all patterns indexed by p:

By == "y logd;i(a?), for all j. 3)
P 7

where y! =1 if x? € class ¢ and 0 otherwise. If we denote by 3; the weight of the vote of the jth classifier,
P = U;nzl B;, it is generally required that

V],ﬂjzoand iﬂj:l (4)
j=1
T, = fV (dli(x)a d2i(x); ceey dmi(x”ﬂla ﬂZa .. 7ﬂm) (5)

Z Bidji(z;) (6)

This is the combination method most worked on. Much research has been done on the uni-representation
case and those results carry over to the multi-representation as well. If each voter (classifier) has equal weight
B; = 1/m (i.e., we take the average), we call it simple voting. It has been shown by Hansen and Salamon
[5] that given independent classifiers with success probability higher than 1/2, by taking a majority vote,
success increases as the number of voting classifiers increases. Mani [6] has shown that in the case of simple
voting, variance decreases as the number of independent voters increase. It has been shown by Jacobs [7]
that m dependent experts are worth the same as k independent experts where k < m. Ali and Pazzani [§]
show that there is a substantial correlation between the amount of error reduction due to the use of multiple
models and the degree to which the errors made by individual models are correlated.

For the case of multi-representation, Benediktsson and Swain [9] propose to use consensus theory for
multisource remote sensing. They discuss choice of weights for linear opinion pools and also the logarithmic
opinion pool where weights become exponents and these work better than a statistical classifier using the
early-integrated case of concatenated input.

Xu et al. [10] discuss various ways in which the outputs of several classifiers are combined. To
compute the weights, they propose to use a belief measure or the Dempster-Schafer theory. Perrone [11]
gives a number of didactic examples that depict the advantage of voting. He also shows that for minimum
square error, when the learners are unbiased and uncorrelated, weights should be inversely proportional
to variances. Tumer and Ghosh [12] propose to use order statistics combiners as an alternative to linear
combiners that they show empirically to be superior.

Adapting what Perrone [11] stated for regression to classification, if we view each learner as a random

noise function added to the true class discriminant function and if these noise functions are uncorrelated with
zero mean then the averaging of the individual estimates is like averaging over the noise. In this sense, the

voting method is smoothing in the functional space and can be thought of as a regularizer with a smoothness

assumption on the true discriminant function.

ALIMOGLU, ALPAYDIN: Combining Multiple Representations for Pen-based. . .

Kittler et al. [2] analyze different schemes for combining classifiers using different representations by
taking the min, product, sum, max, or median of the posterior probabilities computed for each representation
and conclude that sum rule is the best. They give two applications to rule identity verification and
handwritten digit recognition.

All voting schemes can be seen as approximations under a Bayesian framework with weights approxi-
mating prior model probabilities and model decisions approximating model-conditional likelihoods [13] and
under certain circumstances, voting and Bayesian techniques will yield identical results [7]. The priors are
in turn modeled as distributions with hyperparameters and in the ideal case, one should integrate over the
whole model-parameter space. This approach is generally infeasible in practice as modeling the priors and
likelihoods analytically is not straightforward; Gibbs sampling is done to get a small number of models with
high priors.

It is also possible to use regression to compute the weights during voting by minimizing error on a
training set. Lagrange optimization can be used to enforce that weights sum up to one [11]. Or it can
be unconstrained and an intercept term may also be added. This is similar to stacking that we discuss in
Section 3.5.

3.4. Mixture of Experts

The original mixture of experts (ME) architecture [14, 15] is composed of local experts and there is a gating
network whose outputs define the expert weights conditioned on the input. For the multi-representation case,
we modify this architecture such that each expert sees one representation and the gating expert sees one of
the representations, all representations concatenated (possibly after some suitable dimensionality reduction)

or yet another different representation.

ri = fur (dii(x), doi(@2), . . oy dii(T)[0) (7)
= Zﬂj(fﬂl,wz,~~-,xm|¢)dji(ffj) (8)

where §;(z|¢) are the gating outputs. This method is like voting except that weights of votes are input
dependent, as given by the gating outputs. The training of dj; and (; are done in a coupled manner to

minimize:
E= logz Z Bj exp [Z y¥ log dji(x:?)} (9)
P J 7

This error equation forces experts to compete in order to increase the likelihood of the defined
normal mixture by preventing overlapping. For a given input, only one 3; is close to one and that expert
j is responsible from the giving the system’s output. Thus, during training we want to minimize the
distance between the required output and the output probabilities of expert j. Gating can thus be seen as
implementing a partitioning of the training set among experts which in a way is similar to training experts
with subsets of the training set as done by bootstrapping in voting schemes. The difference is that in ME
this partitioning is done automatically during learning as a function of locality in the input space and not a
priori at random.

Turk J Elec Engin, VOL.9, NO.1, 2001

3.5. Stacked Generalization

Stacked generalization is a technique proposed by Wolpert [16] that extends voting in that learners (called
level 0 generalizers) are not necessarily combined linearly. The combination is made by a combiner system
(called level 1 generalizer) that is also trained. We again generalize this architecture for multi-representation

where different level 0 generalizers use different input representations.
ri = fs (dii(z1), d2i(w2), . . ., dmi(zm)) (10)

fs can be any model and is not restricted to be a weighted sum as in voting or mixture of experts.

The training of dj; and f are done separately. f learns what the correct output is when d;; give
a certain output combination. Thus it needs to be trained on data unused in training the dj;. dj; are
independently trained as in Eq. (3) and the combiner fg is trained to minimize on a separate set; using

leave-one-out or k-fold cross-validation if a separate set does not exist:
E:—Znylogrf (11)
P i
where ¥ is given as in Eq. (10).

3.6. Boosting

Boosting [17] is a technique for constructing a classifier with small error rates from classifiers which are just
slightly better random. Unlike previously described methods, learners are trained serially. After training
the first learner, we train the second learner with the data on which the first fail making sure that the two
learners complement each other. A third learner is trained with the data on which the first two learners
disagree. In the recognition phase, the third learner is consulted only when the first two learners disagree.
In our multi-representation version, the two classifiers use distinct representations. The third classifier

may use a third representation, one of the two, or a concatenation of the first two representations.

r; = fB(c1, c2, c3) where ¢; = arg max dj;,j =1,2,3 (12)

cp ifep=co

c3 otherwise (13)

f(ei,e2,c3) = {

Because three separate sets are required to train the three learners, boosting requires large training

sets or many runs using k-fold cross-validation and is an expensive method. There is a recent version of
boosting called AdaBoost [18] which works with smaller datasets and can combine more than three learners

but its training strategy is not suitable to the scenario of two distinct representations we have.

3.7. Cascading

The main idea in cascading [19] is that a great percentage of the training samples can be handled by a
simple classifier or one that uses a simple feature representation. A complex classifier using a more expensive
classification rule or representation is used only for cases that cannot be handled by the simple classifier with
enough certainty. Thus the simple classifier handles a majority of the patterns and those that are rejected

by it are handled by the complex classifier.

ALIMOGLU, ALPAYDIN: Combining Multiple Representations for Pen-based. . .

Table 3. Results achieved using different techniques to combine the two pieces of static and dynamic representations.

| Technique || TR | Ccv | WD | WI | PS | EP |
Dynamic MLP || 98.98, 0.16 | 98.33, 0.34 | 98.26, 0.31 | 95.26, 0.37 | 280 15.20, 3.29
Static MLP 98.76, 0.36 | 96.24, 0.26 | 95.73, 0.37 | 94.25, 0.25 | 760 12.10, 3.90
Concat 99.86, 0.06 | 99.14, 0.10 | 98.67,0.27 | 97.03, 0.41 | 1,830 | 13.70, 2.67
Vote 99.55, 0.04 | 98.94, 0.12 | 98.41, 0.20 | 97.09, 0.33 | 1,040 | 27.30, 7.19
ME 99.74, 0.11 | 99.02, 0.27 | 98.78,0.25 | 96.81, 0.36 | 2,870 | 19.60, 7.63
Stacking 99.04, 0.13 | 98.98, 0.14 | 98.65, 0.25 | 96.73, 0.14 | 1,360 | 129.80, 15.02
Cascading 97.41, 0.42 | 96.33, 0.48 | 96.02, 0.57 | 96.41, 0.52 | 1,040 | 115.00, 15.95

The major problem is to decide when a pattern is covered by the simple classifier and thus should
be learned by dg, or is an exception and should be learned by the complex learner dx ; one can of course
envisage more than two stages starting from the simplest up to the most complex. We decide on this by
looking at the highest class posterior of dg and comparing it with a threshold #. If it is greater than 6,
we assume that it is covered by the dg, otherwise it requires more detailed analysis and is handled by dx .
During training, we first train dg and test it on a separate set and leave aside all patterns that are not
covered by dg; these constitute the training patterns for dx . During recognition, we first check dg. If the
highest posterior exceeds 0, x is covered by dg, otherwise it is covered by dx .

cs = arg max; dg; if max; dg; > 0

cx = arg max; dx; otherwise (14)

fe({dsi}i {dxi}i) = {

Pudil et al. [20] take into account costs of measurements and risks in a probabilistic context. They
derive conditions in terms of upper bounds of the higher-stage measurements for a multistage classifier to
give lower decision risk than a single classifier. Baram [21] shows that partial classification by rejecting

doubtful cases produces higher “benefit” values than full classification.

4. Results

For early integration, we combine the two pieces of knowledge by concatenating the two feature vectors to
obtain a combined feature vector and train a larger MLP with it. The input vector size is equal to 16+64=80
and leads to a larger MLP. We try different number of hidden units and see that the best is with 20 hidden
units. As expected, this has better performance than the individual classifiers (Table 3).

As the simplest way to late integrate, we take a simple vote on the two classifiers. This is as accurate
as concatenating and uses less parameters. We use a cooperative mixture of experts architecture where the
experts are the two MLP-based classifiers and where the gating is another MLP with 20 hidden units which
as input takes a concatenation of the two representations.

In stacked generalization, the level 0 classifiers are the two MLPs. As level 1 generalizer, we use
an MLP with 10 hidden units and this performs a little better than a linear combiner (equal to a voting
approach with trained unconstrained §; with an intercept). We use 2-fold cross-validation to train the level
0 and level 1 generalizers which makes this approach longer to train.

We could not implement boosting as we have quite a small number of patterns on which the two
MLPs do not agree, which is not sufficient to train a third one. In cascading, we use the dynamic MLP as
the simple classifier and the static image-based MLP as the complex one. This is because the preprocessing

Turk J Elec Engin, VOL.9, NO.1, 2001

required for the static MLP is time consuming and cascading is a way to avoid doing this for all patterns.
We again use 2-fold cross-validation to train the two classifiers with 6 = 0.99 where 30% are rejected by the
dynamic MLP and train the static MLP. When @ is less, success on writer dependent set is higher but there
are not enough patterns to train the static MLP and thus success on writer independent set is less.

Visual presentation of accuracy versus the number of free parameters for the writer independent test
set is given in Figure 2. We note that all combination methods are more accurate than single classifiers on

the writer independent test set showing that combining multiple representations does increase accuracy.

Memory Requirements vs. Writer Independent Test Accuracy

98
975 [- - e e e
Voting Concat
,,,,,,,,,,,, X ox o ME
a7 ‘ Stacking X
] <
8 Cascading
895 - - - - - D
2 \
g
& 96 [- - " T, T T T T T T Tttt Tttt s s s s s s s
]
@
og
]
S el - - - - Loo- ool Lo hoo ool Lo
o} 95.5 DynamicML‘I3
'g X
s/ "~~~ -~ -~ - - - - - - - - - - - - - - - - - - -
U5 - StaticmMLP ' T
. \
94
0 500 1000 1500 2000 2500 3000

Number of Parameters

Figure 2. Average accuracy on writer independent test set versus the number of parameters.

Concatenation of the two representations increase accuracy considerably but leads to a large network;
the 20 hidden units are completely connected to all 80 inputs. Late integration where there are two classifiers
lead to simpler networks, because inputs are smaller. Voting seems to be the best. Stacking is better than
voting on writer dependent set but worse on writer independent set, showing that it overfits the training
sample; the combination method learned for the 30 writers does not carry over to the 14 left out. Mixture
of experts is also successful but needs more parameters as the gating network sees the concatenated input;
we also did experiments where the gating network sees the dynamic representation only but those do not
generalize as well.

We think that cascading is the most promising approach among all as it leads to the simplest classifier.
Preprocessing the static representation is the costly part and by cascading we need this for only 31% of the

writer independent test images (14% of the writer dependent test set), leading to the fastest classifier.

10

ALIMOGLU, ALPAYDIN: Combining Multiple Representations for Pen-based. . .

5. Conclusions

The accuracy of the MLP classifiers using different representations can be increased by combining them.
With the MLP using the dynamic representation, we have around 5% error on the writer independent set.
The MLP using the static representation has around 6% error over the same set and seems to be worse than
dynamic MLP. Combining the two, error percentage decreases to 3%. Adding a worse classifier decreases the
error! This is because the two classifiers/representations fail on different patterns. According to our results,
the actual way combining is done is not statistically significant. The choice of the classifiers rather than the
choice of combination method is important. The greater the tendency to make correlated errors, the less
impressive are the error reductions. The best way to have independent classifiers is to train them on different
representations of the input thereby taking into account different data sources that provide complementary

data.
In multi-representation, we believe that a multistage method like cascading is more promising as it

allows getting rid of the costly preprocessing and feature extraction on some representations. For example
in our system, the most expensive processing is in generating the image for the static representation and by
cascading, we do not need to compute this for 70% of the test images. Multiexpert methods like voting and

stacking always consult all classifiers and thus are slower.

References

[1] Schomaker, L. R. B. “From handwriting analysis to pen-computer applications,” IEE Electronics and Commu-
nication Engineering Journal, Vol. 10, No. 3, pp. 93-102, 1998.

[2] Kittler, J., M. Hatef, R. P. W. Duin, J. Matas. “On combining classifiers,” IEEE Trans. on PAMI, Vol. 20, No.
3, pp. 226-239, 1998.

[3] Guerfali, W., and R. Plamondon, “Normalizing and Restoring On-line Handwriting,” Pattern Recognition, Vol.
26, No. 3, pp. 419-431, 1993.

[4 C. J. Merz, P. M. Murphy (1998). UCI Repository of Machine Learning Databases.
http://www.ics.uci.edu/ ~mlearn/MLRepository.html.

[5] Hansen, L. K., Salamon, P. “Neural Network Ensembles,” IEEE Trans. on PAMI, Vol. 12, No. 10, pp. 993-1001,
1990.

[6] Mani, G. “Lowering Variance of Decisions by using Artificial Neural Network Ensembles,” Neural Computation,
Vol. 3, pp. 484-486, 1991.

[7] Jacobs, R. A. “Methods for Combining Experts’ Probability Assessments,” Neural Computation, Vol. 7, pp.
867-888, 1995.

[8] Ali, K.M., Pazzani, M.J. Error Reduction through Learning Multiple Descriptions, TR 95-39, Dept. of ICS, Univ.
of California, Irvine, 1995.

[9] Benediktsson, J. A., Swain, P. H. “Consensus Theoretic Classification Methods,” IEEE Trans. on SMC, Vol. 22,
pp. 688-704, 1992.

[10] Xu, L., Krzyzak, A., Suen, C. Y. “Methods of Combining Multiple Classifiers and Their Applications to
Handwriting Recognition,” IEEE Trans. on SMC, Vol. 22, pp. 418-435, 1992.

11

Turk J Elec Engin, VOL.9, NO.1, 2001

(11]

(12]

(13]

(18]

(19]

20]

(21]

12

Perrone, M. P. Improving Regression Estimation: Averaging Methods for Variance Reduction with Ezxtensions to

General Conver Measure Optimization, Ph. D. Thesis, Department of Physics, Brown University, 1993.

Tumer, K., Ghosh, J. Theoretical Foundations of Linear and Order Statistics Combiners for Neural Pattern
Classifiers, Dept. of ECE, Univ. of Texas, Austin, 1995.

Alpaydin, E. “Multiple Networks for Function Learning,” IEEFE Intl. Conf. on Neural Networks, San Francisco:
CA, Vol. I, pp. 9-14, March, 1993.

Jacobs, R. A., M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive Mixtures of Local Experts,” Neural
Computation, Vol. 3, pp. 79-87, 1991.

Alpaydin, E., and M. I. Jordan, “Local Linear Perceptrons for Classification,” IEEE Trans. on Neural Networks,
Vol. 7, No. 3, pp. 788-792, 1996.

Wolpert, D. H. “Stacked Generalization,” Neural Networks, Vol. 5, pp. 241-259, 1992.

Drucker, H., Cortes, C., Jackel, L.D., LeCun, Y., and Vapnik, V. “Boosting and Other Ensemble Methods,”
Neural Computation, Vol. 6, No. 6, pp. 1289-1301, 1994.

Freund, Y., and Schapire, R. E. (1996). Experiments with a New Boosting Algorithm. Proceedings of the

Thirteenth International Conference on Machine Learning, 148-156.
Alpaydin, E., and C. Kaynak, “Cascading Classifiers,” Kybernetika, Vol. 34, No. 4, pp. 369-374, 1998.

Pudil, P.,; Novovicovd, J., Blaha, S., Kittler, J., “Multistage Pattern Recognition with Reject Option,” 11th
IAPR International Conference on Pattern Recognition, Vol. II, IEEE Computer Society Press, 92-95, 1992.

Baram, Y. “Partial Classification: The Benefit of Deferred Decision,” IEEE Trans. on PAMI, Vol. 20, No. 6,
769776, 1998.

