ELSEVIER

Available online at www.sciencedirect.com

sc.ENcE@D.nECT@

Pattern Recognition Letters 26 (2005) 2206-2214

Pattern Recognition
Letters

www.elsevier.com/locate/patrec

Cost-conscious classifier ensembles

Cigdem Demir *', Ethem Alpaydin

Department of Computer Engineering, Bogazici University, Istanbul TR-34342, Turkey

Received 6 July 2004; received in revised form 16 March 2005
Available online 23 May 2005

Communicated by K. Tumer

Abstract

Ensemble methods improve the classification accuracy at the expense of testing complexity, resulting in increased
computational costs in real-world applications. Developing a utility-based framework, we construct two novel cost-con-
scious ensembles; the first one determines a subset of classifiers and the second dynamically selects a single classifier.
Both ensembles successfully switch between classifiers according to the accuracy-cost trade-off of an application.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Ensemble techniques; Utility theory; Computational cost; Voting; Selection

1. Introduction

Different types of costs in machine learning have
been extensively investigated to date (Turney,
2000). Among them are the cost of feature extrac-
tion, the cost of misclassification errors, and the cost
of computation. The cost of feature extraction arises
from the effort of sensing data and obtaining a fea-
ture set from the data; an example is the cost of a

* Corresponding author. Fax: +1 518 276 4033.
E-mail addresses: demir@cs.rpi.edu (C. Demir), alpaydin@
boun.edu.tr (E. Alpaydin).
! Present address: Department of Computer Science, Rens-
selaer Polytechnic Institute, NY 12180, USA.

blood test in medical diagnosis (Turney, 1995).
The cost of misclassification errors stems from differ-
ent levels of losses observed in the case of different
decisions as defined by a loss matrix (Duda et al.,
2001). To deal with this type of cost, learning algo-
rithms take into account the loss due to every possi-
ble misclassification error as to minimize the overall
expected risk. For example, the misclassification
error cost may be incorporated into decision trees
(Breiman et al., 1984). The cost of computation in-
cludes the “dynamic cost” due to the time and space
complexity that incurs during training and testing a
classifier (Turney, 2000). The time and space com-
plexity depends on the complexity of the classifier
and, in turn, on the dimension of the feature set.

0167-8655/$ - see front matter © 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.patrec.2005.03.028

mailto:demir@cs.rpi.edu
mailto:alpaydin@ boun.edu.tr
mailto:alpaydin@ boun.edu.tr

C. Demir, E. Alpaydin | Pattern Recognition Letters 26 (2005) 2206-2214 2207

A real-world application typically requires test-
ing its trained system for numerous instances.
Although testing a single instance requires smaller
amounts of time and space than training the entire
system, the total amount of time and space con-
sumed during the use of the system with numerous
tests is critically important in real-world applica-
tions, especially when (i) the total power con-
sumption is restricted and/or (ii) the real-time
response during testing an instance is required to
be sufficiently fast. For example, it is important
to increase the battery charge period of a personal
digital assistant (PDA) by using minimal amount
of space and time for optical character recogni-
tion. As another example, in the case of speech-
to-speech translation, the response time for testing
each instance should be short enough to provide
continuous multi-lingual dialog.

In machine learning, a powerful technique to
increase the classification accuracy is to combine
a set of classifiers (Alpaydin, 2004). Among such
ensemble techniques are voting (Kittler et al.,
1998), stacked generalization (Wolpert, 1992),
and mixture of experts (Jacobs et al., 1991).
Although these approaches successfully increase
the accuracy, the use of multiple classifiers leads
to increased testing complexity with significantly
increased power consumption and response time.
Thus, the trade-off between the classification accu-
racy and the cost of computation needs to be care-
fully considered in real-world applications.

In this paper, we present a framework based on
utility theory that takes into account the computa-
tional cost of each classifier while combining
multiple classifiers to increase the accuracy. Using
this framework, we construct two cost-conscious
ensemble algorithms that evaluate the importance
the application attaches to the accuracy at the cost
of increased testing complexity. The first algorithm
determines a subset of classifiers that leads to the
highest expected utility for a given application.
The second one dynamically selects the classifier
that yields the highest expected utility for the clas-
sification of a given instance based on its difficulty
level. Our experiments demonstrate that the pro-
posed algorithms successfully switch between the
classifiers according to the trade-off between the
accuracy and the testing cost of an application.

2. Utility-based framework

Decision-making requires selecting an action A;
among several alternatives when the consequences
of each action are not exactly known (Lindley,
1971). The consequences of an action depend on
the state of nature Cj taking place after the action
is selected. Therefore, the actual state of nature
cannot be known a priori to selecting the action.
However, there may be an input vector x that is
used to calculate the probability P(Cy|x). Decision
has to be made in favor of the action with the high-
est expected utility. For the input vector x, the
expected utility of selecting an action 4; is defined
as follows, with u(Cy, A;) being the utility (negative
risk) of taking the action 4; when the state of
nature is Cy.

A |X ZP Ck|x A (Ck7) (1)

For the classification problem with multiple classi-
fiers, we adapt Eq. (1) to select which classifier(s)
to use as follows. In the equation, we consider A;
as the classifier and Cj, as the class that an instance
can belong to. We also make use of the utility
function to incorporate the cost of testing an
instance into the classification accuracy resulting
from this testing. For that, we define the utility
function as u(Cy, A;) = accuracy(Cy, A;) — o - cost
(Ci, A;), where accuracy(Cy, 4;) and cost(Cy, A4;)
are the accuracy and the testing cost of the classi-
fier 4; when this classifier assigns an instance to
class C; and « indicates the importance of the test-
ing cost in a given application. Therefore, here, the
decision-making corresponds to selecting the clas-
sifier that leads to the highest expected utility. In a
real-world application, the choice of « depends on
the physical parameters of the application. For
example, the available maximum power and/or
the allowed longest response time set a lower
bound for «, whereas the required reliability of
the application sets an upper bound for «. The
Akaike information criterion (Akaike, 1974) and
minimum description length (Hansen and Yu,
2001) are similar to the utility criterion adopted
in this work, with the number of free parameters
used as the cost of computation. Although these

2208 C. Demir, E. Alpaydin | Pattern Recognition Letters 26 (2005) 2206-2214

criteria are used in the evaluation of different indi-
vidual learning models, the use of such criteria has,
however, not previously been demonstrated in an
ensemble algorithm (neither in a model combina-
tion algorithm nor in a dynamic model selection
algorithm).

We use 0/1 loss function for accuracy(Cy, 4,).
It is possible to generalize this accuracy using an
arbitrary loss function that allows for different
gains and losses for different correct classifications
and misclassifications. In this work, a classifier has
a fixed testing cost regardless of the class which it
assigns an instance to. Therefore, for classifier 4,,
cost(Cy, 4;) is the same for each class Cy. It is also
possible to generalize the cost to include also the
cost of extracting a representation; if the extrac-
tion cost is fixed, it can be included as an additive
constant in the cost function. Using 0/1 loss func-
tion and the same cost function for a single classi-
fier, the expected utility of classifying the instance
x by the classifier A4; is defined as

EU(A,|X) = P(Ccorrectclass |.X,',A,-) — o+ COSt; (2)

where cost; indicates the cost of classifying an
unlabeled instance by the classifier 4; and
P(Ceorrectclass| x> 4;) 1s the probability that the
classifier 4; would generate for the correct class
if it were used.

Given a data set X = {x'}" |, the expected util-
ity of using the classifier 4; for the classification
of the entire data set is estimated as follows:

N t
@(A,|X) _ Et:lEU(Ai|x)
N
o Z?]:]P(Ccorrect class |xt» Az)
B N

— o - COSt;

(3)

3. Utility-based voting

The classical ensemble algorithms combine the
decisions of the classifiers that improve the classi-
fication accuracy neglecting the concomitant in-
crease in the cost of testing instances with all
these classifiers. In this work, we introduce a vot-
ing algorithm that uses the decision of a classifier

only if the improvement in the accuracy resulting
from using this additional classifier compensates
for the additional cost that this classifier intro-
duces. We use the expected utility to quantify such
a compensation.

Our algorithm starts with the single classifier
that yields the highest expected utility (calculated
by Eq. (3)) and incrementally adds a classifier
one at a time. This additional classifier is selected
such that the subsequent subset of selected classifi-
ers leads to the highest expected utility (calculated
by Eq. (4) below). Our algorithm terminates if no
additional classifier improves the expected utility.
This is a greedy algorithm and, like all greedy algo-
rithms, it does not guarantee to yield the best pos-
sible subset of the classifiers. However, it is O(L?)
time, L being the number of the classifiers, where
there are 2* possible subsets.

EU (4, ..., Au|X)
_ Zivzlp(ccorrectclass|xt7A07 N 7Am)

— 00+ COSty, . 4, @

In Eq (4)a P(Ccorrect class|xta AO, .- ~aAm) is the prOb'
ability of the correct classification of the instance
x" when the decisions of the classifiers Ao, ..., 4,,
are combined and cost,, 4, is the testing cost of
using these classifiers plus the cost of combining
them. Note that there is no extra combination cost
in voting; if we were to use a combination scheme
like stacking, there would also be the cost of the
combiner.

In both Egs. (3) and (4), the cost of using a sin-
gle classifier and a subset of classifiers is known in
advance of testing. On the other hand, the proba-
bility of correct classification using either a single
classifier or a subset of classifiers cannot be known
in advance. To estimate it, consecutive to training
a classifier 4;, we calculate), P(Ceorrectclass|X', 4:)/
N by using the trained classifier on a separate val-
idation data set that is not used during training
and use the calculated value in Eq. (3) for the clas-
sification of further instances. Likewise, we calcu-
late the value of) P(Cecorrectelass|¥’'s 4oy - - - s Am) /N
using the trained classifiers Ay, ..., 4,, on separate
validation data sets and use the calculated value in

Eq. (4).

C. Demir, E. Alpaydin | Pattern Recognition Letters 26 (2005) 2206-2214 2209

4. Utility-based classifier selection

The algorithm defined in Section 3 works well
for the data sets that consist of similar instances.
This algorithm determines a subset of classifiers
and uses this subset in the classification of the
entire data set regardless of the different difficulty
levels of its instances. Our experiments reveal that
most of the time, only a single classifier is sufficient
to classify an instance correctly. However, the type
of the single classifier varies for different instances.
Our second algorithm selects such a single classi-
fier for the classification of a given instance. It
aims to use simpler and cheaper classifiers for sim-
pler instances, and to use more complex and prob-
ably more expensive classifiers for more difficult
ones; this would decrease the overall testing cost
without significantly decreasing the accuracy. For
a given instance, this algorithm selects the classifier
that yields the highest expected utility (calculated
by Eq (2)) In Eq (2), P(Ccorrectclass‘xyAi) cannot
be known in advance. Hence, we must estimate
this probability before selecting a classifier and cal-
culate the expected utility of each classifier using
this estimated probability.

To do so, for each classifier, we use an estimator
that outputs a probability value for a given
instance. This estimator is trained to learn these
probability values from the inputs of a separate
validation data set that is not used during training
the classifiers. New output values of this separate
data set are formed as follows: After learning the
parameters of a classifier, each validation instance
is tested with the classifier and the probability gen-
erated for the correct class of the instance is used
as the new output value.? This reduces the number
of the outputs from the number of classes to 1 and,
thus, reduces the complexity of an estimator com-
pared to its corresponding classifier. Moreover,
using simpler estimators further reduces the com-
plexity. If the estimators were not cheaper than

2 For example, in multilayer perceptrons, the calculated
output of each node in the output layer is used as the
probability of the corresponding class of this node; in multi-
layer perceptrons, the actual output of the node corresponding
to the correct class is 1 and the actual output values of the other
nodes are 0.

their corresponding classifiers, there would be no
point in using them.

We further decrease the additional cost that the
estimators introduce by using the estimators in
ascending order of the complexity of their corre-
sponding classifiers. We start with the estimator
that belongs to the cheapest classifier and calculate
its expected utility. For the next classifier, we com-
pute its expected utility with the probability value
of 1 without using its estimator. If even this max-
imum probability cannot improve the highest
expected utility computed so far, the algorithm
terminates and uses the classifier with the highest
expected utility. Otherwise, the estimator of this
classifier is used and its expected utility is calcu-
lated. For a single instance, the total cost of the
algorithm is the sum of the costs of the estimators
that have been used, and the cost of the selected
classifier.

There are other dynamic selection algorithms
available in the literature; these algorithms choose
the models to optimize the accuracy-based criteria
(Giacinto and Roli, 2000; Woods et al., 1997). Dif-
ferent than these algorithms, our dynamic selec-
tion algorithm chooses models based on a utility
criterion to maximize the accuracy while minimiz-
ing the computational cost. To the best of our
knowledge, this is the first of its kind that consid-
ers the overall computational cost in the dynamic
classifier selection.

5. Experiments

We conduct the experiments on a data set of a
real-world application. Pendigits is the prepro-
cessed data set of handwritten digits collected from
44 different people on a touch-sensitive WACOM
tablet (Alimoglu and Alpaydin, 1997). For the data
sets on which the classifiers and the estimators are
trained, we use 3748 and 1873 handwritten digits
taken from 30 people, respectively. For the
writer-dependent test set, we use the remaining
1873 handwritten digits taken from the same 30
people. For the writer-independent test set, we
use 3498 handwritten digits taken from the remain-
ing 14 people. This data set is available at the UCI
repository (Blake and Merz, 1998).

2210 C. Demir, E. Alpaydin | Pattern Recognition Letters 26 (2005) 2206-2214

Table 1

A list of base classifiers and their representations along with their testing costs, average accuracy and the standard deviation of the

accuracy for 10 different runs

Representation-classifier Cost Accuracy

Training (classifiers) Training (estimators) Dep. test Indep. test
Counter4-mip4 104 822+ 1.0 80.7+ 1.1 81.6+ 1.0 79.0+ 1.7
Dynamic-lp 160 97.8+0.4 96.0£0.2 96.5+0.4 93.0%£0.2
Counter8-Ip 640 99.1£0.0 95.6£0.0 952£0.0 92.7+0.1
Counter8-mip20 1480 100.0 £ 0.0 95.7%£0.2 95.6£0.3 93904
Static-mip32 8512 100.0 £ 0.0 95.7+£0.2 95.6£0.3 94.4+0.2

“Ip” is the linear perceptron and “mip4” is the multilayer perceptron with 4 hidden units.

We use four different representations for this
data set. The dynamic representation is a sequence
of eight temporally equidistant (x,y) coordinates
of the pen stroke; it has 16 dimensions. The static
representation is a 16 X 16 bitmap image generated
from the pen strokes. To obtain the counter4 rep-
resentation, we put a grid of 4 x4 on this bitmap
image, and the number of black pixels in each grid
entry is used as a feature in the new feature set.
The counter8 representation is obtained similarly;
we use a grid of 8 x 8 instead of the grid of 4 x 4.
For these representations, we use linear percep-
trons (LP) and multilayer perceptrons (MLP) as
the classifiers. After experimenting with various
classifiers for each representation, we select the
classifiers that yield the most accurate results with
their testing complexities falling in an acceptable
range. In our experiments, we express the testing
cost as the big-O values of the classifiers. These
values are the number of multiplications used in
testing and the number of weights (free para-
meters) in a perceptron. A linear perceptron with
d inputs and K classes is O((d + 1) x K), and a mul-
tilayer perceptron with d inputs, H hidden units,
and K classes is O((d + 1) x H + (H + 1) X K).

In Table 1, we present a list of the base classifiers
and their representations. For example, the first
classifier is a multilayer perceptron with four
hidden units (mlp4) and uses the counter4 represen-
tation. In this table, for each classifier, we also
provide the average accuracy and its standard devi-
ation of the classification for 10 runs and the testing
cost as explained in the previous paragraph.

In Table 2, we report the subsets of the classifi-
ers and the selection frequencies of these subsets
for different exemplary o values in different orders.

When the testing cost has no effect on the selection
of the classifiers (i.e., « = 0), the most expensive
and the most accurate classifier (static-mlp32) is
always used. As the importance of the testing cost
increases (i.e., as « increases), our voting algorithm
never selects the classifier static-mlp32 and it starts
selecting cheaper and less accurate classifiers such
as dynamic-Ip. When o = 0.3, the cheapest classifier
counter4-mip4 is used 90% of the time. As the test-
ing cost becomes too important (x > 0.3), the clas-
sifier counter4-mlip4 is always selected.

In our selection algorithm, we use linear per-
ceptrons for the estimators. Here, we consider
learning the parameters of the estimators as a
regression problem. Since the output dimension
of each estimator is 1 and a linear perceptron is

Table 2

The subset of the classifiers selected by our voting algorithm
and their selection frequencies for 10 different runs, for different
values of «

o Selected models

0.000 dynamic-Ip + static-mip32 (60%)
dynamic-Ip + static-mip32 + counter8-Ip (10%)
counter8-mlp20 + dynamic-lp + static-mip32
+ counter4-mip4 (10%)
static-mip32 + dynamic-Ip (20%)

0.001 dynamic-Ip (10%)
dynamic-Ip + counter8-Ip (60%)
dynamic-Ip + counter8-Ip + counter4-mip4 (30%)

0.005 dynamic-Ip (70%)

dynamic-Ip + counter4-mip4 (30%)
0.010 dynamic-Ip (100%)
0.300 counter4-mlp4 (90%)

dynamic-Ip (10%)

C. Demir, E. Alpaydin | Pattern Recognition Letters 26 (2005) 2206-2214 2211

used, the additional cost of using an estimator is
equal to the number of dimensions of the corre-
sponding feature set. In Fig. 1, we present the
selection frequency of each classifier reported by
our selection algorithm as a function of o. To
reveal the significance of o in different orders, we
use its logarithm in this figure. This figure demon-
strates that the most expensive model (static-
mlp32) is never used when o« > 0. For 0 <o < 0.1
(loga < —1), our algorithm selects a single classi-
fier among the classifiers dynamic-lp, counter8-Ip,
and counter8-mip20. As the importance of the
testing cost increases, the algorithm selects the
classifier dynamic-Ip with higher frequencies. When
o~ 0.1 (loga = —1), our algorithm starts select-
ing the least expensive and the least accurate
classifier (counter4-mlip4). These results are ob-
tained on the writer independent test sets for
10 different runs. The results obtained on the train-
ing sets and the writer dependent test set are
similar. However, due to the limited space, we
only provide the results obtained on the writer
independent test set which is considered as the real
test set.

In our experiments, we use 2/3 and 1/3 of the
training samples for training the classifiers and

1001 e T -~
e N
90+ L7 N
7z e \
80 e \
S 70t - - —&— Counter4 -mip4
g - - - = - Dynamic -Ip
g eor e Counter8 -Ip
o —— Counter8 -mip20
S 50¢ —o— Static -mip32
il
5 40}
@
$ 30}
ool
101
0 -
-3 -2.5 -2 -1.5 —1 -0.5
log (ct)

Fig. 1. The selection frequency of each classifier presented as a
function of « on the writer independent test set.

estimators, respectively. To analyze the sensitivity
of the estimator to the size of its training set, we
use different-sized portions of the training set to
train the estimators and the rest of the training
set to train the classifiers. As observed in Fig. 2,
increasing the size of the training set of the estima-
tors (i.e., decreasing the size of the training set
of the classifiers) results in decreasing the classifi-
ers’ performance. When the size of data used to
train estimators increase, their performances first
increase (since more amount of data improves
their generalization ability) and then decrease
(since the estimators estimate the accuracy of the
classifiers which degrade with less remaining train-
ing data).

In Table 3, we report the average utility values
and their standard deviations computed using the
base classifiers, our two algorithms (vote-utility
and selection), and three other ensemble tech-
niques (vote-all, vote-max, and boosting®). In this
table, the utility values are computed as accu-
racy — o - cost. This table demonstrates that when
the testing cost has no effect, or, equivalently, the
utility is simply equal to the accuracy (i.e., when
o =0), all classical ensemble techniques (vote-all,
vote-max, and boosting) and our algorithms are
more accurate than the base classifiers indicating
the advantage of ensemble methods. Although
the classical ensemble techniques use all classifiers,
vote-utility uses a few and selection uses only one.
When o >0, our voting algorithm (vote-utility)
never leads to a lower utility value than the base
classifiers and the classical ensemble methods.
Our selection algorithm yields the best results
when 0<a<0.01 because this algorithm can
potentially use different models in this range of o,
as our experimental observations reveal. The
larger o values forces our selection algorithm to
select the same single classifier; this classifier is

3 Vote-all averages the posterior probabilities computed by
the individual classifiers for each class and uses this average
in its decision. Vote-max selects the classifier that yields the
maximum posterior probability for any class and uses the
decision of this classifier (Kittler et al., 1998). Boosting takes a
weighted vote where weights are taken proportional to model
accuracies; in this work, the weights are calculated by using the
algorithm described in (Kuncheva et al., 2002).

2212 C. Demir, E. Alpaydin | Pattern Recognition Letters 26 (2005) 2206-2214

Classifier performance

o
[

Accuracy

°
° 0y
N o

0.65

0 1000 2000 3000 4000 5000
Training set size for estimators

Estimator performance

17 —a— Counter4 -mip4
--- Dynamic -Ip
0.95¢} v Counter8 -Ip

—— Counter8 -mip20
—o— Static -mip32

0 1000 2000 3000 4000 5000
Training set size for estimators

Fig. 2. The dependency of the classifier and estimator accuracies (for the writer independent test set) on the size of the training set that

is used to train the estimators.

Table 3

The average utility values and their standard deviations calculated using the base classifiers, our voting and selection algorithms, and
the other three ensemble techniques on the writer independent test sets

o 0.000 0.001 0.005 0.010 0.300

Counter4-mip4 79.0%1.7 789+ 1.7 78.4 £ 1.7 779 £ 1.7 47.8%1.7
Dynamic-Ip 93.0+0.2 92.8£0.2 922+£0.2 91.4£0.2 45.0£0.2
Counter8-Ip 92.7+0.1 92.1£0.1 89.5%0.1 86.3+0.1 —-99.3 0.1
Counter8-milp20 93.9+04 924104 865t 14 79.1£04 -350.1£04
Static-mlp32 94.4+0.2 859+0.2 51.9+0.2 9.3%0.2 —2459.2£0.2
Vote-all 96.3+0.2 854%0.2 41.8+£0.2 —12.7£0.2 —3172.5£0.2
Vote-max 95.6£0.6 84.7+0.6 41.1£0.6 —13.4£0.6 —3173.2£0.6
Boosting 96.1+£0.1 85210.1 41.6 £0.1 —129+£0.1 —3172.7£0.1
Vote-utility 958+ 0.5 942+£0.38 923£03 91.4£0.2 47.8%1.6
Selection 95.2%0.1 94.3+0.2 92503 91.1+0.3 38.5%£0.5

dynamic-lp for 0.01 <o <0.3, and counter4-mip4
for o = 0.3. Although our selection algorithm se-
lects this single model correctly as shown in Fig.
1, the cost of the estimator used lowers the utility
values. Thus, our selection algorithm works well
when the importance of cost is not so high such
that one single classifier does not dominate over
all of the classifiers. In a real-world application,
since the physical constraints of the application
such as the available maximum power and the al-
lowed longest response time in conjunction with
the required accuracy set an o range, the success
of the utility-based voting and selection algorithms
will vary for different applications requiring differ-
ent o ranges.

In Table 4, we present the computational times
for the classification of the samples in the writer
independent test set (in milliseconds). These results
are obtained on a computer with a 1600 MHz Pen-
tium M processor and 512 MB of RAM. In this
table, it is observed that while the base classifiers
and classical ensemble methods (vote-all, vote-
max, and boosting) use the same amount of com-
putational time regardless of the value of « (i.e.,
the importance of the cost), our proposed algo-
rithms use less and less time with the increasing
importance of the computational cost in an appli-
cation. These proposed algorithms choose the
models in accordance with their individual contri-
bution to the computational cost and the value of

C. Demir, E. Alpaydin | Pattern Recognition Letters 26 (2005) 2206-2214 2213

Table 4

The average and the standard deviation of the computational times for the classification of the samples in the writer independent test

set (in milliseconds)

o 0.000 0.001 0.005 0.010 0.300
Counter4-mip4 13.0£4.38 13.0£4.38 13.0£48 13.0£4.38 13.0£4.38
Dynamic-Ip 13.0£438 13.0+£48 13.0£48 13.0£4.38 13.0+£48
Counter§-Ip 33.1+48 33.1+48 33.1£48 33.1+48 33.1+48
Counter8-mip20 80.1+0.3 80.1+£0.3 80.1£0.3 80.1+0.3 80.1£0.3
Static-mip32 381.5+£3.0 381.5+3.0 381.5+£3.0 381.5+£3.0 381.5+£3.0
Vote-all 528.1+12.8 528.1+£12.8 528.1+12.8 528.1 £12.8 528.1 £12.8
Vote-max 527.8£12.3 527.8£12.3 527.8+12.3 527.8%+123 5278123
Boosting 531.8 £ 11.7 531.8+11.7 531.8+11.7 531.8 £ 11.7 531.8 £ 11.7
Vote-utility 417.4 £32.7 57.0+£84 23.0£10.6 18.1 £6.4 16.0£5.2
Selection 156.4 £ 8.5 44.1£5.1 250£53 23.0£4.38 17.1£49

o such that the overall computational cost is
reduced given the importance of the cost.

6. Conclusion

This work introduces a utility-based framework
to incorporate the cost of computation into multi-
classifier classification problems. In this work, we
present two novel ensemble techniques, one for
determining a subset of classifiers and the other
for dynamically selecting a single classifier to max-
imize the expected utility. The experiments on a
data set of handwritten digits demonstrate that
our algorithms lead to higher utility values by
switching to different types of classifiers in accor-
dance with the importance of the testing cost.

One future research direction is to test our algo-
rithms on different kinds of data sets including
different classifiers. In classifier combination, it is
also possible to use a different combination scheme
such as stacking instead of voting. This allows
combining models in a nonlinear way, but it has
the disadvantage of introducing additional cost.
Another possibility is to include the cost of
extracting a representation.

Acknowledgement
This work has been supported by the Turkish

Academy of Sciences, in the framework of the
Young Scientist Award Program (EA-TUBA-GE-

BIP/2001-1-1) and Bogazigi University Scientific
Research Project 02A104D.

References

Akaike, H., 1974. A new look at the statistical model
identification. IEEE Trans. Automat. Contr. 19, 716-723.

Alimoglu, F., Alpaydin, E., 1997. Combining multiple repre-
sentations and classifiers for pen-based handwritten digit
recognition. ICDAR1997, Ulm.

Alpaydin, E., 2004. Introduction to Machine Learning. The
MIT Press, Cambridge, MA.

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 1984.
Classification and Regression Trees. Wadsworth,
California.

Blake, C.L., Merz, C.J., 1998. UCI Repository of machine
learning databases. Available from: http://www.ics.uci.edu/
~mlearn/MLRepository.html.

Duda, O.R., Hart, E.P., Stork, G.D., 2001. Pattern Classifica-
tion. Wiley-Interscience, New York.

Giacinto, G., Roli, F., 2000. A theoretical framework for
dynamic classifier selection. 15th Internat. Conf. Pattern
Recognition, vol. 2. IEEE Press, pp. 8-11.

Hansen, M.H., Yu, B., 2001. Model Selection and the principle
of minimum description length. J. Amer. Statist. Assoc. 96,
746-774.

Jacobs, R.A., Jordan, M.1., Nowlan, S.J., Hinton, G.E., 1991.
Adaptive mixtures of local experts. Neural Comput. 3, 79—
87.

Kittler, J., Hatef, M., Duin, R.P.W., Matas, J., 1998. On
combining classifiers. IEEE Trans. Pattern Anal. 20, 226
239.

Kuncheva, L.I., Skurichina, M., Duin, R.P.W., 2002. An
experimental study on diversity for bagging and boosting
with linear classifiers. Inform. Fusion 3, 245-258.

Lindley, D.V., 1971. Decision Making. Wiley-Interscience, New
York.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

2214 C. Demir, E. Alpaydin | Pattern Recognition Letters 26 (2005) 2206-2214

Turney, P.D., 1995. Cost-sensitive classification: Empirical
evaluation of a hybrid genetic decision tree induction
algorithm. J. Artificial Intelligence Res. 2, 369-409.

Turney, P.D., 2000. Types of cost in inductive concept learning.
Workshop on Cost-Sensitive Learning, ICML2000, Stan-
ford, pp. 15-21.

Wolpert, D.H, 1992. Stacked generalization. Neural Networks
5, 241-259.

Woods, K., Kegelmeyer, W.P., Bowyer, K., 1997. Combination
of multiple classifiers using local accuracy estimators. IEEE
Trans. Pattern Anal. 19, 405-410.

	Cost-conscious classifier ensembles
	Introduction
	Utility-based framework
	Utility-based voting
	Utility-based classifier selection
	Experiments
	Conclusion
	Acknowledgement
	References

