
Pattern Recognition Letters 26 (2005) 2206–2214

www.elsevier.com/locate/patrec
Cost-conscious classifier ensembles

Cigdem Demir *,1, Ethem Alpaydin

Department of Computer Engineering, Bogazici University, Istanbul TR-34342, Turkey

Received 6 July 2004; received in revised form 16 March 2005

Available online 23 May 2005

Communicated by K. Tumer
Abstract

Ensemble methods improve the classification accuracy at the expense of testing complexity, resulting in increased

computational costs in real-world applications. Developing a utility-based framework, we construct two novel cost-con-

scious ensembles; the first one determines a subset of classifiers and the second dynamically selects a single classifier.

Both ensembles successfully switch between classifiers according to the accuracy-cost trade-off of an application.

� 2005 Elsevier B.V. All rights reserved.

Keywords: Ensemble techniques; Utility theory; Computational cost; Voting; Selection
1. Introduction

Different types of costs in machine learning have

been extensively investigated to date (Turney,

2000). Among them are the cost of feature extrac-

tion, the cost ofmisclassification errors, and the cost

of computation. The cost of feature extraction arises
from the effort of sensing data and obtaining a fea-

ture set from the data; an example is the cost of a
0167-8655/$ - see front matter � 2005 Elsevier B.V. All rights reserv

doi:10.1016/j.patrec.2005.03.028

* Corresponding author. Fax: +1 518 276 4033.

E-mail addresses: demir@cs.rpi.edu (C. Demir), alpaydin@

boun.edu.tr (E. Alpaydin).
1 Present address: Department of Computer Science, Rens-

selaer Polytechnic Institute, NY 12180, USA.
blood test in medical diagnosis (Turney, 1995).

The cost ofmisclassification errors stems fromdiffer-

ent levels of losses observed in the case of different

decisions as defined by a loss matrix (Duda et al.,

2001). To deal with this type of cost, learning algo-

rithms take into account the loss due to every possi-

ble misclassification error as to minimize the overall
expected risk. For example, the misclassification

error cost may be incorporated into decision trees

(Breiman et al., 1984). The cost of computation in-

cludes the ‘‘dynamic cost’’ due to the time and space

complexity that incurs during training and testing a

classifier (Turney, 2000). The time and space com-

plexity depends on the complexity of the classifier

and, in turn, on the dimension of the feature set.
ed.

mailto:demir@cs.rpi.edu
mailto:alpaydin@ boun.edu.tr
mailto:alpaydin@ boun.edu.tr


C. Demir, E. Alpaydin / Pattern Recognition Letters 26 (2005) 2206–2214 2207
A real-world application typically requires test-

ing its trained system for numerous instances.

Although testing a single instance requires smaller

amounts of time and space than training the entire

system, the total amount of time and space con-
sumed during the use of the system with numerous

tests is critically important in real-world applica-

tions, especially when (i) the total power con-

sumption is restricted and/or (ii) the real-time

response during testing an instance is required to

be sufficiently fast. For example, it is important

to increase the battery charge period of a personal

digital assistant (PDA) by using minimal amount
of space and time for optical character recogni-

tion. As another example, in the case of speech-

to-speech translation, the response time for testing

each instance should be short enough to provide

continuous multi-lingual dialog.

In machine learning, a powerful technique to

increase the classification accuracy is to combine

a set of classifiers (Alpaydin, 2004). Among such
ensemble techniques are voting (Kittler et al.,

1998), stacked generalization (Wolpert, 1992),

and mixture of experts (Jacobs et al., 1991).

Although these approaches successfully increase

the accuracy, the use of multiple classifiers leads

to increased testing complexity with significantly

increased power consumption and response time.

Thus, the trade-off between the classification accu-
racy and the cost of computation needs to be care-

fully considered in real-world applications.

In this paper, we present a framework based on

utility theory that takes into account the computa-

tional cost of each classifier while combining

multiple classifiers to increase the accuracy. Using

this framework, we construct two cost-conscious

ensemble algorithms that evaluate the importance
the application attaches to the accuracy at the cost

of increased testing complexity. The first algorithm

determines a subset of classifiers that leads to the

highest expected utility for a given application.

The second one dynamically selects the classifier

that yields the highest expected utility for the clas-

sification of a given instance based on its difficulty

level. Our experiments demonstrate that the pro-
posed algorithms successfully switch between the

classifiers according to the trade-off between the

accuracy and the testing cost of an application.
2. Utility-based framework

Decision-making requires selecting an action Ai

among several alternatives when the consequences

of each action are not exactly known (Lindley,
1971). The consequences of an action depend on

the state of nature Ck taking place after the action

is selected. Therefore, the actual state of nature

cannot be known a priori to selecting the action.

However, there may be an input vector x that is

used to calculate the probability P(Ckjx). Decision

has to be made in favor of the action with the high-

est expected utility. For the input vector x, the
expected utility of selecting an action Ai is defined

as follows, with u(Ck,Ai) being the utility (negative

risk) of taking the action Ai when the state of

nature is Ck.

EUðAijxÞ ¼
XK
k¼1

P ðCkjx;AiÞ � uðCk;AiÞ ð1Þ

For the classification problem with multiple classi-
fiers, we adapt Eq. (1) to select which classifier(s)

to use as follows. In the equation, we consider Ai

as the classifier and Ck as the class that an instance

can belong to. We also make use of the utility

function to incorporate the cost of testing an

instance into the classification accuracy resulting

from this testing. For that, we define the utility

function as u(Ck,Ai) = accuracy(Ck,Ai) � a Æ cost
(Ck,Ai), where accuracy(Ck,Ai) and cost(Ck,Ai)

are the accuracy and the testing cost of the classi-

fier Ai when this classifier assigns an instance to

class Ck and a indicates the importance of the test-

ing cost in a given application. Therefore, here, the

decision-making corresponds to selecting the clas-

sifier that leads to the highest expected utility. In a

real-world application, the choice of a depends on
the physical parameters of the application. For

example, the available maximum power and/or

the allowed longest response time set a lower

bound for a, whereas the required reliability of

the application sets an upper bound for a. The

Akaike information criterion (Akaike, 1974) and

minimum description length (Hansen and Yu,

2001) are similar to the utility criterion adopted
in this work, with the number of free parameters

used as the cost of computation. Although these



2208 C. Demir, E. Alpaydin / Pattern Recognition Letters 26 (2005) 2206–2214
criteria are used in the evaluation of different indi-

vidual learning models, the use of such criteria has,

however, not previously been demonstrated in an

ensemble algorithm (neither in a model combina-

tion algorithm nor in a dynamic model selection
algorithm).

We use 0/1 loss function for accuracy(Ck,Ai).

It is possible to generalize this accuracy using an

arbitrary loss function that allows for different

gains and losses for different correct classifications

and misclassifications. In this work, a classifier has

a fixed testing cost regardless of the class which it

assigns an instance to. Therefore, for classifier Ai,
cost(Ck,Ai) is the same for each class Ck. It is also

possible to generalize the cost to include also the

cost of extracting a representation; if the extrac-

tion cost is fixed, it can be included as an additive

constant in the cost function. Using 0/1 loss func-

tion and the same cost function for a single classi-

fier, the expected utility of classifying the instance

x by the classifier Ai is defined as

EUðAijxÞ ¼ P ðCcorrect classjx;AiÞ � a � costi ð2Þ

where costi indicates the cost of classifying an

unlabeled instance by the classifier Ai and

P(Ccorrect classjx,Ai) is the probability that the

classifier Ai would generate for the correct class

if it were used.
Given a data set X ¼ fxtgNt¼1, the expected util-

ity of using the classifier Ai for the classification

of the entire data set is estimated as follows:

dEUðAijX Þ ¼
PN

t¼1EUðAijxtÞ
N

¼
PN

t¼1P ðCcorrect classjxt;AiÞ
N

� a � costi

ð3Þ
3. Utility-based voting

The classical ensemble algorithms combine the

decisions of the classifiers that improve the classi-

fication accuracy neglecting the concomitant in-

crease in the cost of testing instances with all
these classifiers. In this work, we introduce a vot-

ing algorithm that uses the decision of a classifier
only if the improvement in the accuracy resulting

from using this additional classifier compensates

for the additional cost that this classifier intro-

duces. We use the expected utility to quantify such

a compensation.
Our algorithm starts with the single classifier

that yields the highest expected utility (calculated

by Eq. (3)) and incrementally adds a classifier

one at a time. This additional classifier is selected

such that the subsequent subset of selected classifi-

ers leads to the highest expected utility (calculated

by Eq. (4) below). Our algorithm terminates if no

additional classifier improves the expected utility.
This is a greedy algorithm and, like all greedy algo-

rithms, it does not guarantee to yield the best pos-

sible subset of the classifiers. However, it is O(L2)

time, L being the number of the classifiers, where

there are 2L possible subsets.

dEUðA0; . . . ;AmjX Þ

¼
PN

t¼1P ðCcorrect classjxt;A0; . . . ;AmÞ
N

� a � costA0;...;Am ð4Þ

In Eq. (4), P(Ccorrect classjxt,A0, . . .,Am) is the prob-

ability of the correct classification of the instance
xt when the decisions of the classifiers A0, . . .,Am

are combined and costA0;...;Am is the testing cost of

using these classifiers plus the cost of combining

them. Note that there is no extra combination cost

in voting; if we were to use a combination scheme

like stacking, there would also be the cost of the

combiner.

In both Eqs. (3) and (4), the cost of using a sin-
gle classifier and a subset of classifiers is known in

advance of testing. On the other hand, the proba-

bility of correct classification using either a single

classifier or a subset of classifiers cannot be known

in advance. To estimate it, consecutive to training

a classifier Ai, we calculate
P

tP ðCcorrect classjxt;AiÞ=
N by using the trained classifier on a separate val-

idation data set that is not used during training
and use the calculated value in Eq. (3) for the clas-

sification of further instances. Likewise, we calcu-

late the value of
P

tP ðCcorrect classjxt;A0; . . . ;AmÞ=N
using the trained classifiers A0, . . .,Am on separate

validation data sets and use the calculated value in

Eq. (4).



C. Demir, E. Alpaydin / Pattern Recognition Letters 26 (2005) 2206–2214 2209
4. Utility-based classifier selection

The algorithm defined in Section 3 works well

for the data sets that consist of similar instances.

This algorithm determines a subset of classifiers
and uses this subset in the classification of the

entire data set regardless of the different difficulty

levels of its instances. Our experiments reveal that

most of the time, only a single classifier is sufficient

to classify an instance correctly. However, the type

of the single classifier varies for different instances.

Our second algorithm selects such a single classi-

fier for the classification of a given instance. It
aims to use simpler and cheaper classifiers for sim-

pler instances, and to use more complex and prob-

ably more expensive classifiers for more difficult

ones; this would decrease the overall testing cost

without significantly decreasing the accuracy. For

a given instance, this algorithm selects the classifier

that yields the highest expected utility (calculated

by Eq. (2)). In Eq. (2), P(Ccorrect classjx,Ai) cannot
be known in advance. Hence, we must estimate

this probability before selecting a classifier and cal-

culate the expected utility of each classifier using

this estimated probability.

To do so, for each classifier, we use an estimator

that outputs a probability value for a given

instance. This estimator is trained to learn these

probability values from the inputs of a separate
validation data set that is not used during training

the classifiers. New output values of this separate

data set are formed as follows: After learning the

parameters of a classifier, each validation instance

is tested with the classifier and the probability gen-

erated for the correct class of the instance is used

as the new output value.2 This reduces the number

of the outputs from the number of classes to 1 and,
thus, reduces the complexity of an estimator com-

pared to its corresponding classifier. Moreover,

using simpler estimators further reduces the com-

plexity. If the estimators were not cheaper than
2 For example, in multilayer perceptrons, the calculated

output of each node in the output layer is used as the

probability of the corresponding class of this node; in multi-

layer perceptrons, the actual output of the node corresponding

to the correct class is 1 and the actual output values of the other

nodes are 0.
their corresponding classifiers, there would be no

point in using them.

We further decrease the additional cost that the

estimators introduce by using the estimators in

ascending order of the complexity of their corre-
sponding classifiers. We start with the estimator

that belongs to the cheapest classifier and calculate

its expected utility. For the next classifier, we com-

pute its expected utility with the probability value

of 1 without using its estimator. If even this max-

imum probability cannot improve the highest

expected utility computed so far, the algorithm

terminates and uses the classifier with the highest
expected utility. Otherwise, the estimator of this

classifier is used and its expected utility is calcu-

lated. For a single instance, the total cost of the

algorithm is the sum of the costs of the estimators

that have been used, and the cost of the selected

classifier.

There are other dynamic selection algorithms

available in the literature; these algorithms choose
the models to optimize the accuracy-based criteria

(Giacinto and Roli, 2000; Woods et al., 1997). Dif-

ferent than these algorithms, our dynamic selec-

tion algorithm chooses models based on a utility

criterion to maximize the accuracy while minimiz-

ing the computational cost. To the best of our

knowledge, this is the first of its kind that consid-

ers the overall computational cost in the dynamic
classifier selection.
5. Experiments

We conduct the experiments on a data set of a

real-world application. Pendigits is the prepro-

cessed data set of handwritten digits collected from
44 different people on a touch-sensitive WACOM

tablet (Alimoglu and Alpaydin, 1997). For the data

sets on which the classifiers and the estimators are

trained, we use 3748 and 1873 handwritten digits

taken from 30 people, respectively. For the

writer-dependent test set, we use the remaining

1873 handwritten digits taken from the same 30

people. For the writer-independent test set, we
use 3498 handwritten digits taken from the remain-

ing 14 people. This data set is available at the UCI

repository (Blake and Merz, 1998).



Table 1

A list of base classifiers and their representations along with their testing costs, average accuracy and the standard deviation of the

accuracy for 10 different runs

Representation-classifier Cost Accuracy

Training (classifiers) Training (estimators) Dep. test Indep. test

Counter4-mlp4 104 82.2 ± 1.0 80.7 ± 1.1 81.6 ± 1.0 79.0 ± 1.7

Dynamic-lp 160 97.8 ± 0.4 96.0 ± 0.2 96.5 ± 0.4 93.0 ± 0.2

Counter8-lp 640 99.1 ± 0.0 95.6 ± 0.0 95.2 ± 0.0 92.7 ± 0.1

Counter8-mlp20 1480 100.0 ± 0.0 95.7 ± 0.2 95.6 ± 0.3 93.9 ± 0.4

Static-mlp32 8512 100.0 ± 0.0 95.7 ± 0.2 95.6 ± 0.3 94.4 ± 0.2

‘‘lp’’ is the linear perceptron and ‘‘mlp4’’ is the multilayer perceptron with 4 hidden units.

Table 2

The subset of the classifiers selected by our voting algorithm

and their selection frequencies for 10 different runs, for different

values of a

a Selected models

0.000 dynamic-lp + static-mlp32 (60%)

dynamic-lp + static-mlp32 + counter8-lp (10%)

counter8-mlp20 + dynamic-lp + static-mlp32

+ counter4-mlp4 (10%)

static-mlp32 + dynamic-lp (20%)

0.001 dynamic-lp (10%)

dynamic-lp + counter8-lp (60%)

dynamic-lp + counter8-lp + counter4-mlp4 (30%)

0.005 dynamic-lp (70%)

dynamic-lp + counter4-mlp4 (30%)

0.010 dynamic-lp (100%)

0.300 counter4-mlp4 (90%)

dynamic-lp (10%)

2210 C. Demir, E. Alpaydin / Pattern Recognition Letters 26 (2005) 2206–2214
We use four different representations for this

data set. The dynamic representation is a sequence

of eight temporally equidistant (x,y) coordinates

of the pen stroke; it has 16 dimensions. The static

representation is a 16 · 16 bitmap image generated

from the pen strokes. To obtain the counter4 rep-
resentation, we put a grid of 4 · 4 on this bitmap

image, and the number of black pixels in each grid

entry is used as a feature in the new feature set.

The counter8 representation is obtained similarly;

we use a grid of 8 · 8 instead of the grid of 4 · 4.

For these representations, we use linear percep-

trons (LP) and multilayer perceptrons (MLP) as

the classifiers. After experimenting with various
classifiers for each representation, we select the

classifiers that yield the most accurate results with

their testing complexities falling in an acceptable

range. In our experiments, we express the testing

cost as the big-O values of the classifiers. These

values are the number of multiplications used in

testing and the number of weights (free para-

meters) in a perceptron. A linear perceptron with
d inputs and K classes is O((d + 1) · K), and a mul-

tilayer perceptron with d inputs, H hidden units,

and K classes is O((d + 1) · H + (H + 1) · K).

In Table 1, we present a list of the base classifiers

and their representations. For example, the first

classifier is a multilayer perceptron with four

hidden units (mlp4) and uses the counter4 represen-

tation. In this table, for each classifier, we also
provide the average accuracy and its standard devi-

ation of the classification for 10 runs and the testing

cost as explained in the previous paragraph.

In Table 2, we report the subsets of the classifi-

ers and the selection frequencies of these subsets

for different exemplary a values in different orders.
When the testing cost has no effect on the selection

of the classifiers (i.e., a = 0), the most expensive

and the most accurate classifier (static-mlp32) is

always used. As the importance of the testing cost

increases (i.e., as a increases), our voting algorithm

never selects the classifier static-mlp32 and it starts
selecting cheaper and less accurate classifiers such

as dynamic-lp. When a = 0.3, the cheapest classifier

counter4-mlp4 is used 90% of the time. As the test-

ing cost becomes too important (a > 0.3), the clas-

sifier counter4-mlp4 is always selected.

In our selection algorithm, we use linear per-

ceptrons for the estimators. Here, we consider

learning the parameters of the estimators as a
regression problem. Since the output dimension

of each estimator is 1 and a linear perceptron is



C. Demir, E. Alpaydin / Pattern Recognition Letters 26 (2005) 2206–2214 2211
used, the additional cost of using an estimator is

equal to the number of dimensions of the corre-

sponding feature set. In Fig. 1, we present the

selection frequency of each classifier reported by

our selection algorithm as a function of a. To
reveal the significance of a in different orders, we

use its logarithm in this figure. This figure demon-

strates that the most expensive model (static-

mlp32) is never used when a > 0. For 0 < a 6 0.1

(loga 6 �1), our algorithm selects a single classi-

fier among the classifiers dynamic-lp, counter8-lp,

and counter8-mlp20. As the importance of the

testing cost increases, the algorithm selects the
classifier dynamic-lp with higher frequencies. When

a � 0.1 (log a � �1), our algorithm starts select-

ing the least expensive and the least accurate

classifier (counter4-mlp4). These results are ob-

tained on the writer independent test sets for

10 different runs. The results obtained on the train-

ing sets and the writer dependent test set are

similar. However, due to the limited space, we
only provide the results obtained on the writer

independent test set which is considered as the real

test set.

In our experiments, we use 2/3 and 1/3 of the

training samples for training the classifiers and
–3 –2.5 –2 –1.5 –1 –0.5

0

10

20

30

40

50

60

70

80

90

100

S
el

ec
tio

n 
pe

rc
en

ta
ge

log (α)

Counter4 -mlp4
Dynamic -lp
Counter8 -lp
Counter8 -mlp20
Static -mlp32

Fig. 1. The selection frequency of each classifier presented as a

function of a on the writer independent test set.
estimators, respectively. To analyze the sensitivity

of the estimator to the size of its training set, we

use different-sized portions of the training set to

train the estimators and the rest of the training

set to train the classifiers. As observed in Fig. 2,
increasing the size of the training set of the estima-

tors (i.e., decreasing the size of the training set

of the classifiers) results in decreasing the classifi-

ers� performance. When the size of data used to

train estimators increase, their performances first

increase (since more amount of data improves

their generalization ability) and then decrease

(since the estimators estimate the accuracy of the
classifiers which degrade with less remaining train-

ing data).

In Table 3, we report the average utility values

and their standard deviations computed using the

base classifiers, our two algorithms (vote-utility

and selection), and three other ensemble tech-

niques (vote-all, vote-max, and boosting3). In this

table, the utility values are computed as accu-
racy � a Æ cost. This table demonstrates that when

the testing cost has no effect, or, equivalently, the

utility is simply equal to the accuracy (i.e., when

a = 0), all classical ensemble techniques (vote-all,

vote-max, and boosting) and our algorithms are

more accurate than the base classifiers indicating

the advantage of ensemble methods. Although

the classical ensemble techniques use all classifiers,
vote-utility uses a few and selection uses only one.

When a > 0, our voting algorithm (vote-utility)

never leads to a lower utility value than the base

classifiers and the classical ensemble methods.

Our selection algorithm yields the best results

when 0 < a < 0.01 because this algorithm can

potentially use different models in this range of a,
as our experimental observations reveal. The
larger a values forces our selection algorithm to

select the same single classifier; this classifier is
3 Vote-all averages the posterior probabilities computed by

the individual classifiers for each class and uses this average

in its decision. Vote-max selects the classifier that yields the

maximum posterior probability for any class and uses the

decision of this classifier (Kittler et al., 1998). Boosting takes a

weighted vote where weights are taken proportional to model

accuracies; in this work, the weights are calculated by using the

algorithm described in (Kuncheva et al., 2002).



0 1000 2000 3000 4000 5000
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Classifier performance

Training set size for estimators

A
cc

ur
ac

y

0 1000 2000 3000 4000 5000

0.7

0.75

0.8

0.85

0.9

0.95

1

Estimator performance

Training set size for estimators

A
cc

ur
ac

y

Counter4 -mlp4
Dynamic -lp
Counter8 -lp
Counter8 -mlp20
Static -mlp32

Fig. 2. The dependency of the classifier and estimator accuracies (for the writer independent test set) on the size of the training set that

is used to train the estimators.

Table 3

The average utility values and their standard deviations calculated using the base classifiers, our voting and selection algorithms, and

the other three ensemble techniques on the writer independent test sets

a 0.000 0.001 0.005 0.010 0.300

Counter4-mlp4 79.0 ± 1.7 78.9 ± 1.7 78.4 ± 1.7 77.9 ± 1.7 47.8 ± 1.7

Dynamic-lp 93.0 ± 0.2 92.8 ± 0.2 92.2 ± 0.2 91.4 ± 0.2 45.0 ± 0.2

Counter8-lp 92.7 ± 0.1 92.1 ± 0.1 89.5 ± 0.1 86.3 ± 0.1 �99.3 ± 0.1

Counter8-mlp20 93.9 ± 0.4 92.4 ± 0.4 86.5 ± 1.4 79.1 ± 0.4 �350.1 ± 0.4

Static-mlp32 94.4 ± 0.2 85.9 ± 0.2 51.9 ± 0.2 9.3 ± 0.2 �2459.2 ± 0.2

Vote-all 96.3 ± 0.2 85.4 ± 0.2 41.8 ± 0.2 �12.7 ± 0.2 �3172.5 ± 0.2

Vote-max 95.6 ± 0.6 84.7 ± 0.6 41.1 ± 0.6 �13.4 ± 0.6 �3173.2 ± 0.6

Boosting 96.1 ± 0.1 85.2 ± 0.1 41.6 ± 0.1 �12.9 ± 0.1 �3172.7 ± 0.1

Vote-utility 95.8 ± 0.5 94.2 ± 0.8 92.3 ± 0.3 91.4 ± 0.2 47.8 ± 1.6

Selection 95.2 ± 0.1 94.3 ± 0.2 92.5 ± 0.3 91.1 ± 0.3 38.5 ± 0.5

2212 C. Demir, E. Alpaydin / Pattern Recognition Letters 26 (2005) 2206–2214
dynamic-lp for 0.01 6 a < 0.3, and counter4-mlp4

for a P 0.3. Although our selection algorithm se-

lects this single model correctly as shown in Fig.

1, the cost of the estimator used lowers the utility
values. Thus, our selection algorithm works well

when the importance of cost is not so high such

that one single classifier does not dominate over

all of the classifiers. In a real-world application,

since the physical constraints of the application

such as the available maximum power and the al-

lowed longest response time in conjunction with

the required accuracy set an a range, the success
of the utility-based voting and selection algorithms

will vary for different applications requiring differ-

ent a ranges.
In Table 4, we present the computational times

for the classification of the samples in the writer

independent test set (in milliseconds). These results

are obtained on a computer with a 1600 MHz Pen-
tium M processor and 512 MB of RAM. In this

table, it is observed that while the base classifiers

and classical ensemble methods (vote-all, vote-

max, and boosting) use the same amount of com-

putational time regardless of the value of a (i.e.,

the importance of the cost), our proposed algo-

rithms use less and less time with the increasing

importance of the computational cost in an appli-
cation. These proposed algorithms choose the

models in accordance with their individual contri-

bution to the computational cost and the value of



Table 4

The average and the standard deviation of the computational times for the classification of the samples in the writer independent test

set (in milliseconds)

a 0.000 0.001 0.005 0.010 0.300

Counter4-mlp4 13.0 ± 4.8 13.0 ± 4.8 13.0 ± 4.8 13.0 ± 4.8 13.0 ± 4.8

Dynamic-lp 13.0 ± 4.8 13.0 ± 4.8 13.0 ± 4.8 13.0 ± 4.8 13.0 ± 4.8

Counter8-lp 33.1 ± 4.8 33.1 ± 4.8 33.1 ± 4.8 33.1 ± 4.8 33.1 ± 4.8

Counter8-mlp20 80.1 ± 0.3 80.1 ± 0.3 80.1 ± 0.3 80.1 ± 0.3 80.1 ± 0.3

Static-mlp32 381.5 ± 3.0 381.5 ± 3.0 381.5 ± 3.0 381.5 ± 3.0 381.5 ± 3.0

Vote-all 528.1 ± 12.8 528.1 ± 12.8 528.1 ± 12.8 528.1 ± 12.8 528.1 ± 12.8

Vote-max 527.8 ± 12.3 527.8 ± 12.3 527.8 ± 12.3 527.8 ± 12.3 527.8 ± 12.3

Boosting 531.8 ± 11.7 531.8 ± 11.7 531.8 ± 11.7 531.8 ± 11.7 531.8 ± 11.7

Vote-utility 417.4 ± 32.7 57.0 ± 8.4 23.0 ± 10.6 18.1 ± 6.4 16.0 ± 5.2

Selection 156.4 ± 8.5 44.1 ± 5.1 25.0 ± 5.3 23.0 ± 4.8 17.1 ± 4.9

C. Demir, E. Alpaydin / Pattern Recognition Letters 26 (2005) 2206–2214 2213
a such that the overall computational cost is

reduced given the importance of the cost.
6. Conclusion

This work introduces a utility-based framework

to incorporate the cost of computation into multi-

classifier classification problems. In this work, we

present two novel ensemble techniques, one for

determining a subset of classifiers and the other

for dynamically selecting a single classifier to max-
imize the expected utility. The experiments on a

data set of handwritten digits demonstrate that

our algorithms lead to higher utility values by

switching to different types of classifiers in accor-

dance with the importance of the testing cost.

One future research direction is to test our algo-

rithms on different kinds of data sets including

different classifiers. In classifier combination, it is
also possible to use a different combination scheme

such as stacking instead of voting. This allows

combining models in a nonlinear way, but it has

the disadvantage of introducing additional cost.

Another possibility is to include the cost of

extracting a representation.
Acknowledgement

This work has been supported by the Turkish

Academy of Sciences, in the framework of the

Young Scientist Award Program (EA-TÜBA-GE-
BIP/2001-1-1) and Boğaziçi University Scientific

Research Project 02A104D.
References

Akaike, H., 1974. A new look at the statistical model

identification. IEEE Trans. Automat. Contr. 19, 716–723.

Alimoglu, F., Alpaydin, E., 1997. Combining multiple repre-

sentations and classifiers for pen-based handwritten digit

recognition. ICDAR1997, Ulm.

Alpaydin, E., 2004. Introduction to Machine Learning. The

MIT Press, Cambridge, MA.

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 1984.

Classification and Regression Trees. Wadsworth,

California.

Blake, C.L., Merz, C.J., 1998. UCI Repository of machine

learning databases. Available from: http://www.ics.uci.edu/

~mlearn/MLRepository.html.

Duda, O.R., Hart, E.P., Stork, G.D., 2001. Pattern Classifica-

tion. Wiley-Interscience, New York.

Giacinto, G., Roli, F., 2000. A theoretical framework for

dynamic classifier selection. 15th Internat. Conf. Pattern

Recognition, vol. 2. IEEE Press, pp. 8–11.

Hansen, M.H., Yu, B., 2001. Model Selection and the principle

of minimum description length. J. Amer. Statist. Assoc. 96,

746–774.

Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E., 1991.

Adaptive mixtures of local experts. Neural Comput. 3, 79–

87.

Kittler, J., Hatef, M., Duin, R.P.W., Matas, J., 1998. On

combining classifiers. IEEE Trans. Pattern Anal. 20, 226–

239.

Kuncheva, L.I., Skurichina, M., Duin, R.P.W., 2002. An

experimental study on diversity for bagging and boosting

with linear classifiers. Inform. Fusion 3, 245–258.

Lindley, D.V., 1971. Decision Making. Wiley-Interscience, New

York.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html


2214 C. Demir, E. Alpaydin / Pattern Recognition Letters 26 (2005) 2206–2214
Turney, P.D., 1995. Cost-sensitive classification: Empirical

evaluation of a hybrid genetic decision tree induction

algorithm. J. Artificial Intelligence Res. 2, 369–409.

Turney, P.D., 2000. Types of cost in inductive concept learning.

Workshop on Cost-Sensitive Learning, ICML2000, Stan-

ford, pp. 15–21.
Wolpert, D.H, 1992. Stacked generalization. Neural Networks

5, 241–259.

Woods, K., Kegelmeyer, W.P., Bowyer, K., 1997. Combination

of multiple classifiers using local accuracy estimators. IEEE

Trans. Pattern Anal. 19, 405–410.


	Cost-conscious classifier ensembles
	Introduction
	Utility-based framework
	Utility-based voting
	Utility-based classifier selection
	Experiments
	Conclusion
	Acknowledgement
	References


