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Abstract. In this paper, a two-level supervised feature selection algo-
rithm for local feature-based face recognition is presented. In the first
part, a genetic algorithm is used to determine the useful locations of the
face region for recognition. 2D Gabor wavelet-based feature extractors
are used for local image descriptors at these locations. In the second part,
the most useful frequencies and orientations of Gabor kernels are deter-
mined using a floating feature selection algorithm. Our major aim in this
study is to examine the relevance of the two common assumptions in the
local feature based face recognition literature: first, that the contribu-
tion of a specific feature to the recognition performance is independent
of others, and secondly, that feature extractors should be placed over the
visually salient points. In this paper, we show that one can obtain better
recognition accuracy by relaxing these two assumptions.

1 Introduction

In all of the computational face processing tasks such as face recognition, detec-
tion, and tracking, it is now widely accepted that the representation of a human
face plays a very important role. In much of the recent works, researchers try to
find an efficient representation method for a given task. In the face recognition lit-
erature, several approaches emerged during the last few years. These approaches
can be broadly classified into two groups: local feature-based approaches includ-
ing template-based methods, and global statistical approaches[1].

Feature-based approaches try to code face images using several different
methodologies. In the most simplistic way, one can represent a face image using
geometrical relations among various face regions. As this method, most feature-
based approaches try to localize various facial feature points, such as the coordi-
nates of eyes, mouth, nose, and eyebrows. Once these points are found or tracked,
you can represent the face image by features extracted from these points.

2D Gabor wavelet-based methods are frequently used in feature-based face
representation approaches as local feature extractors. Gabor kernels are similar
to the receptive fields of simple cells in the primary visual cortex. In addition,
multi-resolution and multi-orientation capabilities of Gabor kernels make them



attractive for face representation. Since the full convolution of face images with
different Gabor kernels is very costly, sparse sampling is generally used where
local feature vectors are formed at each positions of Gabor kernels.

Typically, the features extracted by 2D Gabor wavelets have a very large
dimensionality. It is, therefore, essential to analyze the contribution of each fea-
ture component to performance of the task at hand. In the most general case,
one should examine three parameters of a Gabor kernel: location, frequency and
orientation [2, 3].

There were several studies that tried to emphasize the importance of Gabor
kernel parameters for face recognition. In [4], the discriminative power of the
nodes of a graph that is placed over face features is examined. The aim is to
learn the weights of nodes for face discrimination. The problem is formulated
as an optimization problem and simplex algorithm is used. According to their
results, the eyes are more important for discrimination of half profiles and frontal
faces compared to the mouth and chin. A similar approach was employed in [5]
where the aim of the learning algorithm is to find out a suitable subgraph which
only contains the nodes important for head finding and pose identification.

The determination of the importance of local Gabor features has also been
used in face authentication systems. For example, in [6], an improvement for
the elastic graph matching approach was proposed where local Gabor features
extracted at the nodes of the graph are used to compute a local similarity re-
sponse. In the local similarity calculation, Fisher’s discriminant ratio is used to
learn the coefficients which map feature vectors to a local similarity response.
Global similarity is then defined as the sum of local similarities. Authors have
shown that it is not necessary to take into account all local discriminants in
order to obtain good performance. So, they use only a fraction of local discrim-
inants. Their experimental results showed that eyes are more important at high
frequencies whereas chin and cheek areas are important at lower frequencies for
frontal face authentication.

In a recent statistical analysis of 2D Gabor wavelet-based feature detectors
[7], univariate analysis of variance of 2D Gabor kernel activations has been used
to weight the contribution of each parameter (kernel location, frequency, and
orientation) in the representation according to its power of predicting similarity
of faces. The results show that the hairline area with the forehead and eye regions
provide useful information while the mouth, nose, cheek and lower part of the
outline region are the least useful part of a face for face recognition. In a similar
work, results confirm that the eyes and mouth are more stable for recognition,
whereas hair and nose region have large variations [8].

In almost all of the previous studies, either the importance of the locations of
Gabor kernels or the importance of the used frequencies and orientations are ex-
amined. Only in [7], all the three parameters are examined, but they assume the
independence of each feature dimension. This independence assumption is actu-
ally not valid, so one needs a more complex methodology to infer the usefulness
of each local feature element. In this paper, we have formalized our approach
as a subset selection problem, and removed the independence assumption. In



addition, we also wanted to show the validity of the commonly used sampling
technique of placing the Gabor kernels at salient facial feature positions such
as the corners of eyes, mouth and the tip of the nose, etc. In the rest of the
paper, we explain our local image descriptors in section 2, and feature selection
methodology in section 3. In section 4, we give experimental results for FERET
face database.

2 Image Representation using 2D Gabor Wavelets

Local features are represented using the convolution results of the face image
with 2D Gabor wavelets at the convolution points. At each image point, we have
convolved the image with Gabor kernels having five different frequencies and
eight different orientations. The Gabor kernel resolution is selected as 15 × 15
pixels in order to reduce the overlapping of kernels. The magnitudes of complex
outputs of Gabor convolutions are used as feature descriptors, giving a feature
vector of size 40 at each image point.

There are several methods to represent whole image using local jets. At one
extreme, images can be represented by the full convolution with Gabor kernels
at each pixel. Another approach would be to place a face graph where the nodes
of the graph lie on facial features. This approach requires a fine localization of
facial feature points. In between these two approaches, one can use a rectangular
sampling grid that is placed over the face region.

3 Feature Selection Methodology

In feature selection, the goal is to find a subset maximizing a selected criterion.
This criterion can be inter-class distance measure or the classification rate of
a classifier. The optimal solution could be found by using exhaustive search.
However, for higher dimensional problems, this solution is unusable. Branch and
bound type of algorithms can also give optimal solutions [9], but their appli-
cation is only limited to monotonic criterion functions, which does not hold in
our case. Alternative to optimal algorithms, several fast sub-optimal algorithms
can be used. Among them, the most frequently used ones are: sequential for-
ward selection (SFS), sequential backward selection (SBS), plus-L-minus-R, and
floating search methods (SFFS, SFBS) [10]. Genetic algorithms (GA) and tabu
search are also proposed as solutions for a subset selection problem [10].

In order to apply feature selection algorithms to the task of finding optimal
Gabor kernel locations, and finding useful frequency/orientation parameters,
we have decomposed the problem into two parts by separating location finding
problem and frequency/orientation selection problem. In the first part, location
selection module tries to find optimal face regions in a supervised manner by
using all of the 40 different Gabor kernels having full frequency and orientation
range. Then, in the second part, frequency and orientation selection module tries
to come up with an efficient subset of all of the different Gabor kernels at the
found locations.



3.1 Kernel Location Selection

In order to find the most discriminative image locations of faces for recognition,
we have designed several feature selection scenarios. These scenarios are, namely:
best individual features (BIF), forward selection(SFS), floating forward search
(SFFS), and genetic algorithm. In the first three approaches, we represented the
face images using both rectangular grids (lattice) and manually positioned face
graphs. Lattice-based sampling is done via placing a 7× 7 grid centered on the
face region. As a face graph, we have identified 30 facial feature points, as seen
in Figure 2.a , and used them as the nodes of our graph. In the GA approach,
we have used full convolutions of Gabor wavelets at each pixel in the image.

3.2 Kernel Frequency and Orientation Selection

After finding useful kernel locations, similar feature selection methodology as in
the previous part should be carried out in order to eliminate irrelevant feature
dimensions. For this purpose, we have applied another layer of SFFS-type feature
selection mechanism to the outputs of the location selection module. Frequency
and orientation selection module also works in a supervised manner, and it pro-
duces a subset of a useful frequencies and orientations at each kernel location.
Since, we use all the information produced by location selection module together,
without dividing them according to the kernel locations, this methodology also
produces an almost optimal subset by taking into account the dependence of
each feature dimension.

4 Experiments and Results

In our experiments, we have used a subset of the FERET face database [11].
The used part of the database contains normalized frontal images of 146 sub-
jects. Each subject has 4 gray scale images of resolution 150× 130. In all of the
experiments, we have put 2 images of a subject into training set, and the rest
of the images into test set. Faces in the dataset contain facial expression and
illumination variations. In the recognition part, we have used 1-nearest neighbor
classifier.

4.1 Kernel Location Selection

BIF, SFS, and SFFS based selection In a recognition problem, each indi-
vidual local feature has a certain degree of recognition power. Therefore, it is
useful to learn the importance of each local feature in order to obtain a better
discriminator. The best heuristic to measure the importance of each local feature
is to look at its individual recognition performance. In the BIF approach, one
can simply combine the most important N features into a final feature vector.
This simple idea can perform well only if each local descriptor contributes in-
dependently to the discrimination performance, irrespective of the existence of



other local features. However, in many cases, it would be proper to design a fea-
ture selector which additionally takes into account the relative information gain
when used with an existing feature set. Thus, we have used SFS algorithm in
order to consider this relative gain. More formally, we add the most informative
local feature at each step to an existing previously selected subset S.

SFFS algorithm takes this idea one step further by backtracking to remove
the least useful features from an existing feature subset to overcome the nesting
effect. Specifically, SFFS adds the most useful feature and then searches for a
feature in the existing subset S to discard if the removal of that feature improves
the discriminative power.

In our experiments, we have placed a rectangular lattice of size 7 × 7 over
the face region, and look for a useful subset of grid points for efficient face repre-
sentation for recognition task. In the second column of Table 1, the recognition
performances of each method are presented. The recognition accuracies of BIF,
SFS, and SFFS are 84.54, 90.38, and 91.07 percent respectively. The recognition
performance of using all of the grid points is 86.94 percent. In Figures 1.a, 1.b
and 1.c, the most important 15 local feature positions are shown for BIF, SFS,
and SFFS algorithms. In Figure 1.a, circle sizes are proportional to each points
recognition performance. The best performance is obtained using the SFFS ap-
proach, where the selected subset performs even better than using all of the
grid points, and as expected, BIF approach performed worst among all of these
methods since it considers each feature independently.

In all of the three approaches, most of the selected grid points are at the upper
part of the face region. This result is largely due to the expression variations
present in the dataset especially, in the mouth region. In SFFS, the combination
of features extracted from eyebrows, the lower-center part of the forehead, the
nose region, and the lower part of the mouth seems important.

Table 1. Comparative analysis of BIF, SFS, and SFFS for lattice- and face graph-based
sampling methods. The numbers in parentheses show the number of feature points for
each representation

Lattice (49 pts) Face Graph (30 pts)

All pts 86.94 83.85

BIF (15 pts) 84.54 82.13

SFS (15 pts) 90.38 87.97

SFFS (15 pts) 91.07 87.97

Similarly, we have performed the same feature selection analysis to the man-
ually positioned face graph, in order to see the importance of the generally used
fiducial points. In the third column of Table 1, the recognition accuracies of BIF,
SFS, and SFFS is shown. Using all of the 30 points in the face graph gives 83.85
percent classification performance, whereas an SFS-, or SFFS-based subset se-
lection can improve the performance to 87.97 percent. In Figures 2.b, 2.c, and



Fig. 1. The locations of important facial feature combinations for a) BIF, b) SFS, and
c) SFFS approaches. The grid size in all figures is 7× 7. The recognition performances
are 84.54, 90.38, and 91.07 percent, respectively.

(a) (b) (c)

2.c, the locations of 15 useful fiducial points are shown. The points selected for
SFS and SFFS methods are the same, and they are generally at the upper face
region. Eyebrows, the corners of eyes, forehead, cheeks, and the outline of nose
seem to carry the most discriminative information.

When lattice and face graph based sampling is considered, lattice-based ap-
proach performs better. Our results show that although fiducial points are impor-
tant, feature selection from a set of fiducial points greatly improves performance.
Furthermore, our experiments with the lattice approach show that superior re-
sults can be achieved at the periphery of fiducial points.

Genetic algorithm-based selection One of the key motivations of our re-
search was to try to understand whether it is better to choose the locations
of facial features for local image descriptors. Therefore, we aimed to search for
useful combination of face locations from data, without using any a priori in-
formation, such as fiducial point coordinates. In contrast to the sparse sampling
methods (lattice, face graph), we have a much larger search space. The complex-
ity of the search space is determined by the exhaustive search of a combination
of N feature points selected from all of the pixels in the face region. However, in
higher dimensions, such as in our problem, exhaustive search is unusable. So, we
have used a genetic algorithm which is sub-optimal but faster. It was shown that
genetic algorithms can reach near-optimal solutions quickly in feature selection
[10].

In our setting, genetic chromosomes contain the coordinates of the selected
number of face locations. We decided to use 15 points for face representation.
As fitness function, we have used the recognition performance of local image
descriptors of each gene in the chromosomes. The crossover and mutation pa-
rameters are 0.5 and 0.1, respectively. In both operators, we require that the
coordinates of face points in a single chromosome do not overlap too much in
order to extract independent local information as much as possible. This mini-
mum overlap distance between facial point is selected to be 9 pixels. Mutation
of a gene is handled by adding a random number within a specified range. This



Fig. 2. The locations of important facial feature combinations for manually positioned
face graph. a) the locations of 30 fiducial points used, b) subset of 15 points for BIF
c) subset of 15 points for SFS, d) subset of 15 points for SFFS. The recognition per-
formances are 82.13, 87.97, and 87.97 percent, respectively.

(a) (b)

(c) (d)

range is dependent on the image resolution. As the populations evolve, we itera-
tively narrow this range for better convergence. The selection of new population
is based on the probability distribution of fitness values of each chromosome.
For quick convergence, elitism is employed, where the elitism ratio is 0.05. As
an initial population size, 200 is used.

In Figure 3, the 15 feature points found by the GA is shown. The recognition
performance of this feature subset is 96.50 percent which is even better than
the best sequential feature selection algorithm, namely SFFS. Again, all of the
feature points are gathered over the upper face region. Similar to results of the
SFFS algorithm, the outer corners of eyebrows, forehead region, and the outline
of nose provide the most useful information.

4.2 Kernel Frequency and Orientation Selection

In the second part of our two-level feature selection approach, we determine the
most useful orientations and frequencies of the selected kernel locations using
SFFS-based methodology. The output of the kernel location module is a feature
vector of size 15 × 40, where each kernel contributes only one jet having a di-
mension of 15. In frequency and orientation selection part, we further study an
efficient subset of the output of the kernel location module. Therefore, in apply-
ing SFFS, we start with an empty set of selected features, and gradually add
additional features. Note that, each added dimension corresponds to a specific



Fig. 3. The locations of important facial feature combinations for genetic algorithm.

frequency and orientation pair of the outputs of a previously selected Gabor
kernel at some specific location. Again, the feature selection criteria in SFFS is
the supervised classification accuracy of the selected subset.

Using this policy, we can extract a better feature subset of the original set,
because of the large dimensionality of the original set. In order to find the near
optimal subset, we have forced the SFFS algorithm to find a subset of dimension
600. Then, we select the minimal subset having a peak performance. In this way,
we improved the performance of the face recognition system on the test set from
96.50 percent to 99.32 percent, by using a subset of dimensionality 230 out of
600.

5 Conclusion and Future Work

In this work, a methodology to represent human faces in a local feature-based
approach is presented. Previous research on feature selection for face recognition
mainly focuses on the individual, independent contribution of each face point
to the recognition performance. We have shown that, it is better to formulate
the problem as a feature subset selection, where the addition or subtraction of
a feature point is evaluated with respect to an existing feature subset.

Another common assumption in previous approaches was to extract local fea-
tures from fiducial points. To test the validity of this assumption, we have used
different sampling methods coupled with different feature selection algorithms.
Our results show that although fiducial points are important, feature selection
from a set of fiducial points greatly improves performance, and superior recog-
nition accuracy can be achieved at the periphery of fiducial points. As a second
phase, we have introduced a selection of frequency and orientation parameters
using a sequential floating subset search. By extracting useful frequencies and
orientations at specific face locations, we have eliminated the irrelevant parts
of the original feature vector, and also improved the recognition performance
significantly.

In our experiments, sequential forward selection algorithm and genetic al-
gorithm gave the best performances, while the latter is superior to the SFFS.
In order to compare their performance with methods that selects features based



solely on their individual importance, we have implemented Best Individual Fea-
ture (BIF) algorithm. As expected, both SFFS and GA outperformed BIF-based
feature selection. In general, eyebrows and face points at the outline of nose seem
to provide the most discriminatory information for face recognition. As future
work, we will extend this methodology for pose invariant face recognition. An-
other important research direction would be to analyze the aging effects where
facial regions and their characteristic features which could be invariant under
age variations may be found using the proposed architecture.
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