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Learning the best subset of local features for face recognition
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Abstract

We propose a novel, local feature-based face representation method based on two-stage subset selection where the first stage finds the
informative regions and the second stage finds the discriminative features in those locations. The key motivation is to learn the most
discriminative regions of a human face and the features in there for person identification, instead of assuming a priori any regions of
saliency. We use the subset selection-based formulation and compare three variants of feature selection and genetic algorithms for this
purpose. Experiments on frontal face images taken from the FERET dataset confirm the advantage of the proposed approach in terms of
high accuracy and significantly reduced dimensionality.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Face recognition has proved to be a difficult problem
in computer vision. The main reason for this is that intra-
personal variations caused by facial expressions, view point
changes, and illumination variations are significant when
compared to inter-personal variations. Many researchers
have therefore focused on face representation techniques
that are invariant to some of these variations [1,2]. These can
be grouped into two, as holistic and local feature-based: In
the first type, faces are represented as a whole and statisti-
cal techniques are used to extract features from faces [3–6].
The second type depends on the localization of salient facial
features such as the eyes and the mouth [7–9]. There are
also hybrid approaches which incorporate complementary
knowledge from both [10]. Our work in this paper belongs
to the second type, with the distinction that the salient local
regions are not predicted but are learned from data.

∗ Corresponding author. Tel.: +90 212 359 7183.
E-mail addresses: gokberk@boun.edu.tr (B. Gökberk),
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The main idea in a feature-based face representation
scheme is the extraction and analysis of local facial fea-
tures. Salient facial features are first found and then used
to code a face. Coding is generally carried out using ge-
ometric relationships between these points and extracting
local image descriptions around these points. Among dif-
ferent alternatives, 2D Gabor-like filters are found to be
very suitable as local descriptors because of their robust-
ness against translation, rotation, and scaling [7,11,12].
2D Gabor wavelets are selective to different orientations
and spatial frequencies. Typically, features extracted by 2D
Gabor wavelets have a very large dimensionality. It is
therefore essential to analyze the contribution of each fea-
ture component to the recognition performance. Important
parameters of 2D Gabor wavelets are: (1) spatial location
of the kernel in the image; (2) kernel orientation; and (3)
spatial kernel frequency.

Several studies have concentrated on examining the im-
portance of the Gabor kernel parameters for face analy-
sis. These include: the weighting of Gabor kernel-based
features using the simplex algorithm for face recognition
[13], the extraction of facial subgraph for head pose esti-
mation [14], the analysis of Gabor kernels using univariate
statistical techniques for discriminative region finding [15],
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the weighting of elastic graph nodes using quadratic opti-
mization for authentication [8], the use of principal compo-
nent analysis (PCA) to determine the importance of Gabor
features [16], boosting Gabor features [17] and Gabor fre-
quency/orientation selection using genetic algorithms [18].

In almost all previous studies, we see two fundamental as-
sumptions: first, the contribution of each feature dimension
is analyzed independently of others (independence assump-
tion); and second, Gabor kernel placement over the face re-
gion is strongly affected by prior knowledge (saliency as-
sumption). Placing the kernel at visually salient facial points,
e.g., eyes, mouth, etc. is one of the frequently used methods.
The first assumption of independence of features is not valid,
and one should incorporate more complex methodologies to
analyze the relationship between the features. Moreover, the
effectiveness of the fiducial points should also be studied
systematically, and a better solution would be to learn these
locations from given training data for a given task. In our
previous work, we have analyzed topographically important
facial locations for both pose estimation and identity recog-
nition [19], and used feature selection methods to extract
optimal local image descriptor parameters for frontal face
recognition [20]. We have also used such features to calcu-
late bottom-up saliency in a selective attention-based face
recognizer [21].

In this work, our aim is to relax the independence and
saliency assumptions for face recognition by reformulating
the optimal Gabor basis extraction problem as a feature sub-
set selection problem. Doing this, we allow our approach to
detect more complex relationships and correlations between
feature dimensions, thus extracting a near-optimal Gabor
basis. For this purpose, we have devised a two-stage subset
selection mechanism: In the first stage, a genetic algorithm
is used to find the most informative facial locations. In the
second stage, a floating search method is used to learn the
individual parameters, that is, frequency and orientation, of
Gabor wavelet-based local descriptors.

The remainder of this paper is organized as follows:
Section 2 describes the proposed approach and experimen-
tal results, including a sensitivity analysis, are presented
in Section 3. We conclude and discuss future research
directions in Section 4.

2. Proposed approach: learning the best features

We have designed a local feature-based face represen-
tation scheme for recognition. Multi-frequency and multi-
orientation 2D Gabor wavelets are used as local feature ex-
tractors [7,11]. In order to find an efficient representation,
these local image descriptors should be placed carefully over
the face region. Moreover, depending on the locations of
these image descriptors, useful frequencies and orientations
should be found since specific parts of a face contain high
frequency information (e.g., eyes) and some other parts con-
tain low frequency information (e.g., cheeks). Orientation

selectivity also depends on the location of the Gabor ker-
nels. Therefore, we consider the problem by dividing it into
two consecutive stages: first, we determine the topograph-
ically important face regions, and then, we determine the
optimal frequency and orientation parameters of 2D Gabor
feature extractors at these locations. The order of selection
is not important, and they are expected to converge to the
same subset. However, selecting frequencies and orienta-
tions (F/O) first in the entire face region is not a good idea,
since some facial regions prefer particular F/Os and others
may prefer completely different F/Os. The overall diagram
of the proposed approach is shown in Fig. 1.

Learning discriminative facial locations and obtaining
optimal local feature extractor parameters is formulated
as a feature subset selection problem. In feature selection,
the aim is to select a subset from a given set such that the
classification accuracy of the selected subset is maximized
[22]. We use sub-optimal sequential and parallel subset
selection algorithms in our system. As sequential selection
algorithms, best-individual selection (BIF) algorithm, se-
quential forward selection (SFS), and sequential floating
forward search (SFFS) algorithm are used [22]. BIF ap-
proach simply selects the best k features and performs well
only if each local descriptor contributes independently to
the discrimination performance. In order to consider com-
plex feature dependencies, SFS and SFFS algorithms are
used in our system. In SFS, at each step, we add the most
significant feature with respect to the previously selected
subset. SFFS algorithm takes this idea one step further by
backtracking to remove the least useful features from an
existing feature subset to overcome the nesting effect. As a
parallel subset selection method, we use a genetic algorithm
where a chromosome represents a subset and a chromo-
some’s fitness is calculated according to the classification
performance of its subset.

2.1. Kernel location selection

We have designed three different methods to learn the im-
portant facial locations: lattice-based sampling, landmark-
based sampling, and dense sampling. In the lattice and
landmark-based methods, sparse sampling of Gabor kernels
at several locations were performed. Figs. 2a and b show
these sampling types, respectively. In lattice-based sampling
(Fig. 2a), we place a rectangular lattice of size N × N over
the central part of the face region. At each point in the lat-
tice, M different Gabor kernel convolutions are carried out
composed of v different frequencies and u different orienta-
tions with M = u × v. The concatenation of the magnitudes
of the complex outputs of Gabor convolutions forms a fea-
ture vector for the whole face.

In landmark-based sampling, salient facial landmarks
are used. We have identified S = 30 salient locations over
the face region commonly used by researchers as seen in
Fig. 2b. The aim of constructing such a sampling scheme is
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Fig. 1. Overall diagram of our approach.

Fig. 2. Different sampling types shown over the mean image: (a) lattice-based sampling; (b) landmark-based sampling; and (c) dense sampling.

to test our prior information as to whether these points are
really discriminative and to determine whether these points
are really important for recognition. With lattice-based and
landmark-based sampling, in order to determine the impor-
tant locations among these points, we perform BIF, SFS,
and SFFS-based subset selection. We consider each feature
vector of the ith face location as a single dimension. Thus
we have a search dimensionality of size N × N for lattice-
based sampling and S for landmark-based sampling. As a

stopping condition, we have defined the cardinality of the
resulting subset to a value d.

Dense sampling uses full convolutions at each pixel as
shown in Fig. 2c. This dramatically enlarges the cardinality
of the feature set. SFS- and SFFS-based algorithms become
infeasible for this search space. In order to cope with this
problem, we have employed a GA-based subset selection
algorithm. In our GA formulation, each gene in a chromo-
some represents the position of a Gabor kernel. We define
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the dimensionality of the selected subset as d; so, each chro-
mosome consists of d genes. The fitness function depends
on the classification accuracy of the selected subset.

2.2. Kernel parameter selection

Once we find the locations of features, we determine the
most useful orientations and frequencies of the Gabor ker-
nels at the selected locations, using SFFS. The first stage
returns a subset Xloc of dimensionality d ×M . In the second
stage of frequency and orientation selection, we search for
a subset Xf o of Xloc where |Xf o|>|Xloc|. Note that each
dimension corresponds to a specific frequency and orienta-
tion pair of the outputs of a previously selected Gabor kernel
at some specific location. Again, the feature selection crite-
rion in SFFS is the supervised classification accuracy of the
selected subset.

3. Experimental results

In our experiments, we have used a subset of the FERET
face database [23] which contains subjects having four im-
ages. The database contains normalized frontal images of
146 subjects. Each subject has four gray scale images of
resolution 150 × 130. Faces contain facial expression and
illumination variations. Each session contains two training,
one validation, and one test image and therefore there are
six possible experimental sessions: {S1, S2, . . . , S6}. After
training with two images per person, the validation set is
used to determine when to stop training (that is, adding
features) and the test set is used to report the final accu-
racy. The classifier is the nearest neighbor classifier. We use
6-fold paired t-test to compare the accuracies for statistically
significant difference. S2 and S5 are special: in the selected
subset of frontal FERET face images, some subjects have
two images with eyeglasses and two images without eye-
glasses. In configurations S2 and S5, the training set contains
either two images of a subject with eyeglasses, or without
eyeglasses. Therefore, the validation and test sets are dif-
ferent from the training set because of the presence/absence
of the eyeglasses. This property makes these configurations
very challenging since validation and test sets are very dif-
ferent from training sets.

3.1. Kernel location selection

3.1.1. Lattice-based sampling
First experiments on kernel location selection were car-

ried out using the lattice-based sampling method. A 7 × 7
lattice is positioned over the face. Gabor kernels are 15×15
pixels wide, and contain five frequencies and eight orien-
tations [7]. At each lattice point i, we have extracted the
local feature vector, �i = {m0,0, m0,1, m0,2, . . . , mp,q}, p =
0, . . . , 4; q = 0, . . . , 7 of dimensionality |�i | = 40 using
multi-frequency and multi-orientation Gabor kernels where

mi,j denotes Gabor convolution magnitudes. Combining all
local feature vectors, we obtain a global feature vector,
� = {�1, �2, . . . , �k} where k = 49 for lattice-based sam-
pling. The cardinality of � is |�| = 49 × 40. Let �LOC be
the selected subset of dimensionality d, �LOC = {�i : i ∈
1, . . . , k}, where d is set to 15 in our experiments. Notice
that we treat each local feature vector �i as a single feature
dimension in the subset selection formalism. Fig. 3 shows
the selected kernel locations in the subset �LOC graphically.
The top row shows the 15 selected kernel locations using
BIF-based subset selection for each of the six different con-
figurations. These locations are found using the validation
sets in all experiments. Similarly, the second and third rows
show the most important kernel locations for SFS and SFFS
algorithms, respectively.

Looking at the BIF results, we see that most of the ker-
nels are located at the upper part of the face, and are highly
symmetric, except in sessions S2 and S5. These results com-
ply with the findings of previous works and are expected.
Eyes, eyebrows, and forehead seem to have more discrimi-
nating information. The bias towards the upper facial loca-
tions is due to the significant expression variations around
the mouth region in the dataset. The eyeglasses problem in
S2 and S5 leads to the positioning of some kernels around
the mouth region.

The symmetry property is not present in SFS and SFFS,
since they evaluate the importance of a new candidate fea-
ture with respect to the existing subset, and take feature de-
pendencies into account. This is an advantage of SFS and
SFFS over BIF: They avoid redundant, symmetric features.
As with BIF, points are largely scattered outside the variable
mouth region and we see the importance of the face out-
line in sessions S1, S3, S4, and S6. Visual inspection reveals
that kernel locations found by SFS and SFFS approaches
are very close. Though locations vary between configura-
tions, for the same configuration, locations found by SFS
and SFFS tend to coincide.

Classification accuracies of lattice-based sampling ap-
proach for each experimental session are shown in Table 1.
For each subset selection method, test set results are pre-
sented together with their mean, standard deviation and me-
dian statistics. We include the median statistic in order to
stress the outlier effect of sessions S2 and S5, and we also
report statistics over four sessions, excluding S2 and S5.
Remember that subset selection is based on classifier ac-
curacy and selection criterion function is calculated on the
validation set. Using the 6-fold paired t-test, SFS and SFFS
methods are statistically significantly more accurate than
BIF, while SFS and SFFS are statistically equivalent (with
95% confidence) again proving wrong the independence
assumption.

3.1.2. Landmark-based sampling
The same set of experiments were carried out for

landmark-based sampling. Fig. 4 shows the locations of
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Fig. 3. Selected Gabor kernel locations for lattice-based sampling, found by BIF (top row), SFS (middle row), and SFFS-based (bottom row) subset
selection methods for six different configurations, S1, . . . , S6.

Table 1
Classification accuracies of lattice, landmark, and dense sampling methods on six different sessions

Lattice-based Landmark-based Dense sampling

BIF SFS SFFS BIF SFS SFFS GA

S1 85.52 84.83 88.28 80.69 84.83 85.52 88.28
S2 52.41 60.00 55.17 51.72 49.66 53.79 74.48
S3 85.62 86.30 85.62 78.77 89.04 86.30 86.30
S4 83.56 86.30 86.99 84.93 78.77 80.82 90.41
S5 45.21 50.00 49.32 34.25 59.59 50.68 57.53
S6 82.19 90.41 86.99 84.25 84.93 84.25 90.41

Mean(6) 72.42 76.31 75.39 69.10 74.47 73.56 81.24
STD(6) 18.47 16.91 18.05 21.09 16.03 16.65 13.05
Median(6) 82.88 85.56 86.30 79.73 81.80 82.53 87.29

Mean(4) 84.22 86.96 86.97 82.16 84.39 84.22 88.85
STD(4) 1.65 2.40 1.09 2.93 4.23 2.42 1.97
Median(4) 84.54 86.30 86.99 82.47 84.88 84.89 89.35

For each method, test set performances are given with their mean, standard deviation and median statistics. Statistics with number four are calculated
by excluding S2 and S5.

selected kernels in the set �LOC for landmark-based sam-
pling. As in the lattice case, BIF approach favors the upper
face region by selecting symmetric locations around eyes,
eyebrows and forehead. We see that the lower part of the
nose also contributes to the subset. With SFS and SFFS,
although the contribution of the nose region and cheeks are

more visible, forehead, eyes, and eyebrows are generally
found to be informative.

The classification performance of landmark-based sam-
pling is shown in Table 1. Again, we see that SFS and
SFFS are significantly more accurate than BIF and that
SFS and SFFS are statistically equivalent. An important
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Fig. 4. Selected Gabor kernel locations for landmark-based sampling, found by BIF (top row), SFS (middle row), and SFFS-based (bottom row) subset
selection methods for six different configurations.

observation is that lattice-based sampling is more accurate
than landmark-based sampling. This indicates that our prior
beliefs in saliency regions is not always correct and that it
is better to extract salient locations from data.

3.1.3. Dense sampling
Parallel search for a subset �LOC is done via construct-

ing genetic chromosomes of size |�LOC | where each gene
points to a location in the face image. As in previous experi-
mental settings, |�LOC | is set to 15. As the fitness function,
we have used the recognition performance of the subset on
the validation set. The single-point crossover operator was
implemented to produce new individuals. Since we have
the (x, y) coordinates in genes, the mutation operator is
implemented as a displacement vector, where the gene to be
mutated is displaced by a vector � = {�x, �y}. The norm |�|
is gradually decreased at each iteration for better conver-
gence. In both operators, we require that the coordinates of
face points in a single chromosome do not overlap by more
than a specified amount in order to extract independent lo-
cal information and this distance is selected to be 20 pixels.
The probability of crossover and mutation are selected to
be Pc = 0.5 and Pm = 0.05, respectively. The selection of
a new population is based on the probability distribution of
fitness values. For quick convergence, elitism is employed,
where the elitism ratio is 0.05. The initial population size

is 1600. GA terminates when there is no improvement on
the accuracy of the best individuals for a specified time
interval.

In Fig. 5, the 15 feature points found by the best indi-
viduals of GAs are shown. From the figures, it is clear that
the outline of the face, the outline of the nose region, and
eyes and eyebrows contribute to the most discriminative sub-
set �LOC . Almost in all configurations except S2 and S5,
cheeks, mouth region and the center area of the forehead
are absent. In S1 and S2, there is a feature point outside the
face area. This may happen because of two reasons: (i) the
sub-optimal convergence of the GA algorithm, (ii) the se-
lected point does not positively or negatively contribute to
the recognition performance (i.e., effectively there are 14
useful points.) This explanation is verified in Section 3.2.

The recognition performances of GA-based location se-
lection are also shown in Table 1. Although the second and
fifth configurations again perform poorly, the recognition
accuracies are quite high.

3.1.4. Comparison of three methods
The comparison of classification accuracies of lattice,

landmark and dense sampling methods using 6-fold paired
t-test shows that dense sampling using GA performs the
best. Lattice-based sampling is found to be statistically more
accurate than landmark-based sampling, and between
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Fig. 5. Selected kernel positions found by GA for six different sessions.

Fig. 6. Selected frequency and orientation pairs at the selected kernel locations. Filled circles on each oriented line represent the selected kernel frequency
where innermost circles are for low frequencies and outermost frequencies are for high frequencies. Oriented lines represent the kernel orientations.

lattice-based and landmark-based sampling, SFS or SFFS
on lattice-based sampling is the most accurate. These results
indicate that our prior beliefs as to the saliency of certain
regions for discrimination (as in landmark-based sampling)
are not true and that it is better to allow a general sampling
from a grid (as in lattice-based sampling) and it is even
better to allow a more general sampling from the whole
image (as in dense sampling).

3.2. Kernel frequency and orientation selection

In the previous section, we have identified the discrimi-
native facial positions and represent them as �LOC in sub-
set selection formalism. Now, our aim is to select the useful
frequency and orientation pairs from �LOC to construct the
subset �FO , where �FO ⊂ �LOC . Since dense sampling
method is the top performer in the previous part, we will
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Table 2
Classification accuracies for SFFS-based frequency/orientation selection

S1 86.90
S2 55.17
S3 86.99
S4 85.62
S5 47.26
S6 89.73

Mean ± SD(6) 75.28 ± 18.85
Median(6) 86.26

Mean ± SD(4) 87.31 ± 1.73
Median(4) 86.95

continue our experiments using its output as our input set
in this section. Recall that �LOC consists of local feature
vectors �i , each �i contains magnitudes from Gabor kernel
convolutions, mp,q , and |�LOC | is 15 × 40 = 600.

Frequency and orientation (F/O) selection is carried out
using the SFFS algorithm since our experiments have shown
that it has the best trade-off between complexity and accu-
racy. The termination condition is determined empirically
by observing the behavior of the classification rate on the
validation set, and the dimensionality of the subset �FO is
set to a value where the classification performance does not
improve significantly for a specified time. Our experiments
have shown that the target dimensionality of 200 is sufficient
for best accuracy on the validation set, which implies a de-
crease of complexity to one-third. Fig. 6 shows the selected
F/O pairs at their specific facial locations for each of the
six sessions. In general, we see that the selected kernel ori-
entations are correlated with the underlying characteristics
of facial texture. This is more obvious in locations where
non-complex local facial directions are present, i.e., at the
outline of faces. In terms of frequencies, some positions fa-
vor low frequencies, some high frequencies, and in some
places, both of them are used together. In S1 and S5, there
were selected points outside of the face area. In the F/O

selection phase, none of the F/O’s in S1 were selected (see
Fig. 6(a)). However, in S5 in Fig. 6(e), all of the F/O were
selected which is due to the problematic training/validation
sets in S5.

The recognition performances of each subset �FO are
shown in Table 2. Comparing these with the bottom part of
Table 1, using the 6-fold paired t-test, �FO and �LOC are
found to be statistically equivalent. Although the average
test set performances do not illustrate this equivalence due
to the problematic sessions S2 and S5, median statistics with
recognition accuracies, 87.29% and 86.26% for �LOC and
�FO , respectively, indicate the similar performance. This in-
dicates that the dimensionality can be decreased from 600 to
200 without losing from accuracy. As mentioned previously,
S2 and S5 lead to a performance degradation due to the eye-
glasses. Fig. 7 shows some misclassified faces from sessions
S2, S3, S4, and S5. Notice that in addition to the eyeglasses,

expression variations that cause high texture variations in
the mouth region, especially teeth, are the other sources for
the misclassifications.

3.3. Learning the number of important locations

In our system, we have fixed the number of local image
descriptors to a constant value, d = 15. In order to investi-
gate the effect of d, a different methodology is used where
the number of Gabor kernels is variable. This variability is
introduced into the system by adding an additional penalty
term to the fitness function of the GA-based subset selection
algorithm that penalizes the cardinality. Therefore, among
different chromosomes having the same classification
accuracy, the one with the least cardinality will be favored.
Table 3 shows classification accuracies and the found
cardinalities of the selected subsets for dense and lattice-
based sampling. The results show that the classification
accuracy of the variable-size extension of a kernel selection
module is statistically similar to its fixed (d = 15) version
while using subsets of cardinality d ∼ 8 − 11. However,
as in the previous section, dense sampling-based selection
outperforms lattice-based selection, and with S2 and S5, the
problem gets more difficult and we need more locations
because of the outliers. These results indicate that sampling
15 points from the face is sufficient.

3.4. Joint-learning of location, frequency, and orientation

In the proposed architecture, the topographical locations
of Gabor kernels, and their F/O parameters are learned con-
secutively in a two-stage subset selection methodology. The
separation of these two tasks allows us to find near optimal
solutions in a significantly faster way. However, one may
consider the application of subset selection directly on the
whole feature variables, thus learning the locations together
with frequency and orientation parameters in one step. Al-
though such an approach is infeasible by using sequential
selection methods, GA-based parallel search can be a viable
solution. However, it should be noted that even GA-based
selection from all feature variables has significant time com-
plexity when compared to the two-stage selection. We have
performed a joint-learning of location, frequency, and orien-
tation using a dense sampling-based GA algorithm where the
dimensionality of the selected subset is allowed to vary by
introducing a penalty term as in Section 3.3. Classification
accuracies and the cardinalities of the found subsets are
shown in Table 4. The joint subset selection search per-
formed statistically worse than the two-stage selection
scheme. This is to be expected, since it is very difficult to
find the optimal parameters in such a large search space.
The mean classification accuracy of the four experimental
sessions (excluding S2 and S5) decrease from 87.31% to
76.37% on the test set.
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Fig. 7. Examples of misclassified face images. In each set, first two columns display the training set images, third column is the probe image, and last
column shows the nearest face image found by the algorithm.
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Table 3
Classification accuracies for variable-size kernel location selection on the test set

Dense sampling-based location sel. Lattice-based location sel.

Accuracy #Locs Accuracy #Locs

S1 85.60 8 83.00 10
S2 64.39 15 50.00 15
S3 85.00 9 83.00 8
S4 88.00 11 81.50 10
S5 66.50 18 47.30 11
S6 88.40 8 89.70 10

Mean ± SD(6) 79.65 ± 11.10 72.42 ± 18.65
Median(6) 85.30 82.25

Mean ± SD(4) 86.75 ± 1.70 84.30 ± 3.67
Median(4) 86.80 83.00

#Locs denotes the number of selected points over the face image.

Table 4
Classification accuracies for variable-size joint kernel location, frequency
and orientation selection

Session Test set Dim.

S1 77.40 139
S2 47.26 138
S3 80.14 110
S4 73.29 116
S5 43.15 115
S6 74.66 101

Mean ± SD(6) 65.98 ± 16.32
Median(6) 73.98

Mean ± SD(4) 76.37 ± 3.04
Median(4) 76.03

Dim. denotes the overall cardinality of the selected subset.

3.5. Sensitivity analysis

The proposed architecture learns the discriminative facial
locations and the parameters of the local Gabor feature ex-
tractors on perfectly aligned faces at the enrollment stage.
Although accurate alignment can be performed at the enroll-
ment phase, it is not guaranteed to have perfectly aligned
faces at the identification phase. Depending on the accuracy
of the face detection and facial landmark localization mod-
ule, test faces may have some scale and rotation variations.
In order to study the effect of face alignment and registra-
tion process on the recognition accuracy, we have performed
sensitivity analysis by simulating possible variations at the
preprocessing stage.

In the pre-processing stage, faces in the FERET database
are aligned according to the coordinates of eyes and mouth.
Left eye, right eye and the mouth center coordinates are
used to find the in-plane rotation angle and the scale of the
face. Once these two parameters are found, the input face is

transformed to a canonical position. In the sensitivity analy-
sis, we assume that the landmark localization module which
detects eye and mouth coordinates is not accurate. Then, we
can have inaccurately registered faces at the identification
phase.

In our tests, we add Gaussian noise to the groundtruth
fiducial positions to simulate the behavior of the inaccurate
localization module. For each test face, we have generated
10 different badly registered faces, each having different
localization errors. Localization errors were produced by
adding zero mean Gaussian noise with standard deviations
(�) starting from one pixel up to 10 pixels in both x and
y directions. Fig. 8 shows sample images which are in-
accurately registered with increasing � error levels to the
right. Note that although we have included errors with stan-
dard deviations up to 10 pixels, errors this high are highly
unlikely.

Table 5 shows the recognition rates for five � levels.
For each �, 10 synthetic test sets are formed. In these ex-
periments, only the configurations S1, S3, S4, and S6 are
used. The recognition rates are reported for the location
selection module and for the F/O selection module. If the
test images are registered without any localization error
(� = 0), the identification rates are 88.85% and 87.31%,
respectively. If the feature localization algorithm performs
an inaccurate localization with three pixel standard devi-
ation (� = 3), the identification rate for location selection
and F/O selection modules drop to 85.53% and 80.70%,
respectively. The performance degradation for all error lev-
els is plotted in Fig. 9. We see that performance degradation
for small standard deviations is tolerable. Comparing the
performance figures of Table 5 with Table 1, we observe that
the benefits of learning discriminative facial locations over
fixed landmark-based selection remain even with erroneous
alignment up to � = 3. Furthermore, we expect the perfor-
mance figures of Table 1 to also degrade in the presence of
alignment errors.
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Fig. 8. Inaccurately registered faces of two subjects in the FERET database. At each row, the standard deviations (�) of the Gaussian noise added to the
groundtruth are 1, 3, 5, 7, and 10 pixels.

Table 5
The recognition accuracies for various localization error levels (�)

� = 0 � = 1 � = 2 � = 3 � = 4 � = 5

LOC 88.8 ± 1.9 88.0 ± 2.6 86.5 ± 3.0 85.5 ± 2.7 83.9 ± 4.3 83.6 ± 3.3
FO 87.3 ± 1.7 85.1 ± 2.8 82.1 ± 3.4 80.7 ± 4.1 78.58 ± 4.4 78.7 ± 4.1

Average recognition accuracies and their standard deviations are reported both for location (second row), and for frequency/orientation selection module
(third row).
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Fig. 9. The recognition rates for various localization error levels (�). Average recognition accuracies and their standard deviations are plotted both for
location selection module and for frequency/orientation selection module.
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4. Conclusion and discussion

We present a new form of local feature-based face repre-
sentation technique which is able to consider local feature
dependencies present in faces and allows better feature
extraction. Our main contribution is to reformulate the
representation task as a subset selection problem. We have
shown that it is possible to reach an accurate and simple
facial feature set by learning informative locations from
training data instead of assuming regions of saliency a pri-
ori, and by taking the dependencies of local features into
account. To confirm this idea, we assume a perfect facial
feature localization module by finding these points manu-
ally, and show that using these facial feature points (i.e.,
landmark-based sampling), one can get only sub-optimal
identification performance.

Feature selection in high dimensions has proved to be very
difficult and time consuming. In order to overcome this prob-
lem, we have devised a two-stage subset selection scheme.
In the first stage, we use a GA-based selection technique
to find the topographically discriminative facial locations.
In the second stage, the best set of frequencies and orienta-
tions of Gabor filters at these locations are chosen using the
SFFS algorithm. Frontal face recognition experiments on the
FERET dataset show that topographical feature distribution
around face outline, upper part of the face covering fore-
head, eyebrows and eye corners, and points in the periphery
of nose have high recognition power. However, it is essen-
tial to employ a mechanism which takes the dependencies
of features into account. Since our approach uses floating
search and GA algorithms, time complexity of the training
phase is high. This is due to our use of a fitness function
based on classification accuracy; this increases complexity
but finds the best features for high accuracy.

Our proposed method focuses only on the face coding
and assumes that face images are normalized with respect
to eye coordinates previously. However, robustness of the
algorithm has been studied when some variations such as
rotation and scale are present in the data. We have shown that
location and parameter selection are not highly sensitive to
correct alignment and that the benefits our feature selection
remain even when small errors are present.
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