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Constructive Feedforward ART Clustering
Networks—Part |

Andrea Baraldi and Ethem Alpaydin

Abstract—Part | of this paper proposes a definition of the ART 1-based systenisthe vigilance threshold is equivalent to
adaptive resonance theory (ART) class of constructive unsuper- an upper limit on the size of the cluster region of support in input
vised on-line learning clustering networks. Class ART generalizes space

several well-known clustering models, e.g., ART 1, improved ART | ¢ | ART 1-b d dels h b
1, adaptive Hamming net (AHN), and Fuzzy ART, which are opti- nrecentyears, severa -based models have been pre-

mized in terms of memory storage and/or computation time. Next, Sented. It is well known that ART 1, which categorizes binary
the symmetric Fuzzy ART (S-Fuzzy ART) network is presented patterns, is sensitive to the order of presentation of the random

as a possible improvement over Fuzzy ART. As a generalization of sequence [5], [6]. This finding led to the development of IART
S-Fuzzy ART, the simplified adaptive resonance theory (SART) 1 \which also applies to binary patterns but is less dependent

group of ART algorithms is defined. Gaussian ART (GART), . .
which is found in the literature, is presented as one more instance than ART 1 on the data set input presentation [6]. The AHN,

of class SART. In Part Il of this work, a novel SART network, Which is a binary feedforward network that may employ a par-
called fully self-organizing SART (FOSART), is proposed and allel implementation of its output stage (MAXNET), is func-

compared with Fuzzy ART, S-Fuzzy ART, GART and other tjonally equivalent to ART 1 and optimizes ART 1 both in terms
weII.-known clustering algorithms. Results of our comparison may ¢ computation time and memory storage [7]. ART 2, designed
easily extend to the ARTMAP supervised learning framework. . !
_ _ _ to detect regularities in analog random sequences, employs a
Index Terms—Absolute and relative membership function, computationally expensive architecture which presents difficul-
adaptive resonance theory (ART), clustering, hard-and-soft Com- tiag iy parameter selection [11]. To overcome these difficulties,
petitive Iearnlng,_ pruning, reinforcement learning, unsupervised the Fuzzv ART svstem was presented as a generalization of
learning, Voronoi partition. y YS P 9 aileatlt
ART 1 to process binary as well as analog pattern distributions
[8]. To deal with supervised learning tasks, the so-called Fuzzy
. INTRODUCTION ARTMAP classifier was developed around the combination of

LL NATURAL systems provided with cognitive capabil-tWo Fuzzy ART modules. Fuzzy ARTMAP, which was shown

A ities feature feedback interaction with their external e© perform well in several benchmarks with respect to other su-
vironment. Owing to this environmental feedback, natural syBrvised learning systems [12]-{14], is still widely employed
tems weaken or reinforce their behaviors as a function of théfrSeveral application fields [12], [15], [16]. To reduce the sen-
success [1], [2]. Mimicking the real world, an artificial cognitivesitivity of Fuzzy ARTMAP to the order Qf training samples,
system employing reinforcement learning “is allowed to react &!tPut combinations of independently trained Fuzzy ARTMAP
each training case; it is then told whether its reaction was god¢Stems were proposed [12], [13].
or bad” [3], “but no actual desired values are given” [4]. Our conjecture is that the sensitivity of Fuzzy ARTMAP

One example of artificial reinforcement learning can be fourfdy be, atleast in part, a legacy of Fuzzy ART. In other words,
in the adaptive resonance theory (ART) class of clustering algfce Fuzzy ARTMAP employs two Fuzzy ART modules, we
rithms, e.g., ART 1 [5], Improved ART 1 (IART 1) [6], adap-&XPect that ART 1 structural problems, if any, may affect Fuzzy
tive Hamming net (AHN) [7] and Fuzzy ART [8], whose ori-ART and, as a consequence, Fuzzy ARTMAP. This conjecture
gins go back to several 1976 pioneering papers in neural ni§t-Supported by the analysis of the potential weaknesses of
work history by Grossberg [9], [10]. In ART clustering netFuzzy ART conducted by Williamson [13], whose consid-
works, an orienting subsystem models some external evaluatf§tions led to the development of the supervised learning
of the pattern-matching reaction of the attentional subsystem@ussian ARTMAP (GAM), based on the unsupervised
an input stimulus [11], [12]. The priori knowledge exploited '€arning Gaussian ART (GART) module. In [13], [14], GAM
by the ART orienting subsystem consists of a user-defined vigfas s_h_own to be more accurate and less sensitive to the order
lance threshold which is a relative number equivalent to a low@k training samples than Fuzzy ARTMAP.
limit on the acceptable quality of the pattern recognition ac- According to Backer and Jain, “in cluster analysis a group of

tivity performed by the attentional subsystem. For example, }PJ€cts is split up into a number of more or less homogeneous
subgroups on the basis of an often subjectively chosen measure

of similarity, such that the similarity between objects within a
subgroup is larger than the similarity between objects belonging
Manuscript received May 3, 1999; revised February 8, 2001. to different subgroups” [18]. And since the goal of clustering is
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acterization of unobserved (future) samples generated from the AngNggggﬁL
same probability distribution, the task of clustering may fall out- SUBS
side the framework of predictive (inductive) learning problems,

such as vector quantization [19]. " E layer

The subjective nature of the clustering problem precludes an , (MAXNET)
absolute judgement as to the relative efficacy of all clustering gains ORIENTING
techniques [18]. In line with this principle, the goal of this paper -~ SUBSYSTEMNM
is not to choose the “best” clustering technique (such a task W
would be contrary to the very nature of clustering), but rather to H layer H control (reset signal)
emphasize those functional aspects most important to the use —»@—»  (atching
such as robustness to changes in input parameters, sensitivity t|  ga:n2 score net)
the order of the data set input presentation, accuracy, computa:
tion time, domain of applicability, etc., that may characterize the T W
algorithms belonging to the class of ART clustering networks. T
Although focused on ART clustering networks, such as ART 1
and Fuzzy ART, our analysis may provide new insights into the +—>@— F layer L
understanding of the Fuzzy ARTMAP classifier. gainl

Part | of this paper provides a definition of the class of ART [} P

clustering networks which is capable of generalizing the group
of ART 1-based algorithms (see footnote 1). Based on this def-
inition, ART 1, IART 1, and Fuzzy ART are optimized in terms
of computation time and memory storage, while structural prob- X

lems of ART 1-based algorithms are highlighted. Next, the sym-

metric Fuzzy ART (S-Fuzzy ART) network is proposed and digig. 1. AHN system. For details on the meaning of thresholhd weights
cussed as a possible improvement over Fuzzy ART. As a gengf-andW, refer to bibliography [7].

alization of S-Fuzzy ART, the group of simplified ART (SART)

algorithms is defined. The GART clustering model, which is gnalog and feedforward Fuzzy ART [8]. In combination with
Gaussian maximum-likelihood (ML) probability density funcine definition of class ART we also propose two versions of an
tion estimator found in the literature [13], is presented as ogicient ART (EART) implementation scheme capable of opti-
more instance of class SART. mizing ART networks in terms of computation time.

In Part Il of this paper, a constructive, on-line learning, Class ART of clustering networks and class EART (version

topology-preserving, soft-to-hard competitive, minimum-dist and 2) of ART implementation schemes will be employed as
tance-to-means clustering network, belonging to class SARgEneral frameworks in this paper.

and termed fully self-organizing SART (FOSART), is proposed

as a new synthesis between properties of Fuzzy ART and other

successful clustering algorithms such as the self-organizifig ART Optimization Problem
map (SOM) [20], [21], and neural gas (NG) [22], to extend the
capabilities of these separate approaches.

Let us consider, at presentation timean unlabeled input
) d i i ' i i
Part | of this paper is organized as follows: in Section I, th%erﬁltorg( < % _wr;gredtlrs] the dllmensmnalgg/ o_fm;())utlsp.ace,
class of ART clustering networks is defined. In Section Ill, AR e domainiy-= ’xIn the analog case, = {0, 1} in
QF binary case. This input vector is processed by an unsuper-

1-based algorithms are interpreted in the light of the gene d sinale-l feedf d tructive clusteri work
ART framework proposed in Section Il. Fuzzy ART is discusseg>c9 Singie-ayerieedionvard constructive clustering network,
onsisting of a layer ofl input unitsF;, £ = 1, ..., d, fully

in Section IV and S-Fuzzy ART is presented in Section V. Seks nected to an output layer of processing elements (PEs, also

tion VI presents an experimental comparison between Fuz? q q ) ugEsP
ART and S-Fuzzy ART. In Section VII, generalization of thé, rmed output nodes, categories, components, or clu é S)

S-Fuzzy ART model leads to the definition of the class of SART — 1, ..., e(t), where network size(t) may increase with

. t) .
clustering networks. Conclusions are reported in Section Viifime. Structural properties of the output noﬂé attime: are
parameterized by a parameter (weight) vector learned from the

data (also called cluster prototype or tempIaW}(t) e Dr,
i=1,....¢t), wherep > dis the dimensionality of param-
eter space.

Based on our interpretation and generalization of the AHN re-In line with the AHN reformulation of the ART 1 clustering
formulation of the ART 1 clustering algorithm [7], this sectiorRlgorithm [7], we define an ART clustering scheme as an
proposes our definition of the class of ART clustering networktimization problem where the best-matching unit at time
that generalizes and optimizes, in terms of memory storade, ;. is the solution, if any, that maximizes expression [7]
well-known clustering algorithms such as: 1) binary ART 1 [5];

2) binary IART 1 [6]; 3) binary and feedforward AHN, shown o ® )
in Fig. 1, which is functionally equivalent to ART 1 [7]; and 4) wi(t) = I {AFART (X > W; )} (@)

Il. THE CLASS OFART CLUSTERING NETWORKS
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whereAF, pr(X®, W), called activation function (AF), is ATTENTIONAL ORIENTING
. J SUBSYSTEM SUBSYSTEM
a mapping
E control (reset and search
d P + signalls, accept match or
AFART(X, W) D x DP — RO (2) establish a new category)

> @— E layer
equivalent to a “compatibility” (i.e., typicality, membership) gain2 \

measure between data poitand cluster modeW, subject T
W

to constraint

, ® w® >
MPFE gt (X , le(t)) Z P pE [07 1] (3) +——>@—> F layer

gainl

where vigilance threshold, which is a user-defined relative
number,provides a model of top-down external expectations,
while M Fypr(X®, W‘(;:)m))v called match function (MF), is

a mapping

MPFpr(X, W): D% x DP — [0, 1] (4) X

ivalent t |« tibility” bet d Eég 2. ART and SART system architecture, wh@fé identifies a matrix
eq_uwa ent 10 a normal “compatbiiity mea_sure e_weer_l a bottom-up connections an& * is the best-matching template. Unlike the
pointX and cluster modéW . The purpose of inequality (3) iS to common interpretation of ART 1-based systems, notice that no top-down
detect whether patteﬂi(” is an outlier, i.e., whether input dataconnection is involved. For more details, refer to the text.
is very far from the ensemble of clusters at timén general,

activation and match functions (2) and (4) may or may not Isérategy: 1) aims at avoiding the “probabilistic (relative) mem-

the same function. bership problem” where, at timg + 1), template parameters
In our view, the modular architecture of all ART clusteringXisting at time¢ are affected by an outlier detected at time
algorithms consists of (see Fig. 2): [24], [25],2 and 2) should be combined with a noise category

i) a completely generic unsupervised single-layer feedforr@m(_)val mechanism, which is straightforward to add to ART
ward (bottom-up) pattern recognition network, terraed  architectures [13], [27]. _
tentional subsystengonsisting of processing elements. §upQrV|S|on by the orienting s_u_bsystem over attentional ac-
(PEs) which perform according to (1). This definition idIVIti€s IS sugh.that coarser partitions of input space are pur-
not obvious if we consider that the “bidirectional” func-Su€d when vigilance parameters lowered in (3). This means
tional interpretation of ART 1, employing top-down adhat the vigilance threshold i_s_e_mployed as a _Iower bound on
well as bottom-up adaptive weights [5], [6], still holds irf normal degree of “compatibility” (membersmp) between an
recent papers [15], [16]. Exploitation of “unidirectional”iNPUt vector and a category structure pair. . _
rather than “bidirectional” adaptive weights guarantees anNOte that, in our ART attentional subsystem, provided with
optimization, in terms of memory storage, of traditionaie€dforward connections exclusively, the meaning of the term

“bidirectional” algorithms like ART 1 and IART 1 (see ‘resonance” is in contrast with that traditionally employed in
Appendix 1) [17]. the ART I|_ter<'_;1ture [5], [6], [8], [15], [16]. This term should

i) An orienting subsystemcentered on inequality (3), N° longer indicate “Fhe basic feature of all _/-\RT systems, no-
equivalent to an interface between supervised and un&@P!V: pattern-matching between bottom-up input and top-down
pervised knowledge, where the quality of unsupervisdg@rned prototype vectors” [8, p. 760], just as the term *res-
bottom-up pattern recognition is compared to top-dovxf?f‘ance" has never been applied to pattern matching activities
requirements (expectations, or prior knowledge) Ior(p_erformed by feedforward clustering networks, e.g., SOM or

vided by the external environment (supervisor) in thQG, where no top-down prototype vector does exist. In our\_/ie\_/v
form of an adimensional relative vigilance threshol@f ART systems, the term “resonance” means rather that if, in

p e o, 1]. the orienting subsystem, unsupervised knowledge matches ex-

In the orienting subsystem, according to an example-drivé‘?{nal (prior) expectations, then, in the attentional subsystem,

mechanism [23], if (3) is satisfied, i.e., if unsupervised knoWﬁuccessful pattern recognition activities are reinforced by means

edge matches external expectations, then “resonance” Occawrototype vector adaptation mechanisms.
In this case the unsupervised pattern recognition activity of tlée
attentional module is reinforced (see Section I) by means of
suitable prototype adaptation strategies. It is interesting to observe that the only structural difference
Vice versa, if resonance does not occur, an outlier is detecigtween AHN and ART 1, IART 1 and Fuzzy ART is that AHN

and the orienting subsystem allows the attentional module to @yecutes (3) first and (1) second, while the latter algorithms
namically increase its resources (processing elements) to nmexgcute the same pair of operations in reverse order. This
external requirements. In particular, when (3) is not satisfied atchitectural difference allows AHN to detect, at tihethe
timet¢, then, at timet + 1), parameter adaptation is restricted , R

In fuzzy set theory, an outlier tends to have small “possibilistic” (absolute)

toa SpeCi_ﬁ_C parameter SUbSpaC? CO”SiS“”_g of one single _C%Qr‘nbership values with respect to all category structures, while its “proba-
gory specifically generated to satisfy (3). This network growingjlistic” (relative) membership values may be high [24]-[26].

Optimized Implementation of ART Clustering Networks
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TABLE |
PROPERTIES OFART CLUSTERING NETWORKS

ART 1 | IART 1 | AHN | Fuzzy ART | S-Fuzzy ART | GART | FOSART

EART version 1 1 1 1 2 1 2
class SART No No No No Yes Yes Yes
best-matching unitg® i any, by searching once through Step 4a). Resonance Condition—Reinforcement

wl(t)’ A . .
the <(¢) activation values whatever the input pattern malearning: Prototype of the best-matching umlw‘(;i(t),

be, whereas the traditional implementation of ART 1, IARTs adjusted to input patterrX(*) according to an ART
1, and Fuzzy ART requires one up t¢t) searches through model-dependent weight adaptation law. Other prototypes may
activation values, managed by a so-called “mismatch resg$o be considered suitable for adaptation if soft-competitive
condition and repeated search process” mechanism [5]-[Blarning strategies are adopted.
[15], [16]. To summarize, binary AHN and ART 1 clustering Step 4b). Nonresonance Condition—New Processing Ele-
models are functionally equivalent, but AHN, which employment Allocation: If there is no solution to the maximization
feedforward connections exclusively, is more efficient in termsroblem described above, i.e., if the ensemble detected in
of computation time and memory storage [7]. Step 2 is an empty set, then “resonance” does not occur and
Let us call the AHN-based optimal implementation of thene new processing unit is dynamically allocated to match
ART maximization problem, defined by (1) and (2), the complexternal expectations. Thus, the PE counter is increased as
tationally efficient ART (EART) implementation scheme. Unc(¢ + 1) = ¢(t) + 1 and a new output nod8"2). is allocated

c(t+1
like traditional implementations of ART 1, IART 1, and Fuzzytg match input patterX®, e.g., wherp = (d i.)e., if dimen-

ART, and inline with AHN, EART employs no time-consumingsjonalities of parameter and data spaces are the same, then
“mismatch reset condition and repeated search process.” Qﬁ(t(:rii = X®, As a consequence, ART algorithms require
pending on properties of activation and match functions, we prgy ‘fandomization of initial templates since initial values are
pose two versions of the EART implementation scheme. Tablgata-driven.
shows the relationship between versions 1 and 2 of the EARTgtep 5: Goto step 1.
processing scheme with ART networks discussed in this paper) version 2 of the EART Implementation Scherffeacti-

1) Version 1 of the EART Implementation ScherB&RT  yation function (2) increases monotonically with match func-
version 1 is equivalent to the sequential version of the paraligdy (3), i.e., if AF4 (X, WD) > AFpp(X®, W(t))
Pt incroase monatoncall with acaton fancton (2. 6. e Ve Pans (X3, Wy ) > MEura (X, Wi,

y LGy (t) d (t .

APy pr(X®, WY > AP, pr(X®, W) does not imply X" e D¢, YW, Wy’ € D, and vice versa, then EART

ART A ® ART * "Vh ® version 2 holds. This EART version employs the above condi-
that M Farr (XD, W) > MFyrr(X®, W), YX® € tion to reduce computation steps required to cluster input pat-
D, VWJ.(”, WS) € DP, and vice versa. Since this conditionterns, i.e., EART version 2 is more efficient than version 1. ART
holds in ART 1, IART 1, and Fuzzy ART, besides AHN, therl, IART 1, AHN and Fuzzy ART do not satisfy the condition
all ART 1-based networks may be implemented with versiondbove and cannot employ EART version 2, see Table I. One ob-

of the EART implementation scheme, see Table I. vious example in which the condition above is satisfied is when
Step 0. Initialization: Presentation countérand PE counter AF4 gy (X®, WJ.(t)) = MFpr(X®, WJ.(t)).
c(t) are set to zero. Step 0. Initialization: As in EART version 1.

Step 1. Input Pattern PresentatiorPresentation counter is  Step 1. Input Pattern PresentatiorAs in EART version 1.
increased by one @s= ¢t+1, and anew patter(*) ispresented ~ Step 2. Detection of Processing Units Eligible for Reso-
to input nodes. nance—Activation Value Computation and Best-Matching Unit

Step 2. Detection of Processing Units Eligible for Res@&election (1): The largest activation is selected according to
nance—Vigilance Testing (3)The orienting subsystem selectg1). The corresponding PE is the best-matching unit, which is
as candidates for resonance those processing units that m#tehonly processing unit passed to vigilance testing.
external requirements. To select these units, the orientingStep 3. Resonance Domain Detection—Vigilance Testing
subsystem employs vigilance test (3). All PEs (generally, mof®): Vigilance test (3) is applied to the best-matching unit
than one) that satisfy this constraint constitute an ensemibeclusively. If the test is not satisfied, goto Step 4b).
passed to Step 3. If this ensemble is empty, goto Step 4b). Step 4a). Resonance Condition—Reinforcement

Step 3. Resonance Domain Detection—Activation Valuearning: As in EART version 1.

Computation and Best-Matching Unit Selection (1) line Step 4b). Non-Resonance Condition—New Processing Ele-
with (1), the largest activation among PEs that have passaént Allocation: As in EART version 1.
disequality (3) in Step 2 is selected. Step 5: Goto step 1.
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the degree to whictW;*) matchesX®), but it does
not assess the degree to whih") matchesw;* (see
Appendix ).

« When (3) is satisfied (i.e., resonance occurs), the param-
eter adaptation strategy is purely competitive (crisp, hard),
i.e., only the best-matching prototype, detected by (1), is
adapted.

« The network is implemented efficiently by version 1 of the
EART implementation scheme (see Section 1I-B1).

ART
networks

ART 1-hased
networks

SART
networks

IV. Fuzzy ART

Let us further specialize the ART 1-based clustering frame-

Fig. 3. Class ART, SART and ART 1-based group of networks. work proposed in Section Ill to examine Fuzzy ART as the
best-known representative of the ART 1-based network group
lll. THE ART 1-BASED GROUP OFART CLUSTERING (as a matter of fact, rather than as a standalone system, Fuzzy
NETWORKS ART is known as the basic module of the Fuzzy ARTMAP clas-

In this section, ART 1, IART 1, AHN, and Fuzzy ART aresifier). For the sake of completeness, relationships between ART
interpreted in the light of the general ART framework proposel IART 1, and Fuzzy ART equations are also highlighted.
in Section Il. In other words, this section presents a special ver- .
sion of the ART clustering framework capable of modeling ART Fuzzy ART Preprocessing
1-based networks exclusively (see Fig. 3). This ART 1-basedFuzzy ART requires a preprocessing stage where input pat-
clustering framework optimizes ART 1-based networks in termérn normalization is used to prevent category proliferation. A
of memory storage (e.g., ART 1, IART 1) and/or computatiopossible normalization technique is [8]
time (e.g., ART 1, IART 1, Fuzzy ART) with respect to their 7®
traditional implementations [5], [6], [8], [15], [16]. X® — (XP, o X((it)) -4 (6)

In line with Section I, let us consider, at presentation time 120
t, an input vectolX € D¢, where domairD = R inthe \narez() ¢ R is the original input pattern and

analog case (Fuzzy ART), @@ = {0, 1} in the binary case
®)° ®)”
= (Z1 ) +---+(Zd) @)

(ART 1, IART 1, AHN). Cluster structures are parameterized as Hz(t)
ART 1-based systems, parameter and data spaces have the $21AE Euclidean length (modulus) or norm 2, such &t || =

W e Dr,j=1,..., ¢t), wherep = d. In other words, in
dimensionality, i.e., cluster parameter vectors are points in déitaOtherwise in normalization by complement coding [8]

space.
Definition 1: Let us define as unidirectional interpattern de-  x(®) — (X]Et), o X(gt))
gree of match (UIDM) any (normal and not symmetric) map-
ping = (zu)’ Zé?.)mp)
UIDM(X, W): D* x D¢ — [0, 1] (5) = (20, 20, 2 s s Za) ®)

where domairD = R in the analog case, @ = {0, 1} in  whereZ® e R? such thatd = 2g, Z}Et)comp -1 _ Z,Et),
the blnar_y case.such that: )X = W, thenUIDM (X, X) 1 _ 1....q and|x(t)| — ¢, where the (non-Euclidean) norm
takes on its maximum (equal to 1), but the contrary does not hcil%peratoq . |is defined as [8]
and 2)UIDM (X, W) £ UIDM(W, X), i.e., theUIDM
function is not symmetric with respect to vectdfsand W .3 d
- . N xX®| = Z x® 9)
According to Section Il and definition 1 above, we state that E o
an ART 1-based clustering network is equivalent to an ART op- k=1
timization problem, defined by (1)—(4), constrained as followdormalization (6), by losing vector-length information, causes
(see Fig. 3): an unacceptable alteration of the informative content of non-
« activation function (2), AFsrr1-basea(X®, Wj(t)), norlmal data Sl('etS"Whi(Ce; a(rg)tytp))icaldidq reaI-O\ﬁ/jc_)r'Id af)plicatiolns.
: R ® (t) Unlike normalization (6), (8), by adding additional, comple-
and match function ()M Earri-sasca(X0 W3 ), ot oded terms to the input vector, causes no loss or gain

both belong to class UIDM. In particular, activationof information, although it doubles the number of connections
function AFsrr1-pased(X®, ngt)), employed in (1), ’ 9

B ) (storage requirement) and network computation time [5], [12].

measures the degree to whidt”’ matchesW; ™, but | oiher words, complement coding is just a way of format-
It d_o €s no}f?ssess the rg;/ers_e situation, i.e., the de_gre‘ﬁrjiﬁ the input data so that the Fuzzy ART activation and match

which W;* matchesX(f). Vice versa,_match function functions work correctly. Essentially, complement coding al-
MFapr1-vasca(X, W), employed in (3), measures|oys Fuzzy ART to store and evaluate the minimum and max-
3Term “unidirectional,” i.e., not symmetric with respect to vect&randWw, imum values of inputs assigned to each cluster in each dimen-
is introduced in line with term “bidirectional” adopted in [7, p. 609]. sion, i.e., complement coding allows a geometric interpretation
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of Fuzzy ART recognition categories as hyperbox-shaped re- 3" min { x® w® }

gions of input space [8]. In this case, each hyperbox starts as ;= ke Tk wl (1) ) 11r(0)

an isolated point, then it can increase its size with time, up to a d o €01, X ’Wkawl(t) €R.
maximum size, which is determined by the vigilance threshold. > X

This also implies that templates cannot “cycle,” i.e., Fuzzy ART =L (12)

does have atype of stability. Without complement coding, Fuzzy
ART would only store the minimum values, thus entailing alodg line with Section 1ll, note that (12) computes the degree
of half of its information. As a consequence, when Fuzzy ARD which cluster prototypéW ., matches input vector
or Fuzzy ARTMAP are employed in practical applications, noiX®, but it does not assess the reverse situation. In fact
malization by complement coding (8) is adopted exclusively. M Fry..,arr(X®, W‘(;)l(t)) £ MFFWZyART(Wg)l(t),
X®), i.e., (12) is not symmetric with respect to vect&s”

B. Fuzzy ART Equations andW(t)l o

In the light of the EART version 1 implementation scheme In binary ART 1 and IART 1, match function (4) belongs to
described in Section 1I-B1, Fuzzy ART equations are present@thssl/I.DM (see Section ) and applies to binary vector pairs.
Whenever necessary, relationships with ART 1 and IART 1 alids defined as [see also Appendix |, (A1.1)] [6]

: +) d :
pomtgd o.ut. In the general analog caXé _b.elong_s toR*. MFARTl(X(t), W‘(;)l(t))

Activation Function (2): In Fuzzy ART, it is defined as

X(t) X W(t)
AFpyanr (XO, WO 5N Moo
fa yART( , W; ) == ef0,1, X, wi , e{o 1}
p ) ’
> lnin{X,gt), W,Efj)} kZ:l A
== o 0.1, X, W eRr 13)
O‘Jrkgl Wi Note that (12) generalizes (13) by substituting the product

i=1,...,ct) (10) and norm 1 operators with fuzzy-like operators (intersection
) and cardinality respectively [29]). Equation (13) has a ge-
where parametex > 0 (e.g.,« € [0.001, 1), [12]), is included ometrical meaning: it computes a normal measure of how
to break ties, i.e., to bias the function in favor of the longer of tumany unit-valued (informative) components of binary vector

template vectors. I = 0, (10) belongs to clasEIDM (see X® are matched by those of binary templaiség)l(t), ie., it
Section I1l). In this case, (10) provides the degree to which inpgleasures the degree to whw(t)l matchesX®. Since for
wl(t )

vectorX (" matches cluster prOtOtYWJgt)- but it does not as- 5 pinary vector the Euclidean norm (vector length) is such that

sess the reverse situation. In fatkr,...yarr (X, W) 2 |XO|2 = [XO] = ¢_ X, wherex® € {0, 1}, then

AFF,uZZyART(WJ.(t), X®), i.e., (10) is not symmetric with re- (13) can be written as

spect to vector&X (®) andWJ@. Note that parametersin (3) MF4pr. (X“), W\(;:)l(t))

andc in (10) are interrelated as illustrated in [28]. For example, ®

if « < p/(1— p), then Fuzzy ART completes its learning in ~ X® wa(;)l(t) Xl ‘ Wi

one list presentation when complement coding is employed for- X @2 = X @2

preprocessing.

Match Function (4):In Fuzzy ART, (4) belongs to class wi(e)|| €08 Purr) 1) )

UIDM (see Section Ill) and is defined as - IX®]| €. 1] X7, Wk,'wl(t) €1{0, 1}

(14)

where operatop is the dot (scalar) product arttj, ;) is the

4In binary ART 1 and IART 1, (2) applies to binary vector pairs and belonggngle betweeX® and W(t) . The geometrical interpreta-
to clasV I DM whena = 0. According to (A1.6) in Appendix |, (2) is defined . o wi(t) () . .
as tion of (14) is the projection ole(t) along the direction of

X normalized by the length aX(*). Besides (14), IART 1
employs another match function defined as [6]

MFpapr (X®, wi) )

COS 9'11)1 (t)

Hw(t)

MFFuzzyART (X(t)v W\(ni)l(t))

AFanzs (X0, W(")

d
r(t t
k; Wi x 9

= W elo, 1], X,Eﬂ’ W,\(tz € {0, 1} ) wl(t)
at X Wi FO ppr®
k=1 ’ E ‘Xk : Wk,'wl(t)
a>0,73=1,...,c). (11) _ k=1
d
Equation (10) generalizes (11) by substituting operators product and norm 1 E W]St')wl(f)
[see (9)] with operations that resemble those employed in fuzzy set theory (e.g., k=1 ’ )
intersection and cardinality [29]). As Simpson observed [30, p. 37]: “for these HX(t) H . cosf
operations to be correctly interpreted as fuzzy operations, they would have to be — wl(t) 0.1 x® W(t) 0.1
. . wou . e [0, 1], v W €40, 1)

applied to membership values, not to the parameters of the activation function.” ||W(t) ” 2wl(t)
This means that the “degree of fuzzification” of Fuzzy ART with respect to ART wil(t)

1 is questionable. (15)
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In line with (13), (15) provides a normal measure of how mamgvidence, i.e., it may employ a mini-batch learning framework
unit-valued components oW‘(;)l(t) are matched by thoseto collect “robust” statistics averaged over the noise on subsets
of X®, i.e., it measures the degree to whisit) matches ©f the input sequence [4]. When these statistics show that one

W$)1(t)- In line with (14), the geometrical interpretation ofcluster is chogen infrequer]tly, e.g.,whenthe sum of the degrees
of membership of data points with respect to a category struc-

. . . . . t
(15) is the projection o along the direction Owsv)l(t) ture (cardinality of a cluster) is below a user-defined threshold
normalized by the length GW‘(;)l 0 [31], then that cluster is considered a dead unit and is pruned. In
The only difference between binary ART 1 and IART 1 netthe literature, pruning techniques have been applied to and rec-
works is that the latter model sequentially applies vigilance testhmended for ART constructive networks [13], [27], as well as
(3) twice, where the match function is implemented as eithether scalable unsupervised learning algorithms (e.g., refer to
(13) or (15). In other words, IART 1 applies a pair of “unidirec{31], [32]).
tional” vigilance tests, which is equivalent to stating that IART 2) Inefficiency of Category Structuresf the dimension-
1 adopts one “bidirectional” vigilance test (in line with termsility of the data space increases, a fixed quantity of data rapidly
adopted in [7]). It was proved that this functional difference isecomes sparse, providing a very poor representation of the
sufficient to make IART 1 more robust than ART 1 to changeaput-output mapping to be estimated: this is the so-called
in the order of presentation of the input sequence [6]. “curse of dimensionality” [4]. In a high-dimensional space, e.g.,
Resonance ConditionThe hard-competitive weight adaptawhen dimensionality i$>10, most of the volume of a cube is
tion law to be employed in Step 4a) of the EART version 1 imeoncentrated in the large number of corners in which evidence
plementation scheme (see Section II-B1) is tends to be sparse and predictions become unreliable [4], [19].
This implies that when the hypothesis that data are uniformly
sztﬁ)(t) =(1-5)- ngf'z)ul(t) + 3 - min {ngt)a ng,t'z)ul(t)} distributed within hyperboxes does not hold, Fuzzy ART may
k=1,...,d (16) predict (infer) the existence of data in corners of rectangular
regions of support where no evidence exists [13]. To reduce
with learning ratgs € [0, 1]. Inthe fast-learning casgiis equal  thjs problem, a natural choice is to model cluster structures as
to one. Equation (16) stresses the fact that only the winner tegheres, e.g., radial Gaussian functions, which is consistent
plate W) .. is allowed to be attracted by input patte¥{”, with recommendations proposed in Section IV-C1. This has led
which makes the Fuzzy ART model hard-competitive. Whegg the development of GART, which employs spherical clusters
normalization by complement coding (8) is adopted, (16) witf13]. Also in the case of spherical clusters, however, cluster
B = 1is such that each category is represented by perhaps pagameter estimation may still rely upon sparse data. In fact,
simplest statistics about its data: the minimum and maximuga high dimensional space, most of the probability mass of a
values in each dimension, this representation being best suitegg@ere is concentrated in a thin shell close to the surface while
data that are uniformly distributed within hyperrectangles [134 the sphere’s center, which must be estimated from the data,

probability density is high, but there is only a small fraction of
C. Potential Weaknesses of Fuzzy ART the data [4].

In line with the existing ART literature (e.g., see [13] and 3) Dependence of Category Structures Upon Data Set Input
[30]), potential weaknesses and possible developments of FuZ#gsentation: The goal of on-line learning methods is to avoid
ART are analyzed in this section. In [13], an analogous discugforage of a complete data set by discarding each data point
sion led to the development of unsupervised learning GART @8ce it has been used [4]. On-line learning methods are required
the basic module of the supervised learning Gaussian ARTMAEN: 1) it is necessary to respond in real time and 2) the input
(GAM) network, which was shown to be more efficient and leg#ata set is so huge that batch methods become impractical be-
sensitive to the order of training samples than Fuzzy ARTMAFause of their numerical properties (e.g., in linear model re-
[13], [14]. gression, exact batch solutions may be affected by numerical

1) Sensitivity to Noise and Outliersfuzzy ART may be af- Problems with large data sets [4], [33]), or computation time, or
fected by overfitting, i.e., Fuzzy ART may fit the noise and nghemory requirement. On-line learning typically results in sys-
justthe data [13]. The problem of category proliferation in noisigms that become order-dependent during training, in line with
data is partly due to the fact that activation and match functior@@mplex biological systems [1].

i.e., (10) and (12) respectively, are flat within a category’s hy- It is well known that the number and position of clusters de-
perrectangle [13]. Thus, activation and match functions can texted by ART 1-based clustering algorithms are very sensitive
substituted with functions that, for example, monotonically irto the order of presentation of the input sequence [6], [30]. In [6],
crease toward the center of a category’s region of support [1R]was proved that binary IART 1 improves its robustness over

In ART 1-based systems, an additional cause of category pART 1 by sequentially applying match functions (13) and (15)
liferation is that template generation is example-driven [23], i.axithin vigilance test (3). As IART 1 improves the ART 1 clus-

a single poorly mapped pattern (outlier) suffices to initiate thtering accuracy and robustness to changes in the order of data
creation of a new unit. This outlier detection capability can b&et input presentation by replacing the “unidirectional” (asym-
combined with a noise category removal mechanism, whichrigetrical) match function with a “bidirectional” (symmetrical)
straightforward to add to ART 1-based architectures if necawatch function, we may expect that Fuzzy ART, too, may ben-
sary. Relying upon na priori knowledge about the data, re-efit from the replacement of (12) with a “bidirectional” match
moval of noise categories may be based on enough accumuldtetttion. Extending this concept, we may expect further im-
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provements to come by replacing the Fuzzy ART “unidirec- y
tional” activation function, (10), with a “bidirectional” activa-
tion function. ©.1WD 9

This simple extrapolation is supported by the following rea- O, (X +WD12) ¢
soning. ART 1-based clustering networks employ an inherently (0, X))
nonsymmetrical architecture (based on asymmetrical activation N
and match functions) to compute an intrinsically symmetrical mindX,
degree of match between an input pattern, which belongs to
input space, and a template vector, which belongs to weight Bl oY .
space, but is equivalent to a point in data space. In other words, 5 (X1 0) i WL x
ART 1-based networks aims at computing a similarity mea-
sure, ranging in [0, 1], between two homogeneous objects in
data space. Since it is computed between two homoqeneellds4. Geometric interpretation of Fuzzy ART and S-Fuzzy ART activation

arguments, this compatibility (similarity) measure is intrinSiang match functions.
cally symmetrical. Despite this consideration, the ART 1-based

vector pair similarity measure is split into two steps, where 8, more instance of clagD M in both analog and binary
pair of nonsymmetrical activation and match functions compug ses is the combination of the twe D M equations (10) and
two “unidirectional” degrees of match. This match value pa'trlz)_ For example, when parameterin (10) is omitted, the
is not treated as an information unit. Rather, the first degreerg}foduct between (10) and (12) gives

match (activation value) is employed to select the best-matching
cluster while the second degree of match (match value) is ekDM2(X, W)
ploited to check whether the input pattern falls within a bounded <

x+y=|W|

(min{X,W3,0)  (sqrt(X] W], 0)

d 2 d
> min{Xy, Wk}> > min{ X, Wi}
x

hypervolume of acceptance around the best-matching cluster. If = =

the order of the match value pair is switched (i.e., if the inputand = y y - - € [0, 1]
template vectors in data space are switched), system behaviors ST Xk D> Wi S Xy S Wa

may change. This sensitivity to the order of the match value pair k=1 k=1 k=1 b=1

reveals that ART 1-based networks feature an accidental depen- VX W eD? (19)

dence on the order of presentation of the input sequence not to . . . _
be confused with the systematic dependence of on-line learnlignathematical terms, the right side of (19) computes the ratio

systems upon the order of data set input presentation. between the norm 1 [see (9)] of poifitnin{ Xy, Wi}, k =
1, ..., d), and the geometric me&aof norm 1 of pointsX and
V. S-Fuzzy ART W, see Fig. 4.

_ N ) We call S-Fuzzy ART a Fuzzy ART adaptation where acti-
Let us introduce a modified version of Fuzzy ART, callegation and match functions are the same function, equivalent to
symmetric Fuzzy ART (S-Fuzzy ART), whose activatiofhe combination (e.g., sum or product) of (10) with (12). For ex-

and match functions are Fuzzy ART-based, but symmetrig;mp|e, when parameterin (10) is omitted, we may choose
According to Section IV-C3, S-Fuzzy ART should be more

accurate and more stable with respect to changes in the ordéts-FuzzyART (X(t), Wj(t))
of data set input presentation than Fuzzy ART. If experimental B ®) W\
results confirm these theoretical expectations, a new group = MFs-FuzzyaRT (X W ) = (19)
of ART networks, called simplified ART (SART), may begych that

developed, such that: 1) it is a generalization of S-Fuzzy ART o @

and 2) it belongs to the general ART framework proposed iALs-FuzzyaRT (X 7 W )

Section Il (see Fig. 3). B ®) ()
Definition 2: Let us define as interpattern degree of match = AF's-FuzzyaRT (Wj , X )

(IDM) any (normal and symmetric) mapping 5Given two variables: andb in R the geometric and arithmetic means,
defined asvab and(« + b)/2 respectively, satisfy disequalityab < (a +
IDM(X, W): D* x D¢ — [0, 1] (17) b)/2

6The binary version of (19), equivalent to the product between (11) and (13)
wher mair® = R in th nal _ 1vin th whena = 0, is provided with a simple geometric meaning. When parameter
bian)e; (c:j;seasuch tleat' Jj[)]? E \%O?h(e:ii%]?;(x {(})(’) t]c’;lke; Oen in (11) is omitted, the product between (11) and (13) gives

]l . - ] b)

its maximum, and vice versaand2PM (X, W) =IDM(W, ( i X, - Wk)z

X), V¥ X, W € D% One instance of the class 6DM func- IDM;(X, W)= b=t~

tions, taken from the literature and capable of processing both > X > Wi
k=1 k=1

analog and binary cases, is [24] —cos?(B) €[0.1],  ¥Xu Wee€{0.1} (0)
1 where#d is the angle between binary vecta¥sand W. Equation (20) states
IDM, (Xv W) = € (07 1] that two binary vectors are the same vector iff their in-between ahigleero,

14X - W2
- H W” 4 regardless of their moduli (of course, this interpretation does not apply to non-
VX, W e D (18) binary vector pairs).
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i.e., both activation and match functions are symmetric with re- Exploitation of the Iris data set allows comparison of Fuzzy
spect to vectorX ®) andWJgt). Exploitation of (19) in (1) and ART and S-Fuzzy ART accuracy with those of other clustering
(3) allows S-Fuzzy ART to be implemented in line with versiomodels found in the literature. Typical error rates for unsu-
2 of the EART implementation scheme (see Section II-B2 afurvised categorization of the Iris data set are 10-16 mistakes
Table 1), which is more efficient than EART version 1 applied34]-[36]. For example, when the number of clusters is three,
to Fuzzy ART (see Section ). then: 1) the Fuzzy Min—Max clustering model misclassifies 18

patterns (see [30, Fig. 10]); 2) the Fuzzymeans algorithm

is affected by 15 misclassifications [37]; 3) the Kohonen VQ
VI. EXPERIMENTAL COMPARISONBETWEEN FUzZY ART anp  &lgorithm is affected by 17 misclassifications [37]; 4) the class

S-Fuzzy ART of on-line fuzzy algorithms for learning vector quantization is
affected by 16 misclassifications [38]; and 5) the on-line GLVQ
In Appendixes Il and lIl, a simple numerical example profamily of algorithms is affected by 16 misclassifications [39].
vides insights into how S-Fuzzy ART aims at improving Fuzzy Results obtained with Fuzzy ART and S-Fuzzy ART are
ART accuracy and robustness with respect to changes in #mwn in Tables Il and IIl, where the following symbols are
order of presentation of the input data. An experimental compased:
ison between Fuzzy ART and S-Fuzzy ART is provided below.
These experiments show that S-Fuzzy ART improves Fuzzy
ART in terms of accuracy and robustness. However, neither
S-Fuzzy ART nor Fuzzy ART are: 1) competitive with sev-
eral clustering algorithms found in the literature when the Iris
data set is processed and 2) consistent with human perceptual
grouping capabilities when the Simpson data set is processed.°
Although encouraging, these results reveal that, to improve its
performances significantly, Fuzzy ART should be revised more
in depth, e.g., according to the entire set of recommendations "
proposed in Section IV-C. To improve Fuzzy ART, first, we
define a new group of ART networks, called SART (see Sec-
tion VII), as a generalization of S-Fuzzy ART, and, second, we
develop new instances of class SART that try to satisfy all con-
straints proposed in Section IV-C (e.g., see Appendix IV and 0
Part Il of this work). ' S -
Results of the comparison between Fuzzy ART and S-Fuzzy ' .J(p)’ which is the standard deviation over values,

ART may easily extend to the ARTMAP supervised learning Increases when the sygtem robustness with re.spect to
framework in general and, in particular, to the Fuzzy ARTMAP changes in the presentation sequence decreases;

classifier (which employs two Fuzzy ART units as processing © #m IS the minimumy value;
e ppr is the maximunp value;

modules). «Fis th lassificati . th

Iris Data Set: To provide a first assessment of Fuzzy ART IS the average classiication (.arror (ie., the average
and S-Fuzzy ART accuracy and robustness, let us consider 30 number c.)f m_|scIaSS|f|ed patterr)s)., .
presentations of the standard four-dimensional Iris data set, o(E), whichis the standard dev_latlon ofer@rmcreaseg
consisting of 50 vectors for each of three classes [34]. In the when the _system robustgess with r.espect to changes in the
first step of this comparison, prototypes are computed from the . gesizrlfet'mnﬁfnquurﬁT/?ueeggases’
Iris data set without using vector labels. In the second step,a ™ . . '
many-to-one class prediction function, i.emaltiple-prototype * Ej is the maximum value of.
classifier[35], is obtained by relating each cluster to the class When category structures are detected in the Iris data set,
having the largest number of representatives inside the clusgeFuzzy ART improves accuracy and robustness of Fuzzy ART,
(majority vote, [4]). e.g., seét, o(c), no.ps,o(p) ando( E) values in Tables Il and

In this experiment, for every input data presentation, viglH. Finally, whenc = 3, observe that neither S-Fuzzy ART nor
lance thresholg is increased until the number of detected clud-uzzy ART are competitive with several clustering algorithms
ters is equal to the desired number of clusterket us iden- found in the literature (see the list of typical error rates reported
tify with number of ps (no. ps) the size of the set of discrete earlier in this section).
values capable of detecting the desired number of clusters  Simpson Data SetDespite its simplicity, the unsupervised
every input data presentation. Thus, for a given number of déimpson data set [30], consisting of 24 patterns, is sufficient to
sired clusters:, both algorithms are run (3@ no. ps) times, highlight some functional differences between Fuzzy ART and
each run employing a different combination of an Iris input s&-Fuzzy ART. The Simpson data set is shown in Fig. 5, where
quence with a vigilance threshold (in the same input sequenag provide data points with five different labels reflecting our
if severalps detect the same number of desired clustetsen global impression of Fig. 5 (see perceptual grouping problems
the best performance in terms of the classification error is sa-vision, which deal with the detection of the “right” partition
lected). of an image into subsets [40]). At lower spatial resolution, a

* ¢ is the network size of interest, i.e., the desired number
of clusters;

¢ is the average number of detected clusters when input

parametep is set equal tp,,, andp,,, respectively (see

below);

a(c), which is the standard deviation over detected

values, increases when system robustness with respect to

changes in the presentation sequence decreases;

no. ps is the size of the set of discretevalues capable

of detecting the desired number of clustersn every

input data presentation; the nes value increases when

the system robustness with respect to changes in the pre-

sentation sequence decreases;

« pis the average value of the user-defined input parameter
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TABLE I
Fuzzy ART. EPOCHS= 10. THIRTY PRESENTATIONS OF THEIRIS DATA SET

il

¢ ¢ |o(o) | no.ps op) | Pm | PM E | o(E) | Em | En

3 2.81 | 0.49 2 0.594 | 0.0198 | 0.530 | 0.600 | 46.417 | 3.878 | 41 51

5 5.29 | 1.09 5 0.716 | 0.0195 | 0.700 | 0.750 | 11.826 | 4.579 | 12 36

8 | 7.79 | 1.05 4 0.794 { 0.0067 | 0.770 | 0.800 | 12.071 | 4.891 | 14 | 44

121 11.87 1 0.70 3 0.828 | 0.0030 | 0.823 | 0.830 | 6.773 | 2.045 | 4 11

TABLE Il
S-Fuzzy ART. EPOCHS= 10. THIRTY PRESENTATIONS OF THEIRIS DATA SET

c I3 o(c) | no. ps Pm oM E o(E) | Ep, | Em

A~
q
~
>
=

3 3.00 | 0.00 1 0.600 | 0.0000 | 0.600 | 0.600 | 21.458 | 6.413 | 15 | 32

5 5.17 | 0.38 3 0.736 | 0.0072 | 0.730 | 0.750 | 12.708 | 3.556 | 8 18

8 8.25 { 0.60 3 0.784 | 0.0072 | 0.770 | 0.790 § 7.869 | 3.307 | 3 13

12 | 12.31 ] 0.46 2 0.826 | 0.0017 | 0.825 | 0.830 | 6.500 | 2.554 | 3 11

Simpson data set (24 samples)
32r

30r 1

26 1 1 4 5

24 - 1 5 5

units

20 2 2 2 5

181 2 2 2

14 1 L ! I I ; I
20 25 30 35 40 45 50

units

Fig. 5. Simpson data set, consisting of 24 patterns. We provide data points with five different labels reflecting our global impression of thasrsge (t
perceptual grouping problem in vision, dealing with the detection of the “right” partition of an image into subsets).

three-cluster partition may be perceived, where label 1 is joinedS-Fuzzy ART, while neither one of the two algorithms is ca-
with label 2, label 4 with label 5 while label 3 stays isolated. pable of detecting label 3 as an isolated cluster.

Fuzzy ART and S-Fuzzy ART are input with six different pre- Tables VI and VII show that when the number of detected
sentations of the Simpson data set, while vigilance pararpeteslusters is five, both algorithms are insensitive to the order of
is adapted until the two algorithms detect either three or fiy@esentation of the input sequence. When the unsupervised first
clusters in every input sequence. Corresponding confusion nstage is combined with a supervised second stage employing
trices averaged over six runs are shown in Tables IV-VIl.  a majority vote mechanism, then S-Fuzzy ART is superior to

Tables IV and V show that when the number of detected clusuzzy ART in terms of misclassification points (zero versus two,
ters is three, robustness of S-Fuzzy ART is superior to that reflspectively).

Fuzzy ART (see values of standard deviation per cell). Separain line with conclusions drawn from the Iris data clustering,
tion of labels one and two also appears to be more consistdng experiment shows that S-Fuzzy ART seems superior to
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TABLE IV
Fuzzy ART. p = 0.75. EPOCHS= 10. SX PRESENTATIONS OF THESIMPSON
DATA SET. NO. OF CLUSTERS= 3. AVERAGE CONFUSIONMATRIX REPORTING
POINT ALLOCATIONS AND, IN PARENTHESES STANDARD DEVIATION PER CELL

Cluster 1 Cluster 2 | Cluster 3
Sup. Label 1 7 (0) 0 (0 0 (0
Sup. Label 2 || 2.5 (2.73) | 5.5 (2.73) 0 (0)
Sup. Label 3 ()] 1 (0) 0 (0)
Sup. Label 4 0 (0) 0 (0) 2 (0)
Sup. Label 5 0 (0) 0 (0) 6 (0)
TABLE V

S-Fuzzy ART. p = 0.685. EPOCHS= 10. SX PRESENTATIONS OF THE
SIMPSON DATA SET. NO. OF CLUSTERS= 3. AVERAGE CONFUSION
MATRIX REPORTING POINT ALLOCATIONS AND, IN PARENTHESES
STANDARD DEVIATION PER CELL

Cluster 1 Cluster 2 | Cluster 3
Sup. Label 1 7 (0) 0 (0) 0 (0)
Sup. Label 2 || 0.5 (0.54) | 7.5 (0.54) 0 (0)
Sup. Label 3 0 (0 1 (0 o (0)
Sup. Label 4 0 (0 0 (0) 2 (0)
Sup. Label 5 0 (0) ()] 6 (0)

655

A. Absolute and Relative Fuzzy Memberships

In the terminology adopted in fuzzy set theory [24]-[26]: 1)
the “possibilistic” (absolute) membership value of a point with
respect to a cluster (equivalent to a vague concept or fuzzy set)
does not depend on its membership values in other clusters and
2) the “probabilistic” (relative) membership value of a point
with respect to a cluster is a relative number, and it depends on
the absolute membership of the point in all clusters, thus indi-
rectly on the total number of clusters itself.

Let us recall that, in the ART as well as SART processing
frameworks, any analog input vect®(*) belongs to analog
data spac®¢, whered is the dimensionality of the input space,
while any cluster structurwj(t), ji=1,...,¢c¢), belongs to
parameter spacR?, with p > d.

Definition 3: We define as absolute (or possibilistic) mem-
bership (AM) of patterniX ¢ R¢ with respect to (the vague
concept of) cluster structu® € R?, p > d, a mapping

AM(X, W): R% x R — RE (21)

equivalent to a “compatibility” (i.e., typicality, membership)
measure between data poiKt and cluster modeW. In the
case ofp = d, i.e., when vectors of cluster parameters are
points in data space, 1)X = W, thenAM (X, X) takes on its
maximum, and vice versa and 2\ (X, W) = AM(W, X),
VX, W e R%

Definition 4: If the least upper bound of the range of values
of an AM function is unity, then we call this mapping normal

absolute (or possibilistic) membership (NAM), i.e.,
NAM(X, W): R x RP = [0, 1] (22)

equivalent to a “compatibility” (i.e., typicality, membership)
measure between data pakKitand cluster modéW . In the case

Fuzzy ART in terms of accuracy and robustness, although bathp = d, i.e., when vectors of cluster parameters are points in
algorithms seem incapable of solving even simple clusterinigta space, 1) K = W, thenNAM (X, X) takes on its max-
problems consistently with human perceptual grouping (e.gmum, and vice versaand 2JAM (X, W) = NAM(W, X),
when the Simpson data set is partitioned with three clusters)y X, W € R<. This implies that in the case pf=d, aNAM

VII. THE SART GRouP OFART CLUSTERING NETWORKS

function is equivalent to ahD M function, see (17).
One instance of the class 8&f AM functions, where > d,
is the unit-height Gaussian distribution [13]

Owing to its Fuzzy ART-based symmetric intern-pattern NAML(X, W) = NAM(X, (1, o))

similarity measure, S-Fuzzy ART is superior to Fuzzy ART,

in terms of clustering accuracy and robustness, when the Iris
and Simpson data sets are processed (see Section VI). Our
strategy is to generalize S-Fuzzy ART to generate, within the
general ART framework proposed in Section Il a new class of
algorithms, called SART, whose aim is to perform better than
the ART 1-based group of networks defined in Section Ill.

d 2
_ 1 d( Xy, pix)
_ expl_g Z<T
k=1
d 2
_ 1 Xy — i
_expl 2’;1( o )]G[O,l]
VX e RY YW e R?

(23)

To avoid ART 1-based potential weaknesses discussed in
Section IV-C, class SART does not overlap the ART 1-base&xhere, in this case, distandéXj,, 1) identifies the Euclidean

group of networks, see Fig. 3. In synthesis:

distance.

well as binary input patterns. o .
2) The SART optimization problem is a specialization of theoncept of) cluster structul/;” € R, j =1, ..., c(t), be-

general ART framework, proposed in Section Il, wherlnging to codebooRV®) = {w{", .

bership (RM) of patteriX(") ¢ R? with respect to (the vague

W(t)

., C(t)}, any normal

match and activation functions satisfy a set of constraintsapping [24], [25]

different from those required by ART 1-based networks
in Section lII.

RM, (X<t>, \fv<t>); RE X - x RE x RE— [0, 1] (24)

®
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TABLE VI
Fuzzy ART. p = 0.85. EPOCHS= 10. SX PRESENTATIONS OF THESIMPSON DATA SET. NO. OF CLUSTERS= 5. AVERAGE CONFUSIONMATRIX REPORTINGPOINT
ALLOCATIONS AND, IN PARENTHESES STANDARD DEVIATION PER CELL

Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5
Sup. Label 1 7 () 0 (0 0 (® 0 (0 0 (0
Sup. Label 2 V(D] 8 (0) 0 (0 0 (0 0 (O
Sup. Label 3 0 (0) 0 (0 1 (0) 0 (O 0 (0)
Sup. Label 4 0 (0 0 (® 0 (@ 2 () 0 (0
Sup. Label 5 0 (@ (N ()) )] 3 (O 3 (0
TABLE VII

S-Ruzzy ART. p = 0.8. EPOCHS= 10. SX PRESENTATIONS OF THESIMPSON DATA SET. NO. OF CLUSTERS= 5. AVERAGE CONFUSIONMATRIX REPORTING
POINT ALLOCATIONS AND, IN PARENTHESES STANDARD DEVIATION PER CELL

Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5

Sup. Label 1 7 (0) 0 (0) 0 (0 0 (® 0 (0)

Sup. Label 2 0 (0 8 (0) 0 (O 0 (0 0 (O

Sup. Label 3 0 (0) 0 (0 1 (0) 0 (0) 0 (0)

Sup. Label 4 0 (0 0 (0) 0 (0) 2 (0) 0 (0)

Sup. Label 5 0 (0) 0 (0 0 () 0 () 6 (0)
such that [24] In the literature, probabilistic (relative) and possibilistic (ab-
() solute) fuzzy clustering algorithms are both affected by some
Z RM; (X(t)’ W(t)) -1 (25) well-known drawbacks. On the one hand, in probabilistic fuzzy

clustering, noise points and outliers, featuring low possibilistic
R typicalities with respect to all templates, may have significantly
where function RM,;(X®, W®) is monotonically non- high probabilistic membership values which may severely af-
increasing with a generic distance(X®, W(t)) and fect the prototype parameter estimate [24], [25]. On the other
monotomca”y nondecreasmg with d|stanc¢(§((t) W(t)) hand, in pOSSibi"StiC fuzzy Clustering, Iearning rates Computed
h=1, o(t), h # j. If p = d, thenRM;(X®, w® from absolute typicalities tend to produce coincident clusters
RM, (W(t) X)) must hold, i.e., if cluster parameter Vectorizs [42]. This poor behavior can be explained by the fact that
are points in data space then functiinZ; must be symmetric cluster prototypes are uncoupled in possibilistic clustering, i.e.,

with respect to vectorX () andW@, =1, ..., ). possibilistic clustering algorithms try to minimize an objective

Given anyAM or N AM function, a possibl&M; function function by operating on each cluster independently. This leads
’ ! to an increase in the number of local minima.

i=1

is
RM; (Xm, W(t)) B. SART Optimization Problem
AM (X(t) W@) In contrast with the ART 1-based group of networks proposed
j=1,...,¢t). (26) inSectionlll, the SART clustering framework is defined as an
%) M (X('> W(t)) ART optimization problem, consisting of (1)—(4), constrained
h=1 as follows (see Fig. 3):

Because of condition (26), where any relative (probabilistic) * activation function (Z)AFSA}?T(X(t)a Wj(t)), employed
membership depends on the absolute (possibilistic) membership in (1), is either ankA; function, see (24) and (25), or a

of the pointin all clusters, anjth processing element (PE), with function monotonically increasing with aRM; function
j =1, ..., c(t), is context-sensitive, i.e., relative membership  [e.9., anAM or NAM function, see (21) and (22), im-
computation provides a tool for modeling “network-wide in- plicitly related to functionfzM; through (26)].

ternode communication by subsuming that processing elementss Match function (4) M Fis s gr(X®, ng;(t)), employed
are coupled through feed-sideways (lateral) connections” [41].  in (3), belongs to the class &f AM functions, see (22).
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» When (3) is satisfied (i.e., resonance occurs), the paramaximume-likelihood probability density function estimator for
eter adaptation strategy may be either hard- or soft-co@aussian mixtures. In Part Il of this paper another clustering
petitive [in the latter case, the best-matching prototype, deetwork, called FOSART, which belongs to class SART and,
tected by (1), may not be the only prototype to be adaptedilike GART, tries to minimize a distortion (quantization)

» The network is implemented efficiently by versions 1 or 2rror, is discussed and compared with Fuzzy ART, S-Fuzzy
of the EART implementation scheme (see Section 1I-B) ART, GART, and other well-known clustering algorithms.

Based on the definitions of classes of functiohsAM
and RM; (see Section VII-A), the above conditions imply APPENDIX |
that: 1) in the case of = d, then AFs 4 pr(X®, W<t>) and  SIMPLIFICATION OF BIDIRECTIONAL CONNECTIONS INART 1

MFs opp(X®, W(t)) are symmetric and ZAFSART(X() In binary ART 1, where bottom-up and top-down vectors,
Wj(t)) and MFSART(X(t)a W<t>) may be the samevAM B(t) andWJ(t) j=1, c(t), respectively, are adopted, the
function. followmg equations hoId [5] [6].

¢ Match function (4), to be employed in Step 2 of the EART
C. Examples of SART Networks version 1 implementation scheme (see Section II-B1):

One instance of the class of SART networks, where , .. (X(t) Wgt))
AFsapr(X®, Wj(t)) = MFsarr(X®, WJ@) with p = d, ARTL T
is the S-Fuzzy ART system proposed in Section V. In this Zd: O o
case, it is obviously true that the match function increases o kig (® (t)
monotonically with the activation function and vice versa. == ¢ [0. 1], Xy Wi, 5 €10, 1}
Thus, S-Fuzzy ART can be implemented efficiently according > X;Et)
to version 2 of EART, see Section [I-B2 and Table I. ’f.:1

A second instance of class SART, whe#ds 4 rp(X®, J=1 . elt). (AL1)
Wj(t)) = MFsapr(X®, Wj(t)) while p > d, is a system e« Activation function (2), to be employed in Step 3 of
where the EART version 1 implementation scheme (see Sec-

tion 11-B1):
AFsarr (X(t), WJgt)) = MFsarr (X(t)7 WJgt)) =(23). .
AF4srr1 (X(t)v BJg ))
A third instance of class SART, wherdFsrr(X®,
W) # MFsapr(X®, W) andp > d, is the GART _ Z BY . xWep.1,  XPefo.1
probability density function (pdf) estimator, briefly described
by Williamson in [13] (for more details about GART, refer ) L
to Appendix IV). Since AFgirr(X®, W) = (A4.2) B el0,1], j=1,..., (). (A1.2)
(see Appendix IV) does not monotonically increase with < Hard-competitive top-down weight adaptation law, to be
MFgapr(X®, WJ.(”) = (23), GART can be implemented employed in Step 4a) of the EART version 1 implementa-
efficiently according to version 1 of EART, see Section |I-B1 tion scheme (see Section 1I-B1):

and Table I. t+1 t t

Note that the only difference between this second instance ’Erwl)(t) W’E )wl(t> X’E) €10, 1}
of class SART and GART is that the former model ignores, in X,E'), W,Ef,)wl(t) e {0, 1}
|t_s actlva_t|on equat|0n_ (23), prior probabll_lty terms (|.e._, _|t con- wi(t) € {1, e(®)}, k=1,...,d. (AL3)
siders prior terms equiprobable) that are, instead, explicitly con- ' '
sidered in activation equation (A4.2) of GART. « Hard-competitive bottom-up weight adaptation law, to be

employed in Step 4a) of the EART version 1 implementa-
VIII. CONCLUSION tion scheme (see Section II-B1):
Class ART is defined as a generalization of several ., W,Et,)wl(t) (t)
) : B, : € [0, 1]

well-known clustering models, e.g., ART 1, Improved ART 1, “k,wi(t) —
AHN, and Fuzzy ART, which are optimized in terms of memory a+ E W;Et)wl(t) X
storage and computation time. S-Fuzzy ART, whose symmetric (’:)_ (1)
activation and match functions are Fuzzy ART-based, is pro- X3 Wi €10, 1), wi(t) € {1, «(t)}
posed as a possible alternative to Fuzzy ART. Simple numerical o >0, k =1,...,d. (A1.4)

examples and experimental evidence reveal that S-Fuzzy ART

tends to be more robust, accurate and computationally efficient Substituting (A1.3) into (A1.4) we obtain

than Fuzzy ART. Generalization of the S-Fuzzy ART network y Wlft:]i)(t) (f+1)

leads to the definition of a specific group of networks, termed; () = €0, 1, Wy pi €10, 1}
SART, which belongs to class ART. Besides S-Fuzzy ART, one o+ E W,(L'E)(t)

more instance of class SART is the GART algorithm, which h=1

is sketchily described in the literature. GART is interpreted wl(t) € {1, c(t)}, >0, k=1,....d

as an on-line constructive clustering network equivalent to a (A1.5)
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Thus, substituting (A1.5) into (A1.2) we get, for every=(1/v/3,1/v/3,1//3,0,0) = (0.57,0.57, 0.57, 0, 0),

template vectoiWJgt), j=1,..., ¢, and X® = (0, 0.5, 0.5, 0.5, 0.5). PatternsX(!) and X(®
generate two categorie® ¥ = Wi = X andw$ =
AF s pr1 (X(t), WJ@) X(2) respectively [since vigilance test (3) employing match
g function (12) is such that\l Fi..,1rr (X2, W)
3 W,Ef)]»X,gt) (1/+/3)/(3/v/3) = 0.33 < p]. Thus, according to (3) and
- k—*ld— e[o, 1], X;Et)7 W}gt} € {0, 1} (12) in Step 2) of the EART implementation scheme version 1,
at+ YW, ’ MFpcyarr(X®, W) = (2-05)/(4-05) = 05 < p,
= Y while M Fp-., arr(X®, W) = 0.5/(4:0.5) = 0.25 < p,
i=1, ..., ). (A1.6) i.e., neither of the two templates satisfies the vigilance test.

Then, a new category is dynamically allocated so that the final
templates ar®V{¥ = X® W = X@ andw{ = X®.
In this example the number and position of clusters detected
i Fuzzy ART is sensitive to the order of the presentation se-
ence.

Equations (Al.1) and (A1.6) show that: 1) ART 1 acti
vation and match functions at timtedepend exclusively
on unidirectional weight vectorwj(t), J=1..,dt)
and 2) these weight vectors are bottom-up (feedforwar,
[17]. To summarize, the attentional subsystem of ART
is single-layer and feedforward, in line with the general

ART clustering framework proposed in Section II. APPENDIX Il

NUMERICAL EXAMPLE OF S-FUzzY ART CLUSTERING

APPENDIX I To test the S-Fuzzy ART model proposed in Section V, where
NUMERICAL EXAMPLE OF Fuzzy ART CLUSTERING AFs Fuzaya RT(X(”, Wj(t)) =MFs-puzzy ART(X“), WJ@)

As ART 1 was found to be sensitive to changes in the order 51(19), implemented according to version 2 of the EART imple-

presentation of the input sequence [6], we expect Fuzzy Aﬂgntaﬂon scheme (seel Secticljn ”;jBZ and Table I), let us con-
which is ART 1-based, to be sensitive to this type of pertu?—I er the same example employed to test Fuzzy ART in Ap-

bation as well. Fuzzy ART, see Section IV-B, is implementelendix Il-
according to the EART processing scheme version 1, see Sec—-rhe input parameters_ar,e = 055, /.3 - L (_see Sec-
tion II-B1 and Table I. tion IV-B). The normalized presentation list iX® =

Let us consider the following example. The input parani®: 0, 1, 0, 0), X® = (0,05,05,05,0.5), and X® =
eters arep = 0.55, = 0.0, 3 = 1 (see Section IV-B). (1/V/3, 1/v/3, (114\/3’ 0, 0) :(2§0'57’ 0.57, 0.57, 0, 0). .
The presentation list isX®) = (0,0, 1,0, 0), X2 F(’??tterns X(z) and X generate two categories

- w® = w® = X® and W = X@, respec-

= (0,1,1,1,1), and X® = (1,1,1,0,0). For sim- "1 : 1 2 _ » Tesp
plicity’s sake, we submit this input sequence to the Fuzlyely [since vigilance test (3), employ|n2g ma}tz:)h func-
ART preprocessing normalization step (6) rather than (ﬁgn (19), is such thatM Fs-pu.zyarr( X®, Wi¥) =
(our conclusions will not depend on the adopted normaQ--5)2_/(4'0-5) = 0.125 < p]. The winner template for pattern
ization strategy). The presentation list becomks? = X® is chosen according to Steps 2) and 3) in the EART
(0,0,1,0,0), X® = (0, 0.5, 0.5, 0.5, 0.5), and X(3 = processing gcheme version 2, where V|g|!an9e testlng. is applied
(1/3/3,1/3/3, 1/4/3, 0, 0) = (0.57, 0.57, 0.57, 0, 0). after detecting the largest value of activation fungnon (29).

Patterns X1 and X2 generate two categoriesEQuation (19) is such thatlFs-ry-.yarr(X®, W) =
W = Wi = X® andW = X3, respectively [since (1/}),/3)2/(3 - (1/V3)) = 019 < AFs-puzzyart(X®),
vigilance test (3), which employs match function (12), is sch% ) =(2-05)%/(2-3-(1/v/3)) =028 < p, i.e., template
that M Fr,,..,arr(X®, Wf)) =0.5/(4-0.5) = 0.25 < p]. W23), which is the best-matching template, does not satisfy the
The winner template for patterK(® is chosen according to vigilance test. Thus, a new category is dynamically allocated
Steps 2) and 3) in the EART processing scheme versionsb, that the final templates an‘l) = XM, W(24) = X@,
where vigilance test (3) and match function (12) are applied mdwé“) = X3,
fore computing activation function (10). Equation (12) is such In line with Appendix I, the second presentation of
that M Fr..yarr(X®, W) = (1/v/3)/(3 - (1/v/3)) = the normalized input sequence to be consideredXid)
0.33 < p, i.e., templateW® is not eligible for resonance.= (0, 0, 1,0,0), X® = (1/v3,1/v3,1/V/3,0,0) =
SinceM Fiu..yarr (X®, W) = (2.0.5)/(3- (1/v/3)) = (0:57,0.57, 0.57, 0, 0), and X® = (0, 0.5, 0.5, 0.5,(3(3.5).
0.57 > p, templateW3> satisfies the vigilance test andPattzernsX(U and X(2; generate two categorieV;” =
is the winner template. Then, fast category adaptation (1W§) = XM and W5 = X®, respectively [since vigi-
(wheres = 1) leads toW(24) = (0, 0.5, 0.5, 0, 0). Thus, final lance test (3), employing2 match function (19), is such that
templates araV{® = X1 while W = (0, 0.5, 0.5, 0, 0).  MFs-Fuzzyarr(X®, Wi _)) = (/V3)?/B/V3) =

Let us consider a different order of the input sequenéel® < pl- Thus, according to (1), (3) and (19) in Steps
where the input vectors described above are presented2isand 3) of the EA'?,,T processing scheme version 2,
follows: XW = (0,0, 1,0, 0), X@ = (1,1,1,0,0), and AFs-Puzzyarr(X®, W) = (0.5)%/(4-0.5) = 0.125 <
X® = (0,1, 1, 1, 1). Due to input pattern normalization, AFs-pu--yarr(X®, W) =(2.0.5)2/(3-1/v/3-4-0.5) =
the presentation list become&s™ = (0,0, 1,0, 0), X® 028 < p, i.e., templateWs>, which is the best-matching
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template, does not satisfy the vigilance test. Thus, a nehat the pattern iX(*), given that the pattern’s state dg;. In
category is dynamically allocated so that the final templates a#4.2), let us consider
W = x® W = X® andw( = X®).

: - ® G, (X) j
In this example the number and position of clusters detected X Cj) =————74 (0,1, 7=1,...,¢¥)

by S-Fuzzy ART is insensitive to the order of the presentation (27) /2 ﬁ a,gt),»
sequence. AL Tk
(A4.3)
APPENDIX IV whereG;(X®) is the jth category’s unit-height Gaussian dis-
GART AS AN INSTANCE OFCLASS SART tribution such that (see Section VII-A)

GART is an on-line constructive clustering ART networlg\/[F (X(t) W(t))
sketchily proposed in [13]. To the best of our knowledge, = “*#% A
GART has never been employed as a standalone system. On the_ G; (X(t)) =@23)e (0,1, j=1,...,ct). (Ad.4)
contrary, GART was conceived as part of the GAM classifier
[13], [14]. According to its author, “the GART module playsTo detect outliers, the GART match function, (A4.4), is substi-
the same role within the ARTMAP architecture as does an ARUited into vigilance test (3) of the ART optimization framework
1 module, or a Fuzzy ART module” [13]. (see Section II-A).

This Appendix shows that GART: 1) belongs to the class of In (A4.2), owing to a hard (crisp) competitive learning
ML pdf estimators for Gaussian mixtures; 2) belongs to trefrategy adopted by GART, priors are computed as

SART class of networks (see Section VII); and 3) can be ef- (t)
ficiently implemented with version 1 of the EART implementap(cj)(tﬂ) _ €0,1], j=1,...,c(t), t e {1,m}
tion scheme (see Section 11-B1 and Table I). ‘%) (t)
In GART, the problem of clustering is (implicitly) defined as Pt} "h
that of minimizing the negative log-likelihood (NLL) for data (A4.5)
set¥ = {X® ... X, wherem is the size of the data set, oy _
under the hypothesis that data vectors are mutually independ®hgre?; * is the number of patterns assigned tojtiecategory,
and identically distributed, i.e., such that constraint
c(t)
Eyp =NLL = —logp(X) Z p(CHED =1, te {1, m} (A4.6)
g TT » (X® =
= log tl;[l P (X ) holds true. Observe that, first,. (A4.2) and (A4.4) belong to the
™ class of NAM (see Section VII-A) functions. Second, (A4.2)
=_ Z log p (X“)) increases monotonically with the posterior probability, which is
=1 a RM (see Section VII-A) defined as
m c(t) (X®
=Y log [>_p (x9]c;) wicy)® p (cj‘xw) - (53’(7) €01, j=1,.... ¢t
= b Qu(X)
m () h=1
=S lg |30 (X(t)) (A4.1) (A4.7)
t=1 =1 such that
where network size(t) increases with time, density function &) ®
p(X®) is treated as a mixture (linear combination) of compo- Z p (CJ‘X ' ) =1 te{l, m} (A4.8)
nentsp(X®|C;) modeled as Gaussian densities, and =1
Thus, maximization of (A4.2), which minimizes cost function
AFgapt (X(t), WJ@) =Q; (X(”) (A4.1), is equivalent to maximization of (A4.7).

Overall, the properties of (A4.2), (A4.4), and (A4.7) satisfy
=p (X(t) Cj) 'P(Cg’)(t) €[0,1] the constraints required by the SART optimization framework
j=1,..., ct (A4.2) (see Section VII-B).

To summarize, GART belongs to the SART class of clustering
where GART recognition categories are parameterized bjgorithms. Moreover, sincMFGART(X(t), W.(t)) does not
weight vectorsWJ@ = (”§t)’ "a('t))' J =1,..., ¢(t), where  monotonically increase with F 4 pr (X, th)), and vice
u§t) is the mean andgt) is the standard deviation. The GARTversa, GART can be implemented according to version 1 of the
activation function, (A4.2), is substituted into (1) of the ARTEART implementation scheme (see Section 1I-B1 and Table I).
optimization framework (see Section II-A). On identifying the Exploitation of match function (A4.4) allows GART not to be
¢(t) mixture components &s;, j = 1, ..., «(t), letp(C;) be subjected to the so-called “probabilistic membership problem”
the a priori probability that a pattern belongs to mixture comin which an outlier affects all category parameters during
ponentC;, andp(X™®|C;) be the class conditional probabilitytraining [25] (on the contrary, in GART, outlier detection leads
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to generation of a noise category so that pruning mechanisms a§t+1) :a§t),

should be adopted to avoid category proliferation).
Given (A4.1)-(A4.5), GART update equations are a sto-

chastic (on-line) and hard-competitive version of the standard® &, w1(t) =

“batch” solution to maximize the likelihood of parameters for
a Gaussian mixture model of the input data (see [4, pp. 46 and
65]).

In the first case, when, at time € A+, vigilance test (3) whereo'' ™
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j:]-v---vc(t)vj#wl(t)
2

H (t)_  (t+1)
(t+1) k k,wl(t) 1 (1)
(t+1) BRSNSl RE10)
Nw1(t) Nw1(t)
k=1 ...,d teNt (A4.18)

_ (t+1)
kwl@) — V Y&k w1

employing (A4.4) fails, then a new processing unit is allocated Within the supervised learning ARTMAP architecture,

and the following update equations are applied:

dt+1)=c(t)+1, teNT (A4.9) [13]
n](»H—l) :n](»t), i=1 ..., )
n{ih =1,  teNT (A4.10)
D)
p(Cj)(H—l) :Wa J:]-a R C(t+1)
3 n(t+1)
=1 h
te Nt (A411)
p T =W =1 e 2
p =XO, rent (A4.12)
oD o o1 ) g
ol =1, tenNt (A4.13) 4]

where+, equivalent to the initial standard deviation of cate- 3]
gories, should be a “large” user-defined scale parameter (e.g.,
~ = 0.5 [13]), generally larger than the final value computed  [6]
when convergence is reached, such that a newly generated cate-
gory has a smah priori probability and a large standard devia- [7]
tion, and thus a weak but ubiquitous activation function (A4.2)
[14]. When~ increases, then the number of detected clusters[g]
decreases. In terms of classification rate, an optiredists for
each data set and a givervalue [13]. In terms of user interac-
tion, there are two user-defined parametgrand-~, capable of
controlling the number of clusters detected by GART.

In the second case, having identified the best-matching catét0]
gory wl(t) € {1, <(t)} based on (1) combined with (A4.2), if
vigilance test (3) employing match function (A4.4) is satisfied,[11)
then [13]

[9]

ot+1)=c(t), teNT (A4.14) 112

nf* = =1 (), £ wl()
niv) =nlly+1,  teNt (A4.15) 3

(++1)
n: [14]
pOYT = =L cd), e NT
S D [15]
h
h=1
(A4.16)

[16]

p =p =1 e, G A wl()
(t+1) _ (1) Ax@® _ ,® + 17
p’wl(t) _p’wl(t) t+D) (X p’wl(t)) , te N [17]

wl(t)

(A4.17)

GART is adopted as part of the Gaussian ARTMAP (GAM)
classifier, which is hard-competitive in its first incarnation

and soft-competitive in a later, more successful, imple-

mentation [14]. In several benchmarks, GAM has been seen to
perform better than other supervised learning systems, such as
Fuzzy ARTMAP and the EM approach to mixture modeling
[13], [14].
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