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a b s t r a c t

In the literature, there exist statistical tests to compare supervised learning algorithms on multiple data

sets in terms of accuracy but they do not always generate an ordering. We propose Multi2Test,

a generalization of our previous work, for ordering multiple learning algorithms on multiple data sets

from ‘‘best’’ to ‘‘worst’’ where our goodness measure is composed of a prior cost term additional to

generalization error. Our simulations show that Multi2Test generates orderings using pairwise tests on

error and different types of cost using time and space complexity of the learning algorithms.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In choosing among multiple algorithms, one can either select
according to past experience, choose the one that is currently the
most popular, or resort to some kind of objective measure. In
classification, there is no single algorithm which is always the
most accurate and the user is faced with the question of which
one to favor. We also note that generalization error, though the
most important, is rarely the sole criterion in choosing among
algorithms and other criteria, such as training and/or testing time
and/or space complexity, interpretability of results, ease of
programming, etc. may also play an important role.

When a researcher proposes a new learning algorithm or a
variant, he/she compares its performance with a number of
existing algorithms on a number of data sets. These data sets
may come from a variety of applications (such as those in the UCI
repository [1]) or may be from some particular domain (for
example, a set of face recognition data sets). In either case, the
aim is to see how this new algorithm/variant ranks with respect
to the existing algorithms either in general, or for the particular
domain at hand, and this is where a method to compare
algorithms on multiple data sets will be useful. Especially in data
mining applications where users are not necessarily experts in
ll rights reserved.

y with the Department of
machine learning, a methodology is needed to compare multiple
algorithms over multiple data sets automatically without any
user intervention.

To compare the generalization error of learning algorithms,
statistical tests have been proposed [2,3]. In choosing between
two, a pairwise test can be used to compare their generalization
error and select the one that has lower error. Typically, cross-
validation is used to generate a set of training, validation folds,
and we compare the expected error on the validation folds.
Examples of such tests are parametric tests (such as k-fold paired
t test, 5�2 cv t test [2], 5�2 cv F test [4]) or nonparametric tests
(such as the Sign test and Friedman’s test [5]), or range tests (such
as Wilcoxon’s signed rank test [6,7]) on error, or on other
performance measures such as the Area Under the Curve (AUC)
[8,9]. Bouckeart [10] showed that the widely used t test showed
superior performance compared to the Sign test in terms of
replicability. On the other hand, he found the 5�2 cv t test
dissatisfactory and suggested the corrected resampled t test.
Resampling still has the problem of high Type I error and this
issue has been theoretically investigated by Nadeau and Bengio
[11]. They propose variance correction to take into account not
only the variability due to test sets, but also the variability due to
training examples.

Although such tests are for comparing the means of
two populations (that is, the expected error rate of two algo-
rithms), they cannot be used to compare multiple populations
(algorithms). In our previous work [12], we proposed the MultiT-
est method to order multiple algorithms in terms of ‘‘goodness’’
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where goodness takes into account both the generalization
error and a prior term of cost. This cost term accounts for what
we try to minimize additional to error and allows us to choose
between algorithms when they have equal expected error; i.e.
their expected errors are not pairwise significantly different from
each other.

A further need is to be able to compare algorithms over not a
single data set but over multiple data sets. Demsar [3] examines
various methods, such as the Sign test and Friedman’s test
together with its post hoc Nemenyi’s test, for comparing multiple
algorithms over multiple data sets. These methods can make
pairwise comparisons, or find subsets of equal error, but lack a
mechanism of ordering and therefore, for example, cannot always
tell which algorithm is the best.

In this paper, we generalize the MultiTest method so that it
can work on multiple data sets and hence is able to choose the
best, or in the general case, order an arbitrary number of learning
algorithms from best to worst on an arbitrary number of data sets.
Our simulation results using eight classification algorithms on 38
data sets indicate the utility of this novel Multi2Test method. We
also show the effect of different cost terms on the final ordering.

This paper is organized as follows: In Section 2, we review the
statistical tests for comparing multiple algorithms. We propose
the Multi2Test method in Section 3. Our experimental results are
given in Section 4 and Section 5 concludes.
2. Comparing multiple algorithms over multiple data sets

When we compare two or more algorithms on multiple data
sets, because these data sets may have different properties, we
cannot make any parametric assumptions about the distribution
of errors and we cannot use a parametric test, for example, we
cannot use the average accuracy over multiple data sets. We need
to use nonparametric tests [3] which compare errors and use the
rank information.

2.1. The sign test

Given S data sets, we compare two algorithms by using a
pairwise test (over the validation folds) and we let the number of
wins of one algorithm over the other be w, and we let the number
of losses be l where S¼wþ l (if there are ties, they are split
equally between w and l). The Sign test assumes that the wins/
losses are binomially distributed and tests the null hypothesis
that w¼ l. We calculate p¼ Bðw,SÞ of the binomial distribution and
if p4a, we fail to reject the hypothesis that the two have equal
error with significance a. Otherwise, we say that the first one is
more accurate if w4 l, and the second one is more accurate if
wo l. For large values of S, we can use an approximation for
z¼ ðw�S=2Þ=

ffiffiffiffiffiffiffiffi
S=4

p
; we fail to reject the test if zA ð�za=2,za=2Þ,

where za=2 is the value such that ða=2Þ100 percent of the standard
normal distribution (Z) lies after za=2 (or before �za=2); in other
words, it is c such that PðZ4cÞ ¼ PðZo�cÞ ¼ a=2.

Note that the Sign test results cannot be used to find an
ordering: For three algorithms A,B,C, if A is more accurate than C

and B is also more accurate than C and if A and B have equal error,
we do not know which to pick as the first, A or B. This is where
the concept of cost and the methodology of MultiTest comes
into play.

2.2. Multiple pairwise comparisons on multiple data sets

To compare multiple algorithms on multiple data sets, one can
use Friedman’s test, which is the nonparametric equivalent of
ANOVA [3,13]. First, all algorithms are ranked on each data set
using the average error on the validation folds, giving rank 1 to
the one with the smallest error. If the algorithms have no
difference between their expected errors, then their average ranks
should not be different either, which is what is checked for by
Friedman’s test. Let rij be the rank of algorithm j¼ 1, . . . ,L, on data
set i¼ 1, . . . ,S, and Rj ¼ ð1=SÞ

P
irij be the average rank of algorithm

j. The Friedman test statistic is

X2
¼

12S

LðLþ1Þ

X
j

R2
j �

LðLþ1Þ2

4

2
4

3
5

which is chi-square distributed with L�1 degrees of freedom. We
reject if X2ow2

a,L�1.
If the test fails to reject, we say that we cannot find any

difference between the means of the L algorithms and we do no
further processing. If the test rejects, that is, if we know that there
is a significant difference between the ranks, we use a post hoc
test to check which pairs of algorithms have different ranks.

According to Nemenyi’s test, two algorithms have different
error rates if their average ranks differ by at least a critical
difference CD¼ qaSE where SE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ1Þ=6S

p
, and the values for

qa are based on the Studentized range statistic divided by
ffiffiffi
2
p

.
The subsets of algorithms which have equal error are denoted

by underlining them. An example result is

where algorithms are sorted in ascending average error. We see
that there is no difference between A and B, no difference
between B and C but there is difference between A and C.

Note that after the post hoc test, we can find subsets of
algorithms which have comparable error but we cannot always
order them, for example, we cannot always find the best one.
Such tests check for equality and a rejection, that is, the absence
of an underline, does not imply an ordering. For example, we
know that A and C have significantly different errors and that the
average errors of A is less than the average errors of C but this
does not necessarily mean that A has significantly less error than
C; the two-tailed test does not check for this. Nor does it provide
us a mechanism to choose between two algorithms which have
no significant difference between them, for example A and B. Note
also that Nemenyi’s test is too conservative, has low power, and
may not detect existing differences, even if Friedman’s test
rejects; this is expected to occur very rarely [3].

The result of Nemenyi’s test (or any other test for checking
equality) can be used to find the best learner only if one of the
following conditions hold; see [12] for details:
�
 The first one, namely the algorithm with the smallest average,
is not underlined. For example, if Nemenyi result is 2 4 3 1,
the best can be taken as 2.

�
 There is a line under the first one and this line does not overlap

with any other line(s). If Nemenyi result is 4 3 2 1, the best is
2 because it is simpler than 3 and 4.

�
 There is a line under the first one and this line overlaps with

one or more lines but the overlap does not include the first
one. If Nemenyi result is , the best is 1.

�
 If we have the case above and the overlap does not contain a

simpler algorithm, the most simple is selected as the best. If
Nemenyi result is , the best is 1.

If neither of these four cases occur, Nemenyi’s test cannot yield
the best algorithm. For example, if the result of Nemenyi’s test is

, the first underline chooses 2, the second underline
chooses 1 which is simpler than 2. But we cannot choose 1 as it
has higher expected error than 4. Note that these cases are only
for finding the best algorithm; for creating the full ordering, the



Table 1
The result of pairwise tests on optdigits. If the entry is 1, the algorithm on the row

is statistically significantly more accurate than the algorithm on the column. The

algorithms are: c45: C4.5 decision tree, mdt: multivariate decision tree, mlp:

multilayer perceptron, lnp: linear perceptron, svl: support vector machine with

linear kernel, sv2: support vector machine with quadratic kernel, svr: support

vector machine with radial (Gaussian) kernel, 5nn: 5-nearest neighbor (See

Section 4 for experimental details).

c45 mdt mlp lnp svl sv2 svr 5nn

c45 0 0 0 0 0 0 0 0

mdt 1 0 0 0 0 0 0 0

mlp 1 1 0 1 0 0 0 0

lnp 1 0 0 0 0 0 0 0

svl 1 1 1 1 0 0 0 1
sv2 1 1 1 1 0 0 0 1
svr 1 1 1 1 0 0 0 1
5nn 1 1 0 1 0 0 0 0

5nn svlsvrmlpc45 lnp mdtsv2
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conditions must be satisfied by any group of algorithms, which is
very rarely possible.

2.3. Correction for multiple comparisons

When comparing multiple algorithms, to retain an overall
significance level a, one has to adjust the value of a for each post
hoc comparison. There are various methods for this. The simple
method is to use Bonferroni correction [14] which works as
follows: Suppose that we want to compare L algorithms. There
are LðL�1Þ=2 comparisons, therefore Bonferroni correction sets
the significance level of each comparison to a=ðLðL�1Þ=2Þ. Neme-
nyi’s test is based on this correction, and that is why it has low
power. Garcia and Herrera [15] explain and compare the use of
various correction algorithms, such as Holm’s correction [16],
Shaffer’s static procedure [17] and Bergmann-Hommel’s dynamic
procedure [18]. They show that although it requires intensive
computation, Bergmann-Hommel, which we adopted in this
paper, has the highest power. All of these procedures use
z¼ ðRi�RjÞ=SE as the test statistic and compare it with the z value
of the suitably corrected a. In a recent paper, Garcı́a et al. [19]
propose new nonparametric tests, two alternatives to Friedman’s
test and four new correction procedures; their analysis focuses on
comparing multiple algorithms against a control algorithm
though, and not on ordering.
Fig. 1. The directed graph constructed by MultiTest on optdigits using the pairwise

test results in Table 1 and prior ordering based on training time (5nn is the fastest,

mdt is the slowest to train).

1 The Matlab code of Multi2Test is available at: http://www.cmpe.boun.edu.tr/

�ulas/multi2test/.
3. Multi2Test

Our proposed method is based on MultiTest on a single data
set [12]. We first review it and then discuss how we generalize it
to work on multiple data sets.

3.1. MultiTest

MultiTest [12] is a cost-conscious methodology that orders
algorithms according to their expected error and uses their costs
for breaking ties. We assume that we have a prior ordering of
algorithms in terms of some cost measure. We do not define nor
look for statistically significant difference here; the important
requirement is that there should be no ties because this ordering
is used for breaking ties due to error. Various types of cost can be
used [20], for example, the space and/or time complexity during
training and/or testing, interpretability, ease of programming, etc.
The actual cost measure is dependent on the application and
different costs may induce different orderings.

The effect of this cost measure is that, given any two algo-
rithms with the same expected error, we favor the simpler one in
terms of the used cost measure. The result of the pairwise test
overrides this prior preference; that is, we choose the more costly
only if it has significantly less error.

Let us assume that we index the algorithms according to this
prior order as 1;2 . . . L such that 1 is the simplest (most preferred)
and L is the most costly (least preferred). A graph is formed with
vertices Mj corresponding to algorithms and we place directed
edges as follows: 8i,j, io j, we test if algorithm i has less or
comparable expected error to j:

H0 : mirmj

Actually, we test if the prior preference holds. If this test rejects,
we say that Mj, the costlier algorithm, is statistically significantly
more accurate than Mi, and a directed edge is placed from i to j,
indicating that we override the prior order. After LðL�1Þ=2 pairwise
tests (with correction for multiple comparisons), the graph has
edges where the test is rejected. The number of incoming edges to a
node j is the number of algorithms that are preferred over j but have
significantly higher expected error. The number of outgoing edges
from a node i is the number of algorithms that are less preferred
than i but have significantly less expected error. The resulting graph
need not be connected. Once this graph is constructed, a topological
sort gives us the order of the algorithms.

As an example, we show the application of MultiTest to one of
our example data sets, optdigits. The result of the pairwise tests is
shown in Table 1. Fig. 1 shows the directed graph when the prior
ordering is based on training time (increasing from left to right).
The sample execution of topological sort is shown in Fig. 2. The
resulting order after topological sort is 1: svr, 2: svl, 3: sv2, 4: 5nn,
5: mlp, 6: lnp, 7: mdt, 8: c45.
3.2. Multi2Test

We now discuss how MultiTest can be generalized to run over
multiple data sets. The pseudocode of the method is given in Table 2.
First, we apply MultiTest separately on each data set using a
pairwise test (with correction for multiple comparisons) and a prior
ordering based on cost. We then convert the order found for each
data set into ranks such that 1 is the best and L is the worst. These
ranks are then given to the post hoc test which does not order the
algorithms, but it gives us pairwise statistical differences which we
use in MultiTest once more (thus the name Multi2Test), again using
the same prior ordering (this time averaged over all data sets after
normalization), again with corrections for multiple comparisons.
That is, in the outer MultiTest, the directed graph has edges provided
by the post hoc test which accumulates the ranks found by
MultiTest separately, over all the data sets. The test we use here is
two-sided: if the test does not reject, there is no difference; if the
test rejects, we prefer the one with lower average rank.1

www.cmpe.boun.edu.tr/~ulas/multi2test/
www.cmpe.boun.edu.tr/~ulas/multi2test/


5nn svlsvrmlpc45 lnp mdtsv2

5nn svlmlpc45 lnp mdtsv2

5nn mlpc45 lnp mdtsv2

5nn mlpc45 lnp mdt

mlpc45 lnp mdt c45 lnp mdt

c45 mdt c45

Fig. 2. Sample execution of topological sort on the directed graph generated by

MultiTest on optdigits using training time as prior cost. The node chosen at each

iteration is shaded. (a) There are no algorithms better than svl, sv2, svr, and mdt

(they do not have outgoing edges), and among them, svr is the simplest and is

taken first. (b) After svr and its incident edges are removed, svl is the simplest.

(c) Then comes sv2. (d) 5nn, mlp and mdt are nodes without any outgoing edges

and of the three, 5nn is the simplest. (e) Then we choose mlp. (f) lnp is more

accurate than c45 and is simpler than mdt. (g) mdt is more accurate than c45 and

(h) c45 is taken last. The resulting ranking after topological sort is 1: svr, 2: svl, 3:

sv2, 4: 5nn, 5: mlp, 6: lnp, 7: mdt, 8: c45.
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As an example for the second pass of Multi2Test, let us assume
that we have four algorithms A,B,C,D, according to the prior order
of AoBoCoD, and the result of post hoc test after the first pass
of MultiTest is . We then convert the results of post hoc
test to pairwise statistically significant differences (Table 3) and
together with the prior ordering, the formed directed graph is
shown in Fig. 3. Doing a topological sort, we find the final order as
1: B, 2: A, 3: D, 4: C.
4. Results

4.1. Experimental setup

We use a total of 38 data sets where 35 of them (zoo, iris, tae,
hepatitis, wine, flags, glass, heart, haberman, flare, ecoli, bupa,
ionosphere, dermatology, horse, monks, vote, cylinder, balance,
australian, credit, breast, pima, tictactoe, cmc, yeast, car, segment,
thyroid, optdigits, spambase, pageblock, pendigits, mushroom, and
nursery) are from UCI [1] and 3 (titanic, ringnorm, and twonorm)
are from Delve [21] repositories.

We use eight algorithms:
(1)
 c45: C4.5 decision tree algorithm.

(2)
 mdt: Multivariate decision tree algorithm where the decision

at each node is not univariate as in C4.5 but uses a linear
combination of all inputs [22].
(3)
 mlp: Multilayer perceptron where with D inputs and K classes,
the number of hidden units is taken as ðDþKÞ=2.
(4)
 lnp: Linear perceptron with softmax outputs trained by
gradient-descent to minimize the cross-entropy.
(5)
 svl: Support vector machine (SVM) with a linear kernel. We
use the LIBSVM 2.82 library [23].
(6)
 svr: SVM with a radial (Gaussian) kernel.

(7)
 sv2: SVM with a polynomial kernel of degree 2.

(8)
 5nn: k-nearest neighbor with k¼5.
Our methodology is as follows: A data set is first divided into
two parts, with 1

3 as the test set, test, and 2
3 as the training set,

train-all. The training set, train-all, is then resampled using 5�2
cross-validation (cv) [2] where 2-fold cv is done five times (with
stratification) and the roles swapped at each fold to generate 10
training and validation folds, trai, vali, i¼ 1, . . . ,10. trai are used to
train the base classifiers and the tests are run on the vali results.
We use the test set later to see whether the ranking predicted
using the validation set defines a good order on the test set.

4.2. The sign test over averages

Table 4 shows the number of wins and number of losses of
each algorithm over each algorithm by simply comparing average
validation fold accuracies without any statistical test. The number
of wins that are statistically significantly different using the Sign
test over 38 runs are shown in bold. We see that for example, svl

and svr are significantly more accurate than the other algorithms,
and mlp is significantly more accurate than mdt.

4.3. Friedman’s test and Bergmann-Hommel’s dynamic procedure

Table 5 shows the average rankings by Friedman’s test and
the significant differences using Bergmann-Hommel’s procedure
for multiple comparisons as the post hoc test using average
validation fold accuracies. The table also shows the graphical
representation of post hoc test results of compared algorithms
with ranks as proposed in [3] (except that we omitted the critical
distances since CD changes for each corrected a). The numbers on
the line represent the average ranks and bold lines connect the
algorithms which have no significant difference.

We see that with respect to the average accuracies, svl and svr

form one group and are statistically significantly different from all
other algorithms except mlp. mlp is not different from svl, is different
from svr, and is not different from the other group of algorithms,
namely, mdt, c45, 5nn, sv2, and lnp. Bergmann-Hommel results
shown as a table of pairwise comparisons are given in Table 5(c).

We should also point out that we cannot use the rankings
shown in Table 5(b) to order algorithms. svr seems to be the best
because it has the lowest average rank but it is not significantly
better than svl and since svl uses the linear kernel and svr uses the
more expensive Gaussian kernel, it may be better to prefer svl. But
mlp seems as good as svl and may be cheaper because it may be
using a small number of hidden units whereas svl may be storing
a large number of support vectors, but we cannot put mlp before
svr because svr has significantly lower rank. This implies that this
preferrence due to simplicity should be built in the mechanism



Table 2
Multi2Test to rank L supervised algorithms on S data sets.

Input: Cost function C, Pairwise test T, Data sets: Di,i¼ 1, . . . ,S, Algorithms: Mj ,j¼ 1, . . . ,L, Errors: Erri,j

Output: Ranks of algorithms

1 foreach data set Di, i¼ 1 to S do

2

3

4

5

6

order algorithms according to C;

rankalgorithmsusing C andpairwisetest T on Err with MultiTest;

foreach algorithmMj , j¼ 1 toL do

9 record rank rij of algorithm j for data set i;

end

������������
7 end

8 calculate C j , which is the average normalized cost for each algorithm over all data sets;

9 apply Friedman’rms test on Rj ¼
1

S

P
irij

10 if Friedman’s test rejects the null hypothesis then

11

12

apply posthoc test on Rj ¼
1

S

P
irij;

rank algorithms using C j and pairwise results of post-hoc test with MultiTest;

�������
13 end

14 else

15 9 output rank of algorithms according to C j;

16 end

Table 3
Tabular representation of post hoc test results for an example run.

A B C D

A 0 0 0 0

B 1 0 1 0

C 0 0 0 0

D 0 0 1 0

A B C D

Fig. 3. The directed graph constructed by MultiTest on the example problem using

the pairwise test results in Table 3 and the prior ordering: AoBoCoD.
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for ordering, rather than imposed on the final result and this is
exactly what our proposed Multi2Test does.

4.4. The sign test over pairwise tests

If instead of using the average accuracies (as we did in Section
4.2), we use the 5�2 cv F test for pairwise comparison (a¼ 0:05),
we get Table 6. Here, there are less wins than in Table 4 because
to have a win, the difference between the averages should be
significant. Again, wins that are significant using the Sign test
over 38 data sets are shown in bold.

We again see that svr is significantly more accurate than c45,
mdt, sv2, and 5nn, but it is not more accurate than mlp and lnp

anymore. Note that svl, though seems significantly more accurate
than other algorithms in Table 4, is no longer so when we use a
test instead of just comparing average accuracies. svl is not
significantly more accurate than mlp in Table 6, which explains
why it is grouped with mlp in Table 5(b).

4.5. Applying Multi2Test

Although the above methods give us pairwise comparisons,
they cannot be used to order the given algorithms. For this, we
use Multi2Test; we show how it is used with two different cost
functions, training time and space complexity.
4.5.1. Training time as cost

When we use the training time to define prior preferences
with MultiTest, we can see three groups of algorithms. The
costlier support vector machine variants and mdt form one group
and are significantly different from the faster group, 5nn, c45 and
lnp (see Table 7 (a) and (b)). mlp, which is in the middle, is
significantly different from the slow sv2 and svr, and the fastest
5nn, and has no significant difference from other algorithms
(Table 7(c)).

We still do not have an order yet, so we apply the second pass
of Multi2Test using the average cost values to define the prior
preference. According to the average training time, the prior order
is: 5nnoc45o lnpomlpomdtosvlosv2osvr. Using this prior
order and the pairwise test results using Bergmann-Hommel
procedure results of Table 7(c), gives us the graph of Table 7(d),
where we see that no test result overrides prior order; that is, the
second MultiTest pass conforms with the accumulated first
MultiTest pass on data sets separately. And therefore, the ranking
is: 1: 5nn, 2: c45, 3: lnp, 4: mlp, 5: mdt, 6: svl, 7: sv2, 8: svr.
4.5.2. Space complexity as cost

When we use the space complexity with the same validation
errors, we see that, this time, 5nn has the highest rank, and forms
a group with the complex support vector machine variants svl, svr

and sv2 and is significantly different from the simpler group of
lnp, c45, mdt, and mlp (see Table 8(a) and (b)). We also see that
5nn is significantly different from svr (Table 8(c)).

When we apply the second pass of Multi2Test according to the
average space complexity, the prior order is: c45omdtomlpo
lnposvlosvrosv2o5nn. Using this and the pairwise test results
using Bergmann-Hommel procedure results of Table 8(c), we get
the graph of Table 8(d). So the ranking is: 1: c45, 2: mdt, 3: mlp, 4:
lnp, 5: svl, 6: svr, 7: sv2, 8: 5nn. We see that 5nn, which is the best
when training time is critical, becomes the worst when space
complexity is used.

One may argue that it is useless to apply the second pass of
MultiTest, but this is not always the case. We have relatively
accurate classifiers and the classifiers do not span a large range of
accuracy and the diversity is small. We would expect different
orderings going from one data set to another if the classifiers were



Table 4
Number of wins (out of 38) of all algorithms using average accuracies. The bold face entries show statistically significant difference using

the Sign test.

c45 mdt mlp lnp svl sv2 svr 5nn

c45 0 19 16 16 11 17 5 15

mdt 19 0 11 16 9 18 6 18

mlp 22 27 0 22 9 19 7 24

lnp 22 22 16 0 8 22 8 21

svl 26 29 29 30 0 25 17 31
sv2 20 20 18 16 12 0 7 17

svr 33 32 31 30 21 31 0 33
5nn 23 20 14 17 7 21 5 0

Table 5
Average ranks and graphical representation of post hoc Bergmann-Hommel procedure results of compared algorithms with ranks using average accuracy.

(a) Average ranks of compared algorithms

c45 mdt mlp lnp svl sv2 svr 5nn

5.37 5.45 4.57 4.87 3.05 5.07 2.45 5.18

(b) Graphical representation of Bergmann-Hommel Procedure

2 4 3 

lnp

5 7 6 

mdt

sv2
svl 
svr 

c45

mlp 
5nn

(c) Tabular representation of Bergmann-Hommel procedure results

c45 mdt mlp lnp svl sv2 svr 5nn

c45 0 0 0 0 1 0 1 0

mdt 0 0 0 0 1 0 1 0

mlp 0 0 0 0 0 0 1 0

lnp 0 0 0 0 1 0 1 0

svl 1 1 0 1 0 1 0 1
sv2 0 0 0 0 1 0 1 0

svr 1 1 1 1 0 1 0 1
5nn 0 0 0 0 1 0 1 0

Table 6
Number of wins of all algorithms using 5�2 cv F test. The bold face entries show statistically significant difference using the Sign test.

c45 mdt mlp lnp svl sv2 svr 5nn

c45 0 5 3 4 2 5 0 4

mdt 5 0 0 2 0 10 0 7

mlp 11 7 0 6 3 10 3 9

lnp 7 3 1 0 0 9 0 5

svl 9 6 4 6 0 13 2 12

sv2 7 9 8 6 5 0 1 8

svr 14 14 10 10 8 16 0 16
5nn 6 4 4 3 1 10 1 0
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more diverse and the range spanned by the accuracies of the
classifiers were larger. We can construct an example where this is
the case: Suppose that we have three algorithms A,B,C according
to the prior order of AoBoC and suppose that the result of the
range test is CA B. The final order will be 1: C, 2: A, 3: B, which is
different from the prior order which is A,B,C. If we choose A as
c45, B as mdt and C as svr, and use breast, car, nursery, optdigits,
pendigits, ringnorm, spambase, tictactoe, and titanic data sets only,
this is what we get using real data using space complexity as prior
ordering. We see that the average prior order is c45omdtosvr,
but the result of Multi2Test is 1: svr, 2: c45, 3: mdt which is
different from the prior order. Note that the ordering depends
also on the algorithms compared as the critical difference
depends on the number of populations compared.
4.6. Testing MultiTest and Multi2Test

We do experiments on synthetic data to observe the behavior of
MultiTest and Multi2Test to see if they work as expected and hence
comment on their Type I error and power. In Fig. 4, we have three
algorithms (1, 2, 3) numbered in decreasing order of prior preference.
Their error rates are taken p1 ¼ 0:5þ2l, p2¼0.5, and p3 ¼ 0:5�2l,
respectively. We simulate a classifier with error probability p as
follows: We draw a uniform random number between 0 and 1 and if
it is less than p, we take it as an error; we do this N¼100 times and
the total number of errors divided by N gives us an error rate. When
we vary l from 0 to 0.1, we start from three algorithms of equal error
and slightly make them more and more different. For each case, we
regenerate data, apply MultiTest, and find an ordering; we do this



Table 7
Average ranks and graphical representation of post hoc Bergmann-Hommel procedure results of compared algorithms used by Multi2Test with training time as the cost

measure.

(a) Average ranks of compared algorithms

c45 mdt mlp lnp svl sv2 svr 5nn

3.11 5.05 4.37 3.13 5.50 6.24 6.11 2.50

(b) Graphical representation of Bergmann-Hommel Procedure
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mdt 

sv2 
svl 
svr 

c45 
lnp 
5nn 

(c) Tabular representation of Bergmann-Hommel procedure results

c45 mdt mlp lnp svl sv2 svr 5nn

c45 0 1 0 0 1 1 1 0

mdt 1 0 0 1 0 0 0 1
mlp 0 0 0 0 0 1 1 1
lnp 0 1 0 0 1 1 1 0

svl 1 0 0 1 0 0 0 1
sv2 1 0 1 1 0 0 0 1
svr 1 0 1 1 0 0 0 1
5nn 0 1 1 0 1 1 1 0

(d) MultiTest graph for the second pass of Multi2Test

5nn svl mdt mlp c45 lnp svr sv2 

Table 8
Average ranks and graphical representation of post hoc Bergmann-Hommel procedure results of compared algorithms used by Multi2Test with space complexity as the

cost measure.

(a) Average ranks of compared algorithms

c45 mdt mlp lnp svl sv2 svr 5nn

2.50 2.95 2.71 3.68 5.71 6.13 5.32 7.00

(b) Graphical representation of Bergmann-Hommel Procedure
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mdt 
sv2 
svl 
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lnp 

5nn 

(c) Tabular representation of Bergmann-Hommel procedure results

c45 mdt mlp lnp svl sv2 svr 5nn

c45 0 0 0 0 1 1 1 1
mdt 0 0 0 0 1 1 1 1
mlp 0 0 0 0 1 1 1 1
lnp 0 0 0 0 1 1 1 1
svl 1 1 1 1 0 0 0 0

sv2 1 1 1 1 0 0 0 0

svr 1 1 1 1 0 0 0 1
5nn 1 1 1 1 0 0 1 0

(d) MultiTest graph for the second pass of Multi2Test

c45 svr svl lnp mdt mlp 5nn sv2 
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1000 times and we count the total number of times MultiTest finds
all possible orderings as a function of l. The plots we see in Fig. 4 are
those of three example orderings—we did not include all to avoid
cluttering of the figures. When l¼ 0, all algorithms have the same
error rate and MultiTest returns the prior preference of 1–2–3. As we
increase l, the error of the most costly algorithm decreases and the
error of the least costly algorithm increases. When 3 becomes
significantly better than 1, but not 2, we get the ordering of 2–3–1.
In the end when l¼ 0:1, all algorithms are statistically significantly
different from each other and MultiTest returns the algorithms in
increasing order of error rate 3–2–1 completely reversing the prior
order. This shows that MultiTest indeed works as expected. The fact
that an ordering has high probability when it should be chosen and
has low probability when it should not be chosen indicates that the
methodology has low Type I error and high power.

In Fig. 5, this time we compare four algorithms on multiple
data sets using Multi2Test. Their error rates are aþ3l, aþl, a�l,
and a�3l, respectively. They are again numbered in decreasing
order of prior preference. The number of data sets is 30 and base
error rates of the classifiers (a) on each data set takes a random
offset between 0.45 and 0.55. In the beginning (l¼ 0), although
the base error rates are different, all algorithms have nearly the
same error rate on each data set and as expected, Multi2Test
returns the prior preference 1–2–3–4 as the ordering. As we
increase l, the difference between the error rates starts to
increase and this starts moving costlier algorithms ahead of the
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Fig. 4. Probabilities of different orderings found by MultiTest on synthetic data as

a function of a multiplier parameter l that varies the difference between errors of

algorithms. Only three example orderings are shown for clarity.

λ

Pr
ob

ab
ili

ty
 o

f 
O

rd
er

in
g

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
1-2-3-4

3-4-1-2

2-3-4-1

4-3-2-1

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Fig. 5. Probabilities of different orderings found by Multi2Test on synthetic data

as a function of a multiplier parameter l that varies the difference between errors

of algorithms.

A. Ulas- et al. / Pattern Recognition 45 (2012) 1772–1781 1779
simpler algorithms because they start having less error. As these
difference between the error rates of the algorithms get signifi-
cant, Multi2Test starts reversing the orderings, starting with 1 and
4 first (leading to the order of 2–3–4–1), and then between 1 and
3, and 2 and 4 (leading to the order of 3–4–1–2) and so on. In the
end when l¼ 0:1, since all algorithms are statistically signifi-
cantly different from each other, Multi2Test returns the algo-
rithms in increasing order of error rate 4–3–2–1. Again, we see
that Multi2Test works as expected. How fast the probability of a
certain ordering rises and falls (and hence how much orderings
overlap) depend on the pairwise test used inside MultiTest, its
significance a and the validation set size N.

4.7. Verification of results on test

We also did experiments to verify the results of Multi2Test on
the test set. What we do is we run the same Multi2Test on the test
data and check if the orderings we find using the validation set is
a good predictor for what we find on the test set. We find that
though there are small differences, for the most part, the pre-
dicted orderings match what we find on the test set.

When we use the training time as the cost measure, out of the
38 data sets, on 19 data sets, we find the same ordering on
validation and test sets. There are 10 data sets where there are big
rank changes. We observe this change five times with 5nn, three
times with c45 and twice with mdt. We believe that this is
because decision tree and nearest neighbor algorithms have high
variance and hence their accuracies may differ slightly on differ-
ent data which may lead to different orderings. A high variance in
the algorithm’s accuracy over different folds would make the
statistical test less likely to reject and in such a case, the prior cost
term would determine the final ordering. In the final ranking, this
information as to whether the ordering is due to the result of the
test or the cost prior can be differentiated.

When we consider space complexity as the cost measure, we
see that on 24 out of the 38 data sets, the same ordering retained.
This time there are only five big changes and again mostly due to
decision trees; two with c45, two with mdt and one with mlp.

From these experiments, we conclude that the rankings produced
by MultiTest are stable except for some high-variance algorithms,
and the overall results produced by Multi2Test on validation data is a
good predictor of the real ranking on the test data.
5. Discussions and conclusions

We propose a statistical methodology, Multi2Test, a general-
ization of our previous work, which compares and orders multiple
supervised learning algorithms over multiple data sets. Existing
methods in the literature can find statistical differences between
two algorithms, or find subsets of algorithms with comparable error,
but our proposed method compares and orders the given algo-
rithms, and allows, for example, to choose the best of an arbitrary
number of algorithms over an arbitrary number of data sets.

The ranks of the algorithms for Friedman’s test or the number
of wins in the Sign test may seem appropriate to order algorithms
but the difference between wins and losses and ranks can be
small and not significant. If A has 1 more win than B out of 38 data
sets, but is 10 times more costly to implement, we would prefer B.
We need to make sure that the gain in accuracy is worth the
increase in cost. If the difference is due to chance, cost should
override. That is why Multi2Test is needed.

One may argue that instead of using the cost measure as prior
preference, one could also combine the two measures of cost and
accuracy into a single number for example by taking a weighted
sum and order accordingly. We would still face the ordering
problem in this case. There will be ties (differences too small to be
considered significant) and the problem of how to break ties; we
use the second criterion (cost in this case) for tie-breaking.
Combining multiple criteria using, for example, a weighted
summation also has the problem of setting the weights.

There is a significant body of literature on multiple criteria
decision analysis and optimization. An example is the ELECTRE
algorithm [24,25] where the idea is to choose an action, or rank
actions (in our case algorithms) according to several criteria,
which in our case may be the performance on different data sets.
ELECTRE finds a minimal subset of actions that is preferred to
other actions so that with further computation, the best one can
be chosen. In our case, just the performance on data sets would
not be enough to find a single best and one would need to use an
extra measure, such as cost as we do in MultiTest. ELECTRE also
allows setting different weights to different criteria but in our
case, all data sets would have equal weight. In an application
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where we have multiple cost criteria, for example space and time
complexity, an approach as used by ELECTRE may be useful to
define an overall measure combining multiple measures of cost.

The ranking produced by Multi2Test uses the generalization
error of algorithms and a prior cost measure. This prior preference
allows ordering algorithms whose expected errors do not have a
statistically significant difference between them. This is a realistic
setting, considering that in real life, in many applications, error is
not the sole criterion but some measure of cost is also critical. We
see that the ranking produced by Multi2Test uses this cost
measure effectively. If an algorithm is in rank i after Multi2Test,
this implies that all the algorithms that follow it with rank j4 i

are either significantly worse or are equally accurate and costlier.
The cost measure is used to break ties when there is no significant
difference in terms of accuracy. If certain algorithms incur a cost
that is not affordable for a particular situation, they may just be
removed from the final ranked list and the current best can be
found; or equivalently, Multi2Test can be run without them.

Note that MultiTest or Multi2Test do not significantly increase
the overall computational and/or space complexity because the
real cost is the training and validation of the algorithms. Once the
algorithms are trained and validated over data sets and these
validation errors are recorded, applying the calculations necessary
for MultiTest or Multi2Test is simple in comparison.

Our implementation uses the 5�2 cv F test for pairwise
comparison of algorithms on a single data set. One could use
other pairwise tests or other resampling schemes. For example,
10�10 folding [10] will have the advantage of decreasing Type I
and II errors but will increase the computational complexity.
MultiTest and Multi2Test are statistical frameworks, and any
resampling method and a suitable pairwise statistical test on
some loss measure with appropriate a correction could be used.
For example, the same methodology can be used to compare
regression algorithms over a single or multiple data sets. These
are interesting areas for further research.

If one has groups of data sets for similar applications, it would
be better to order algorithms separately on these. For example if
one has six different data sets for different image recognition
tasks, and four different data sets for speech, it is preferable that
Multi2Test be run twice separately instead of once on the com-
bined 10. Multi2Test results are informative: Let us say we have
the ranking of L algorithms on S data sets. Instead of merging
them to find one overall ordering as Multi2Test does, these
rankings may allow us to define a measure of similarity which
we can then use to find groups of similar algorithms; such similar
ranks of algorithms also imply a similarity between data sets.
These would be other interesting uses of Multi2Test results.2
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