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a b s t r a c t

We discuss approaches to incrementally construct an ensemble. The first constructs an
ensemble of classifiers choosing a subset from a larger set, and the second constructs an
ensemble of discriminants, where a classifier is used for some classes only. We investigate
criteria including accuracy, significant improvement, diversity, correlation, and the role of
search direction. For discriminant ensembles, we test subset selection and trees. Fusion is
by voting or by a linear model. Using 14 classifiers on 38 data sets, incremental search finds
small, accurate ensembles in polynomial time. The discriminant ensemble uses a subset of
discriminants and is simpler, interpretable, and accurate. We see that an incremental
ensemble has higher accuracy than bagging and random subspace method; and it has a
comparable accuracy to AdaBoost, but fewer classifiers.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Current trends in classifier combination

It is well known that there is no single classification algorithm that is always most accurate, and methods have been pro-
posed to combine classifiers based on different learning algorithms [20,31]. Each algorithm has a different inductive bias,
that is, makes a different assumption about the data and makes errors on different instances and by suitable combination,
the overall error can be decreased.

There are several methods for model combination: the simple method is to use voting which corresponds to the sum rule,
or another fixed rule, i.e., median, product, minimum, or maximum [27]. Methods based on resampling from a single data
set, such as bagging [8] and AdaBoost [16], are not used to combine different learning algorithms. In stacking, fusion is done
using a trained, second layer classifier which estimates the real output from the outputs of base classifiers [58]. Ting and
Witten [55] propose the Multiresponse Linear Regression (MLR) algorithm, which combines the outputs of base learners lin-
early. In a mixture of experts (MoEs) architecture, models are local and a separate gating network selects one of the local
experts based on the input [24].

Model combination, however, is no panacea, and models in the ensemble should be carefully chosen for error to decrease.
In particular, model combination through averaging reduces variance [8], and hence error, but only if bias does not increase
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in the process, or if the concomitant increase in the bias is small with respect to the decrease in the variance. It is therefore
essential that only those models that contribute to accuracy are added and the poorly performing ones are weeded out.

1.2. Subset selection in classifier combination

Additional to its effect on statistical accuracy, each additional model increases space and computational complexity. A
new model may also be sensing/extracting a costly representation which can be saved if the model is considered redundant.
Methods therefore have been proposed to choose a small subset from a large set of candidate models. Since there are 2L pos-
sible subsets of L models one cannot try for all possible subsets unless L is small, and various methods have been proposed to
get a reasonable subset of size m < L in reasonable time.

Ensemble construction methods also differ in the criterion they optimize. Additional to the methods that directly
optimize ensemble accuracy, heuristics have also been proposed as measures of ‘‘diversity” in pinpointing models
that best complement each other, to allow diverse ones to be added and similar ones to be deemed redundant
and pruned.

Ensemble construction can be viewed as an optimization problem [64,50] and methods proposed in the literature corre-
spond to different search strategies in optimization: there are greedy ‘‘forward” algorithms that are incremental, and add one
model at a time if the addition improves the criterion that is to be optimized. There are ‘‘backward” search methods that
prune from a large set if the removal is not harmful. There are also ‘‘floating” methods that do both, as well as ones that
use genetic algorithms whose operators allow both addition and deletion. A chronological review of major ensemble con-
struction methods in more detail is deferred to Section 6.

1.3. Proposed methods for ensemble construction

In this paper, we discuss and evaluate two ensemble construction approaches:

(1) We incrementally construct an ensemble of classifiers as in the methods discussed above. On 38 data sets using 14 dif-
ferent base classifiers, we test the effect of: (i) the criterion to be optimized (accuracy, statistically significant improve-
ment and two diversity measures, correlation and Q statistics), (ii) the search direction (forward, backward, floating),
and (iii) the combiner (fixed voting, trained linear combiner).

(2) We incrementally construct an ensemble of discriminants where a classifier may be used for some of the classes but not
for others. For example, in a three-class problem ðC1;C2;C3Þ; C1 may be linearly separable from C2 and C3 and there-
fore the first discriminant of the linear classifier is chosen. If C2 is not linearly separable from C1 and C3, the second
discriminant of the linear classifier cannot be used and a more complicated classifier (e.g., k-nearest neighbor) needs
to be incorporated in the ensemble.

This work has two goals:

(1) First, we investigate the effect of various factors in ensemble construction using a wide variety of learning algorithms,
data sets and evaluation criteria. We compare this algorithm with bagging, boosting and random subspace method.

(2) Second, we generalize the idea of subset selection to the level of discriminants, to check if it is applicable not only at
the level of classifiers but also at the level of discriminants that make up a classifier.

The paper is organized as follows: in Sections 2 and 3, we introduce our algorithms. We give the details of our experi-
ments in Section 4 and results in Section 5. We discuss related work in Section 6 and conclude in Section 7.

2. Constructing an ensemble of classifiers

2.1. The ICON algorithm

Our proposed algorithm ICON to choose m out of L base classifiers is greedy in that it starts with the empty set and Incre-
mentally CONstructs an ensemble where at each iteration, it chooses among all possible classifiers the one that best im-
proves the performance when added to the current ensemble. The performance is measured using an ensemble
evaluation criterion, as we will discuss next. The algorithm stops when there is no further improvement. Of course, this does
not guarantee the finding of the best subset, but this algorithm has polynomial complexity, OðL2Þ, whereas exhaustive
searching of all possible subsets, Oð2LÞ, is of exponential complexity. As we see shortly, despite its simplicity, this algorithm
works very well in practice.

The pseudocode of the algorithm is given in Fig. 1. We start with Eð0Þ ¼ ;. At iteration t of the algorithm, we have ensemble
EðtÞ containing t models. Given the set of remaining L� t candidate models, Mk R EðtÞ, we have new candidate ensembles for
iteration t þ 1 as Sðtþ1Þ

k � EðtÞ [Mk; k ¼ 1; . . . ; L� t. Among these, we choose the one that is preferred to all other candidates
and is also preferred to the current ensemble (Line 5 of Fig. 1).
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Ei � Ej denotes the binary relation of ‘‘preference” comparing two ensembles and holds if Ei is preferred to Ej according to
the criterion used (which we will discuss next). If none of the candidates is preferred to EðtÞ, the algorithm stops and EðtÞ is
taken as the final ensemble.

The algorithm discussed above implements a forward, incremental, growing search. It is possible to implement a back-
ward, decremental, pruning version, where one starts with the whole set and at each step removes one, again using the same
preference relation and optimizing the same criterion. Similarly, a floating algorithm which tries to prune a previously added
base classifier may also be envisaged.

2.2. Ensemble evaluation

Given two ensembles Ei and Ej, we need an evaluation method to prefer one to the other. Note that this evaluation is done
on a validation data set different from the data set, on which the base classifiers are trained. To average over randomness in
splits, we also use cross-validation to generate multiple training/validation set pairs, train and validate multiple times and
look at the paired validation values. We use the following ensemble evaluation criteria in our experiments:

(1) Accuracy (ACC): We compare the average accuracies of the two ensembles on the validation sets.
(2) Cross-validation (CV): We use a statistical test to check if the difference in accuracy is statistically significant, and allow

only those additions that cause a statistically significant increase in accuracy. We use the one-sided 5� 2 cv paired t-
test [14] and check whether the more costly ensemble is significantly more accurate than the simpler one.
Note that cross-validation is only one method that can be used for model selection. One can also use a regularization
approach to check whether a small increase in accuracy is worth an increase in complexity and use an augmented
goodness measure:

goodnessðEiÞ ¼ accuracyðEiÞ � kjEij ð1Þ

where jEij measures the complexity of the ensemble which depends on the size of the ensemble as well as the time/
space complexities of the base classifiers or the cost of sensing/preprocessing the inputs they use [12]. k gives the
accuracy-complexity trade-off. Examples are AIC, BIC, and MML [21]. Equally, one can use a Bayesian approach where
simpler models are assigned higher prior probabilities.

(3) Q Statistic (QSTAT): As a diversity measure, we use the Q statistic [35]. First, we select the two classifiers which form the
most diverse ensemble, and at each iteration, we add another classifier if diversity increases; else, we stop. The Q sta-
tistic for two classifiers is calculated as

Qi;j ¼
N11N00 � N10N01

N11N00 þ N10N01
ð2Þ

where N00; N01; N10, and N11 are defined as in Table 1. The average diversity for an ensemble is calculated as

Qav ¼
2

mðm� 1Þ
Xm�1

i¼1

Xm

k¼iþ1

Q i;k ð3Þ

Fig. 1. Pseudocode of the forward searching ICON algorithm.

Table 1
Contingency table used by the measures of diversity.

Ej correct Ej wrong

Ei correct N11 N10

Ei wrong N01 N00
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(4) Correlation coefficient (CORR): As another frequently used diversity measure, we use the average correlation coefficient
[35]:

qi;j ¼
N11N00 � N10N01ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðN11 þ N10ÞðN01 þ N00ÞðN11 þ N01ÞðN10 þ N00Þ
p ð4Þ

The average correlation for the ensemble is calculated by averaging over all pairs, as done in QSTAT.

2.3. Model combination

Given an ensemble of base classifiers, the easiest way to calculate the overall output is by taking a sum, which corre-
sponds to taking a vote. Our base classifiers generate posterior probabilities so there is no need for scaling, normalization
or transformation [36,25].

There are other fixed rules, i.e., median, product, minimum, or maximum [27], but the sum rule we use is known to work
best in practice. Alkoot and Kittler [2] investigate fixed rules and see that the sum and the median rules are more robust to
noise. Kuncheva [30] discusses six fixed rules for classifier combination on two-class problems with Gaussian and uniform
error. She concludes that the min/max rule find the best ensemble when uniform error is the case. For Gaussian distributed
errors, the combination rules behave similarly. Cabrera [9] analyzes average, median and maximum rules when the number
of classifiers becomes large. He finds that average is the best for normal error, maximum is the best for uniform error and
median is the best for Cauchy error. These studies analyze under the assumption that classifiers are independent, though in
practice they are correlated [57].

Tax et al. [54] show that in multi-class problems, the product rule may be superior to the sum rule when the independent
data representation assumption is met. On the other hand, the sum rule is more robust to noise. Especially in cases when one
of the classifiers is an outlier, the veto power of the product rule decreases the combination performance. In two-class prob-
lems though, there is no difference.

The sum rule gives equal weight to all base classifiers, we also try a trained linear combiner; this is called
stacking [58,15,45,46]. We do not constrain weights to be nonnegative or sum to 1, and there is also a con-
stant intercept. A data set separate from the one used to train the base classifiers is used to train this linear
combiner.

A trained rule may have lower bias, but fixed rules are generally favored for a number of reasons: (i) there is no extra cost
of storing/processing the combiner model (called L1 model in stacking), (ii) we save from the time needed to train the com-
biner model, and (iii) there is no need to leave out a part of the training set to train the combiner, and all data can be used to
train the base classifiers.

3. Ensemble of discriminants

3.1. Rationale

The ICON algorithm above constructs an ensemble of classifiers, that is, it aims in finding a subset of base classifiers that best
complement each other to maximize the overall accuracy. Now in this section, we consider each classifier as outputting a set
of discriminants, and when we have a set of classifiers, we think of this as a larger set of discriminants, from which we choose
a subset as before, constructing an ensemble of discriminants.

In the ensemble of classifiers, we choose m classifiers from L candidate classifiers. In the ensemble of discriminants where
k is the number of classes, we choose p P k discriminants from L � k discriminants. We consider a new intermediate L � k
dimensional space in which we do feature selection and then classification. This is a continuation of the idea of subset selec-
tion where the sole difference is that items that are selected are not whole classifiers but separate discriminants which make
up the classifiers.

3.2. Discriminant selection

We use three algorithms for constructing a discriminant ensemble:

(1) Forward subset selection (FSS): This is a greedy, incremental algorithm that adds one discriminant at a time until there is
no further improvement in accuracy; it is basically ICON adapted to discriminant selection. There is a linear combiner to
calculate the overall output from the discriminants.

(2) Decision tree (DT): A decision tree is trained to learn the final output from the L � k dimensional discriminant values.
Note that the decision tree acts both as a feature selector and as a classifier (i.e., combiner).

(3) DT with linear output (DT.LIN): A decision tree is trained as above but instead of using it also for decision, it is used for
feature selection only. That is, we first train the tree, take the features it uses, and give them as input to a linear
combiner.

A. Ulas� et al. / Information Sciences 179 (2009) 1298–1318 1301
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3.3. Ensembles of discriminants vs. classifiers

The ensemble of discriminants is interesting for a number of reasons:

� A classifier may be accurate for some classes but not all, and it is best to use it only for the classes it is good at. Each clas-
sifier has a certain inductive bias, which may hold for some classes but not all. Take the case of a linear discriminant: In a
multi-class case, one of the classes may be linearly separable from the others but another class may not be. The output of
the linear classifier may therefore be included in the ensemble of discriminants for that class, but for some other class, a
more complex discriminant should be included in the ensemble. Certain classes may be handled by a single discriminant,
i.e., the output of one classifier suffices, but more discriminants are combined for more complex classes.

� When we know that a classifier will not be used for some classes, the overall complexity can be decreased, in terms of both
memory and time. The parameters for the unused discriminants need not be stored and the unused discriminants need
not be calculated. For example, when we are using support vector machines, we do not need to store the support vectors
of a discriminant nor do the costly kernel calculations if it is not to be used.

� The base discriminants do not need to be posteriors or normalized in any manner. Both the linear model and the
decision tree can use inputs in any scale, and no transformation or scaling is necessary thereby avoiding the risk of dis-
torting values [36,25]. (Though in practice, normalizing the inputs may help convergence with linear models in certain
situations.)

� The ensemble of discriminants by doing feature selection allows knowledge extraction. We know which base classifiers
can be trusted for which classes. There may be certain base classifiers whose discriminants are not chosen for any class,
there may be ones that are chosen for one or few, and there may be ones that are chosen for many. Certain classes may be

Table 2
Properties of data sets.

Name Source # of instances k d

Numerical Categorical Total

2 3 4 5 6 7 8 9 10 12 14 25 26 63

Australian uci 690 2 6 4 2 1 1 14
Balance uci 625 3 0 4 4
Breast uci 699 2 9 9
Bupa uci 345 2 6 6
Car uci 1728 4 0 3 2 1 6
Cmc uci 1473 3 3 2 4 9
Credit uci 690 2 6 4 3 1 1 15
Cylinder uci 540 2 29 8 4 2 1 1 45
Dermatology uci 366 6 34 34
E. coli uci 336 8 7 7
Flags uci 194 8 26 13 2 2 1 1 1 3 1 1 1 26
Flare uci 323 3 7 1 2 10
Glass uci 214 6 9 9
Haberman uci 306 2 3 3
Heart uci 270 2 13 13
Hepatitis uci 155 2 19 19
Horse uci 368 2 23 1 1 1 26
Ionosphere uci 351 2 34 34
Iris uci 150 3 4 4
Monks uci 432 2 6 6
Mushroom uci 8124 2 0 6 1 5 1 2 1 4 1 1 22
Nursery uci 12,958 4 0 1 3 3 1 8
Optdigits uci 3823 10 64 64
Pageblock uci 5473 5 10 10
Pendigits uci 7494 10 16 16
Pima uci 768 2 8 8
Ringnorm delve 7400 2 20 20
Segment uci 2310 7 19 19
Spambase uci 4601 2 57 57
Tae uci 151 3 1 2 1 1 5
Thyroid uci 2800 4 6 21 27
Tictactoe uci 958 2 0 9 9
Titanic delve 2201 2 0 2 1 3
Twonorm delve 7400 2 20 20
Vote uci 435 2 0 16 16
Wine uci 178 3 13 13
Yeast uci 1484 10 8 8
Zoo uci 101 7 16 16
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Author's personal copy

easy in that one discriminant is enough; a number of discriminants need to be combined to learn more difficult classes
accurately.

4. Experimental details

4.1. Data sets

We use a total of 38 data sets, where 35 of them ðzoo; iris; tae; hepatitis; wine; flags; glass; heart; haberman;
flare; ecoli; bupa; ionosphere; dermatology; horse; monks; vote; cylinder; balance; australian; credit; breast; pima; tictactoe; cmc;
yeast; car; segment; thyroid; optdigits; spambase; pageblock; pendigits; mushroom; and nurseryÞ are from UCI [4] and 3
ðtitanic; ringnorm; and twonormÞ are from Delve [44] repositories. The properties of these data sets can be seen in
Table 2.

4.2. Base classifiers

We use 14 base classifiers which we have chosen to span the wide spectrum of possible machine learning algorithms as
much as possible:

(1–3) knn: k-nearest neighbor with k ¼ 1;3;5.
(4–8) mlp: Multilayer perceptron was with D inputs and K classes, the number of hidden units is taken as D(ml1), K(ml2),

ðDþ KÞ=2ðml3Þ, Dþ Kðml4Þ, 2ðDþ KÞðml5Þ.
(9) lnp: Linear perceptron with softmax outputs trained by gradient-descent to minimize cross-entropy.
(10) c45: The most widely used C4.5 decision tree algorithm.
(11) mdt: This is a multivariate decision tree where splits are hyperplanes that use all inputs as opposed to univariate

trees, which use a single feature and implements an axis-orthogonal split [60].
(12–14) svm: Support vector machines (SVM) with a linear kernel (sv1), polynomial kernel of degree 2 (sv2), and a radial

(Gaussian) kernel (svr). We use the LIBSVM 2.82 library that implements pairwise SVMs [11].

4.3. Division of training, validation, and test sets

Our methodology is as follows: a given data set is first divided into two parts, with 1/3 as the test set, test, and 2/3 as the
training set, train-all. The training set, train-all, is then resampled using 5� 2 cross-validation (cv) [14] where twofold cv is
done five times (with stratification), and the roles swapped at each fold to generate 10 training and validation folds,
trai; vali; i ¼ 1; . . . ;10. trai are used to train the base classifiers (discriminants). vali are divided into two randomly as
val� Ai and val� Bi, where val� Ai are used to train the combiner and val� Bi are used for model selection (in choosing
the optimal subset or to choose the size of generated subsets). These ten trained models (base classifiers and combiner)
are tested on the same test and we have ten testi accuracy results. These processed data of base classifier outputs are publicly
available [61].

To compare the accuracies of different ensemble construction methods for statistically significant difference, we use two
different methodologies. First, for each data set, we use the 5� 2 cv F-test [3] ða ¼ 0:05Þ, which is a parametric test to com-
pare the methods for each data set; we then use the sign test to check if the numbers of wins/losses over all 38 data sets is
significant. Second, we use Friedman’s test which is a nonparametric test using the rankings, and if it rejects, we use the
Nemenyi test as a post hoc test to check for significant difference between methods [13].

4.4. Compared ensembles

The following ensembles are generated and compared:

� BEST: We order the base classifiers in terms of accuracy and use the first 1, 3, 5, 7, 9 of them. This has two variants: BEST.SUM

uses the fixed sum rule and BEST.LIN uses the trained linear combiner.
� RND: We randomly choose 1, 3, 5, 7, 9 base classifiers, with SUM and LIN options.
� ALL: All the available base classifiers are combined without selection, with SUM and LIN options.
� OPT: We try all possible subsets (there are 214) and choose the most accurate . It has SUM and LIN options.
� ICON: The classifier ensembles generated by ICON variants (ACC, CV, QSTAT, and CORR) are used. They all have SUM and LIN

options.
� FSS: This is the discriminant ensemble, which uses forward subset selection and a linear combiner.
� DT: This is the discriminant ensemble, which uses a decision tree.
� DT.LIN: This is the discriminant ensemble, which uses a decision tree for feature selection and a linear combiner.
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Author's personal copy

Accuracies of these algorithms on each data set can be seen in Table 3. The entries marked with H means that ACC is sig-
nificantly more accurate than that algorithm using 5� 2 F-test, � means ACC is significantly less accurate.

5. Experimental results

First, we check for the effect of search direction in ICON. In the next subsection, we discuss and compare the results of our
proposed methods on two data sets in detail, before moving on to an overall comparison on all data sets.

5.1. Comparison of search methods

As we have mentioned in Section 1, it is possible to search in the forward direction adding one at a time, backward direc-
tion removing one at a time, or a floating search where we try to remove a previously added base classifier before adding
another one. We can hence consider three ICON variants implementing forward (.F), backward (.B) or floating (.L) search.
The comparison of the accuracies of the three search directions according to the four criteria used by ICON variants can
be seen in Table 4. These entries are the number of data sets, on which there is a statistically significant win/loss of the
method in the row over the method in the column (using 5� 2 cv F-test); 38 wins–losses give the number of ties; the entry
is bold if the number of wins/losses is significant in 38 trials (using the sign test). The average and standard deviation of
the number of base classifiers in the found ensemble and the number of visited states during search are given, respectively,
in Tables 5 and 6.

We see that in all four criteria of ACC, CV, QSTAT, and CORR, .F and .L give similar results; this is because most of the time small
ensembles are enough, and there is not much to prune back after few additions. We also see that in terms of the ensemble
sizes and search time, .L and .F stand out as the best. With the diversity measure CORR, backward search is significantly more
accurate and faster because CORR needs larger ensembles, and that is why with the diversity-based measures, forward and
floating search take more steps.

Table 3
Accuracies of compared methods. H means ACC is significantly more accurate, � means ACC is significantly less accurate.

Data set ACC DT DT.LIN FSS OPT BEST ALL RND

Australian 85.2 ± 0.6 78.2 ± 4.6 82.8 ± 0.5w 86.5 ± 0.6 85.2 ± 1.1 84.8 ± 0.5 85.0 ± 1.2 85.7 ± 1.3
Balance 92.3 ± 2.0 94.5 ± 2.6 91.7 ± 0.2 91.4 ± 0.2 92.3 ± 2.0 91.1 ± 1.7 90.0 ± 0.6 90.5 ± 0.8
Breast 94.4 ± 0.1 90.9 ± 6.7 93.6 ± 1.3 94.4 ± 0.1 94.4 ± 0.3 94.4 ± 0.3 94.6 ± 0.4 94.4 ± 0.3
Bupa 70.8 ± 3.2 57.7 ± 10.4 61.2 ± 0.0w 64.4 ± 5.4 69.8 ± 2.6 68.7 ± 2.9 66.1 ± 3.6 66.2 ± 2.5
Car 96.5 ± 0.9 96.0 ± 3.4 96.9 ± 1.7 92.2 ± 0.1w 96.5 ± 0.9 96.7 ± 0.9 93.4 ± 1.1w 94.8 ± 1.5
Cmc 51.3 ± 1.3 44.0 ± 2.0w 44.3 ± 1.1w 49.0 ± 1.1w 51.2 ± 0.9 52.1 ± 1.4 50.9 ± 1.6 51.5 ± 0.9
Credit 84.1 ± 1.6 76.1 ± 6.8 82.5 ± 0.6 85.6 ± 0.7 85.7 ± 0.8 83.6 ± 1.0 85.1 ± 1.2 85.5 ± 1.3
Cylinder 70.2 ± 4.3 73.7 ± 3.7 80.5 ± 1.7� 77.1 ± 0.8 72.1 ± 2.6 71.7 ± 3.5 72.1 ± 2.6 72.6 ± 2.8
Dermatology 96.4 ± 0.6 95.3 ± 1.1 85.5 ± 5.4w 91.2 ± 0.0w 96.4 ± 0.6 96.0 ± 1.1 95.8 ± 1.1 96.4 ± 0.6
E. coli 85.0 ± 2.6 68.5 ± 10.6 73.0 ± 6.3 79.7 ± 2.0 83.1 ± 3.7 84.0 ± 2.6 83.6 ± 3.7 81.3 ± 3.8
Flags 59.6 ± 1.6 40.9 ± 10.2 43.7 ± 9.6w 47.6 ± 3.2w 59.6 ± 1.6 58.1 ± 2.6 56.7 ± 2.2w 56.4 ± 2.4w

Flare 88.1 ± 0.0 73.0 ± 24.0 88.2 ± 0.3 88.1 ± 0.0w 88.1 ± 0.0 88.1 ± 0.0 88.1 ± 0.0 88.1 ± 0.0
Glass 59.3 ± 3.6 49.6 ± 10.2 56.9 ± 3.5 51.6 ± 2.1w 55.5 ± 2.8 56.5 ± 2.6 54.1 ± 2.8 56.4 ± 2.3
Haberman 74.5 ± 1.1 55.9 ± 12.1w 71.0 ± 1.3w 73.5 ± 0.0 73.7 ± 1.5 73.7 ± 1.0 73.7 ± 1.1 73.6 ± 1.0
Heart 84.7 ± 1.1 69.2 ± 8.9 81.1 ± 3.9 87.2 ± 2.3 84.9 ± 1.8 84.7 ± 1.1 86.0 ± 2.0 85.0 ± 2.2
Hepatitis 81.0 ± 2.5 80.2 ± 2.2 79.2 ± 1.2 78.8 ± 0.0 81.5 ± 1.6 81.0 ± 2.5 81.2 ± 1.5 81.0 ± 2.5
Horse 85.4 ± 1.5 77.1 ± 12.1 85.2 ± 0.9 87.7 ± 1.1 84.4 ± 2.1 85.4 ± 1.5 85.6 ± 1.8 84.0 ± 1.9
Ionosphere 91.5 ± 1.1 89.5 ± 5.2 87.4 ± 3.3 90.7 ± 0.6 89.8 ± 1.9 89.8 ± 1.9 86.4 ± 2.4 86.9 ± 1.7w

Iris 96.7 ± 1.9 89.4 ± 7.8 82.2 ± 14.3 92.2 ± 0.0w 96.7 ± 2.5 96.7 ± 1.9 95.1 ± 1.9 94.3 ± 3.1
Monks 89.7 ± 7.3 94.4 ± 5.5 96.0 ± 3.5 97.7 ± 1.3 89.7 ± 7.3 83.6 ± 8.9 76.7 ± 2.9 82.4 ± 6.6w

Mushroom 100.0 ± 0.1 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.1 100.0 ± 0.1 99.9 ± 0.1 99.9 ± 0.1
Nursery 99.8 ± 0.1 99.9 ± 0.1 98.9 ± 1.1 100.0 ± 0.0 99.8 ± 0.1 99.8 ± 0.2 99.2 ± 0.2w 99.3 ± 0.3w

Optdigits 98.2 ± 0.2 97.7 ± 0.4 98.2 ± 0.3 98.8 ± 0.1� 98.2 ± 0.2 98.2 ± 0.2 97.8 ± 0.2 97.6 ± 0.2
Pageblock 96.2 ± 0.3 93.7 ± 1.4 96.4 ± 0.2 96.3 ± 0.2 96.1 ± 0.3 96.2 ± 0.2 95.8 ± 0.3 95.6 ± 0.3
Pendigits 99.2 ± 0.1 98.5 ± 0.9 99.2 ± 0.2 99.4 ± 0.0 99.1 ± 0.1 99.2 ± 0.1 99.0 ± 0.1w 98.9 ± 0.1w

Pima 74.0 ± 1.0 68.2 ± 2.3w 70.7 ± 0.9w 74.7 ± 0.3 74.8 ± 1.0 74.8 ± 0.9 74.2 ± 1.3 74.2 ± 0.9
Ringnorm 98.4 ± 0.1 98.0 ± 0.2 98.5 ± 0.1 98.5 ± 0.0 98.4 ± 0.1 98.4 ± 0.1 93.2 ± 0.4w 92.0 ± 0.8w

Segment 95.0 ± 0.4 86.1 ± 8.4 96.4 ± 0.5 96.1 ± 0.1� 94.8 ± 0.4 94.8 ± 0.7 93.9 ± 0.6 95.2 ± 0.7
Spambase 93.7 ± 0.4 89.2 ± 3.7 93.7 ± 0.4 94.0 ± 0.2 93.7 ± 0.3 93.1 ± 0.6w 93.3 ± 0.4 93.4 ± 0.4
Tae 48.5 ± 7.7 46.7 ± 12.8 53.5 ± 8.7 44.4 ± 6.0 47.3 ± 7.1 48.5 ± 7.7 50.6 ± 7.3 42.7 ± 6.0
Thyroid 98.1 ± 0.2 97.1 ± 1.4 97.8 ± 0.4 97.1 ± 0.0w 98.1 ± 0.2 98.3 ± 0.2 98.0 ± 0.2 98.1 ± 0.2
Tictactoe 99.4 ± 0.0 96.7 ± 4.3w 99.1 ± 0.8 99.4 ± 0.0 99.2 ± 0.2 99.3 ± 0.1 98.9 ± 0.6w 99.3 ± 0.3
Titanic 80.7 ± 0.1 80.7 ± 0.0 80.6 ± 0.3 80.7 ± 0.0 80.7 ± 0.1 80.2 ± 0.6 79.0 ± 2.2 80.2 ± 0.1w

Twonorm 97.4 ± 0.1 95.5 ± 1.2 96.9 ± 0.1w 97.5 ± 0.0 97.3 ± 0.1 97.4 ± 0.1 97.4 ± 0.1 97.3 ± 0.1
Vote 94.4 ± 0.9 93.8 ± 2.1 94.0 ± 2.3 96.8 ± 0.7� 94.9 ± 1.2 94.4 ± 0.9 94.8 ± 0.8 96.4 ± 0.3�

Wine 99.2 ± 1.4 93.7 ± 6.1 86.5 ± 10.6 96.5 ± 1.7 98.0 ± 1.1 97.3 ± 1.4 98.3 ± 1.1 98.3 ± 1.1
Yeast 58.4 ± 1.1 40.3 ± 3.0w 51.1 ± 0.3w 53.7 ± 0.6w 59.7 ± 1.3 59.0 ± 0.5 60.0 ± 1.3 60.3 ± 1.2
Zoo 94.1 ± 3.8 59.2 ± 7.3w 56.8 ± 0.0w 56.8 ± 0.0w 94.1 ± 3.8 94.1 ± 3.8 87.8 ± 3.9 96.2 ± 2.3
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We can see that .B and .L increase both the number of search steps and the ensemble size for ACC and CV. We believe that it
is not beneficial to use floating search because it finds the same ensembles as forward search does, but takes more steps. In
the diversity-based measures, backward search is more accurate but this increases the ensemble size and we have no benefit
over using the whole ensemble. Aiming high accuracy and small ensembles, we therefore adopt forward search in the rest of
the paper.

5.2. Initial results

We start by discussing in detail our results on two data sets, optdigits and nursery, as two example cases. We present our
overall results on all data sets in the next subsection.

Table 4
The number of statistically significant accuracy wins/losses of .F (Forward), .B (Backward), and .L (Floating) over 38 data sets according to the criterion used by
ICON. The bold face entries show statistically significantly difference using sign test.

ACC .F .B .L CV .F .B .L

.F 0/0 1/0 1/0 .F 0/0 1/5 0/0

.B 0/1 0/0 0/1 .B 5/1 0/0 5/1

.L 0/1 1/0 0/0 .L 0/0 1/5 0/0

QSTAT .F .B .L CORR .F .B .L

.F 0/0 2/5 2/0 .F 0/0 1/8 4/0

.B 5/2 0/0 8/2 .B 8/1 0/0 11/1

.L 0/2 2/8 0/0 .L 0/4 1/11 0/0

Table 5
Average ± standard deviation of the number of classifiers in ensembles found by each search direction and optimization criterion.

ACC CV QSTAT CORR

.F 2.39 ± 1.5 1.05 ± 0.2 8.16 ± 4.9 5.74 ± 5.1

.B 7.79 ± 3.2 2.08 ± 2.1 11.55 ± 3.7 11.39 ± 3.7

.L 2.26 ± 1.3 1.05 ± 0.2 6.29 ± 4.4 3.32 ± 2.3

Table 6
Average ± standard deviation of the number of search steps visited by each search direction and optimization criterion.

ACC CV QSTAT CORR

.F 42.37 ± 15.1 27.63 ± 2.7 143.05 ± 28.6 125.84 ± 30.6

.B 73.47 ± 22.9 101.68 ± 8.0 37.26 ± 29.0 38.95 ± 29.0

.L 712.47 ± 345.4 415.58 ± 40.6 172.13 ± 61.2 131.68 ± 40.6

Table 7
Single classifier accuracies on optdigits.

Alg test

c45 81.76 ± 1.3
mdt 92.98 ± 1.0
lnp 94.28 ± 0.8
ml2 94.86 ± 0.5
ml4 96.03 ± 0.9
ml5 96.21 ± 0.4
ml1 96.02 ± 0.6
3nn 95.99 ± 0.4
1nn 96.67 ± 0.4
5nn 95.86 ± 0.3
ml3 96.34 ± 0.3
sv1 97.48 ± 0.2
svr 97.67 ± 0.2
sv2 97.49 ± 0.3
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5.2.1. Optdigits data set
The accuracies of base classifiers (sorted in increasing accuracy) are shown in Table 7 and the ensembles on test data are

given in Table 8, together with the number of classifiers, the number of discriminants, and the chosen ensembles. The plot of
accuracies vs. the number of base classifiers is shown in Fig. 2. On this data set (as many others), using a linear combiner .LIN

does not increase the accuracy significantly, and therefore only .SUM results are given to keep the table and figures simpler.
We see that the optimal subset, OPT, chooses only 3 of 14 and is significantly as accurate as ALL that uses all 14. Ordering

base classifiers in terms of accuracy and choosing the best m, BEST, are also significantly better than ALL. Note that the accu-
racy of BEST starts to decrease when too many base classifiers are added; in such a case the increase in bias is higher than the
decrease in variance. Choosing a random subset, RND, does not work as well and requires more base classifiers.

In terms of the ensembles of classifiers generated by ICON, we see that ACC also finds the optimal subset. The optimal sub-
set generally contains a few base classifiers and searching in the forward direction, as ICON variant ACC does, greedily returns a
quite good subset in polynomial time.

The ICON variants that use diversity measures, QSTAT and CORR, use too many base classifiers, showing that it is best to use
accuracy as the ensemble evaluation criterion directly rather than an intermediate diversity measure; or that diversity
should not be used alone but in some combination with accuracy [28,29].

CV uses only one base classifier as it finds that adding the second does not increase accuracy significantly. The behavior of
CV depends on the statistical test and the confidence level. We show in Fig. 3 how the ensemble changes at different confi-
dence levels. When the confidence level is lower than 0.95, the test uses a smaller confidence interval, which is more likely to

Table 8
Combination results on optdigits.

Alg test # cla # disc Chosen

BEST.1.SUM 97.49 ± 0.3 1 10 sv2
BEST.3.SUM 98.22 ± 0.2 3 30 sv2 svr sv1
BEST.5.SUM 98.19 ± 0.2 5 50 sv2 svr sv1 ml3 5nn
BEST.7.SUM 97.90 ± 0.2 7 70 sv2 svr sv1 ml3 5nn 1nn 3nn
BEST.9.SUM 98.01 ± 0.3 9 90 sv2 svr sv1 ml3 5nn 1nn 3nn ml1ml5
RND.1.SUM 97.67 ± 0.2 1 10 svr
RND.3.SUM 97.60 ± 0.3 3 30 c45 sv1 1nn
RND.5.SUM 97.67 ± 0.2 5 50 ml3 ml1 ml5 sv2 1nn
RND.7.SUM 97.82 ± 0.2 7 70 ml3 ml4 mdt ml5 svr sv1 1nn
RND.9.SUM 97.61 ± 0.2 9 90 ml2 c45 ml3 lnp mdt ml5 svr sv2 3nn
ALL.SUM 97.85 ± 0.2 14 140
OPT.SUM 98.22 ± 0.2 3 30 svr sv2 sv1

ACC.SUM 98.22 ± 0.2 3 30 sv2 svr sv1
CV.SUM 96.02 ± 0.6 1 10 ml1
QSTAT.SUM 97.85 ± 0.2 14 140 ALL

CORR.SUM 97.85 ± 0.2 14 140 ALL

FSS 98.83 ± 0.1 10 25 c45(1,4) 1nn(3) 3nn(3,5) 5nn(7) ml1(9) ml2(4) ml3(1) sv1(2,3,5,6,7) sv2(1,2,4,7,8,9) svr(0,3,4,6,8)
DT 97.65 ± 0.4 6.6 11.8 1nn(6) 5nn(5) lnp(0) sv1(7) sv2(1,2,3,4) svr(8,9)
DT.LIN 98.22 ± 0.3 6.6 11.8 1nn(6) 5nn(5) lnp(0) sv1(7) sv2(1,2,3,4) svr(8,9)
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Fig. 2. Accuracy vs. the number of classifiers on optdigits test.
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reject, and generates larger ensembles: CV tends to behave similar to ACC as the confidence level decreases. As the confidence
level increases, the test gets more and more conservative and generates smaller ensembles, until it chooses only one.

As for the ensembles of discriminants, we see that FSS uses more discriminants than DT, but is significantly more accurate
than all other methods. On the average, DT chooses 11.8 discriminants (the smallest possible with 10 classes is 9) from 6.6
classifiers. Example tree (one of 10) learned by DT is given in Fig. 4, and its discriminants are given in Table 8: it starts by
looking at the output of sv1 for class ‘7’ and chooses ‘7’ if this value is higher than 0.46. Note that we only evaluate the dis-
criminants in our path; for example, we see here that the complex 5nn is only evaluated to distinguish ‘0’, ‘1’ and ‘6’ from
others. DT.LIN improves over DT, but not significantly ðp ¼ 0:90Þ. Most classes are identifiable by looking at a single discrim-
inant; only ‘1’ requires two (sv2 and 1nn). The example tree DT chooses only 10 discriminants, choosing discriminants from
six base classifiers; this set includes the optimal subset found by OPT (which has 3� 10 ¼ 30 discriminants), and uses three
more discriminants from three classifiers (5nn, 1nn, and lnp).

5.2.2. Nursery data set
The results on nursery is similar except that .LIN improves accuracy over .SUM, for some ensemble methods. The results for

the single base classifiers are given in Table 9 and the combination methods are given in Table 10. In Fig. 5, we compare the
.SUM and .LIN variants.

On this data set, the accuracies of the base classifiers range from 76.85 to 99.41 and we see that using .SUM (Fig. 5a), ALL

has low accuracy and the accuracy of BEST decreases as more classifiers are added; we do not see this as strongly with .LIN
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Fig. 3. The ensemble found by CV changes as the confidence level changes on optdigits.
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Fig. 4. One of the decision trees learned by DT on optdigits.
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(Fig. 5b). That is, a trained combiner is more robust to the addition of erroneous classifiers. The trained combiner is able to
weight the accurate ones more and effectively ignores those that are not as accurate. We also see that ICON, as a subset selec-
tion method, shows the same robust behavior; that is, because it does not add and use the inaccurate classifiers, its accuracy
is not degraded. Note that this is valid even if .SUM is used (Fig. 5a). We therefore see that in the presence of inaccurate base
classifiers in the ensemble, either one should use a trained combiner, which learns to ignore them or use a subset selection
method that does not include them.

This is a data set with four classes and the tree learned by DT for this fold (Fig. 6) has only three decision nodes, is very
simple, and has 100.00 test accuracy (accuracy of DT.LIN is 99.31), which is higher than what we get when we use all outputs
of all base classifiers for that fold (99.81). FSS uses more discriminants and is accurate. On this data set, ACC, OPT, FSS, and BEST

are significantly more accurate than ALL and RND.

5.3. General results

We compare the accuracies of all ensemble methods in a pairwise manner on test in Table 11. These are the number of
significant wins and losses of method in the row over the method in the column. The sum of wins and losses subtracted from
38 gives the number of ties. The entry in bold indicates that the number of wins/losses over 38 is statistically significant
using the sign test. We do further statistical analysis with nonparametric tests using the average ranks of the six ensemble
methods on 38 data sets (Table 12). Friedman’s test rejects the hypothesis that the six methods have equal ranks. Doing
Nemenyi’s post hoc test for pairwise comparison, we get the results in Fig. 7.

Table 13 shows the average number of base classifiers (/discriminants) contained in the ensembles that are constructed
using different methods. The discriminant values are normalized by dividing with the number of classes.

Table 9
Single classifier accuracies on nursery data set.

Alg test

1nn 76.86 ± 0.5
3nn 85.18 ± 0.5
5nn 89.93 ± 0.4
lnp 90.86 ± 0.7
sv1 92.43 ± 0.3
mdt 92.74 ± 0.4
c45 92.72 ± 0.5
ml2 94.97 ± 0.9
svr 95.50 ± 0.4
sv2 98.70 ± 0.6
ml3 99.13 ± 0.4
ml5 99.38 ± 0.3
ml4 99.42 ± 0.3
ml1 99.41 ± 0.2

Table 10
Combination results on nursery data set.

Alg test # cla # disc Chosen

BEST.1.LIN 99.41 ± 0.2 1 4 ml1
BEST.3.LIN 99.58 ± 0.2 3 12 ml1 ml4 ml3
BEST.5.LIN 99.81 ± 0.1 5 20 ml1 ml4 ml3 ml5 sv2
BEST.7.LIN 99.78 ± 0.1 7 28 ml1 ml4 ml3 ml5 sv2 svr ml2
BEST.9.LIN 99.77 ± 0.1 9 36 ml1 ml4 ml3 ml5 sv2 svr ml2 c45 mdt
RND.1.LIN 91.48 ± 0.3 1 4 5nn
RND.3.LIN 99.40 ± 0.2 3 12 ml1 3nn svr
RND.5.LIN 99.51 ± 0.3 5 20 lnp ml4 ml5 1nn svr
RND.7.LIN 99.60 ± 0.2 7 28 ml2 ml3 ml1 ml4 mdt ml5 1nn
RND.9.LIN 99.75 ± 0.1 9 36 ml2 ml3 lnp ml1 ml4 c45 5nn sv1 sv2
ALL.LIN 99.76 ± 0.1 14 56
OPT.LIN 99.81 ± 0.1 5 20 ml3 ml1 ml5 5nn sv2

ACC.LIN 99.82 ± 0.1 4 16 ml1 sv2 ml4 3nn
CV.LIN 99.83 ± 0.1 2 8 ml1 sv2
QSTAT.LIN 93.13 ± 0.5 2 8 c45 1nn
CORR.LIN 98.91 ± 0.4 2 8 ml3 1nn
FSS 99.95 ± 0.0 5 8 ml1(0) ml3(0) ml4(0,3) mdt(0) sv2(0,2,3)
DT 99.95 ± 0.1 2.7 3 c45(1) sv2(2,3)
DT.LIN 98.85 ± 1.1 2 3 c45(1) sv2(2,3)
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Additional to their accuracies and complexities, we also check how similar are the ensembles found by different methods.
Given two ensembles Ei and Ej, we define the similarity between them as the number of shared base classifiers (or
discriminants):

SimðEi; EjÞ ¼
jEi \ Ejj
jEi [ Ejj

ð5Þ

If the two ensembles share the same base classifiers (discriminants), the similarity is 1; if there is no intersection, the sim-
ilarity is 0. The average similarity between ensembles found by different methods is given in Table 14.

Analyzing these tables, our general results are as follows:

� Overall, using a trained linear combiner does not increase the ensemble accuracy significantly. In Table 15, we report a
comparison of accuracies using the fixed sum rule .SUM vs. the trained linear combiner .LIN; we see that except with CV,
there is no significant difference between them, and on CV, it is .SUM which is more accurate.
We believe this is because we have sufficiently well-trained, capable base classifiers, which are able to approximate pos-
terior probabilities quite well that no further bias correction (which the linear combiner effectively is there for) is
required. It may also be the case that on small data sets, there is not enough data to train the linear combiner sufficiently.
It is possible to increase the number of folds and, for example, use 20� 1 cross-validation that will have the effect of
increasing the training set both for base classifiers and the combiner at the expense of doubling the running time. In
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the extreme case, one can use leave-one-out where the number of folds is equal to the training set size (as proposed in the
original stacking paper of Wolpert [58]) but this cannot be afforded (nor is it necessary) unless the data set is small.Using a
fixed rule decreases time/space complexity of training/testing, does not require data to train the combiner allowing more
data to train base classifiers, and is simpler to interpret. Therefore throughout the rest of this section, we consider .SUM

results only.
� According to Nemenyi’s test given in Fig. 7, there is no significant difference in accuracy between BEST, OPT, RND, ACC, FSS.

Among those, as we see in Table 13, ACC uses the least number of classifiers, and FSS uses the least number of discriminants.
These results show that our proposed methods for the ensembles of classifiers and discriminants construct ensembles
which are simple and as accurate as optimal subset or the whole.

� Among ICON variants, ACC is the most accurate. It is also more accurate than ALL on 6 data sets of 38 on test (which is sig-
nificant using the sign test). ACC does not loose to OPT on any data set. The similarity of the ensembles they find is 0.48; this
is the fourth highest value in the table—the highest similarity is between QSTAT and CORR with 0.66. This shows that a
greedy, forward, incremental accuracy-based ensemble construction method works quite well. CV rarely uses more than
a single base classifier, and the diversity-based ICON variants are significantly less accurate than ACC.

Table 11
Pairwise comparison of accuracies (wins/losses over 38) of all methods using 5� 2 cv F-test.

BEST RND ALL OPT ACC CV QSTAT CORR FSS DT DT.LIN

BEST 0/0 3/1 6/0 0/0 0/1 9/1 7/0 8/0 10/4 6/1 9/1
RND 1/3 0/0 4/2 0/7 1/7 9/1 8/2 10/1 7/6 7/3 10/4
ALL 0/6 2/4 0/0 0/6 0/6 9/3 5/2 8/2 6/9 6/3 8/6
OPT 0/0 7/0 6/0 0/0 0/0 12/0 9/0 9/0 9/6 6/0 9/2
ACC 1/0 7/1 6/0 0/0 0/0 14/2 10/1 9/1 10/3 6/0 10/1
CV 1/9 1/9 3/9 0/12 2/14 0/0 6/7 6/7 3/9 4/1 5/6
QSTAT 0/7 2/8 2/5 0/9 1/10 7/6 0/0 5/1 5/12 5/5 8/8
CORR 0/8 1/10 2/8 0/9 1/9 7/6 1/5 0/0 7/12 5/5 5/8
FSS 4/10 6/7 9/6 6/9 3/10 9/3 12/5 12/7 0/0 7/1 12/3
DT 1/6 3/7 3/6 0/6 0/6 1/4 5/5 5/5 1/7 0/0 1/4
DT.LIN 1/9 4/10 6/8 2/9 1/10 6/5 8/8 8/5 3/12 4/1 0/0

Table 12
Average ranks of compared methods.

BEST RND ALL OPT ACC CV QSTAT CORR FSS DT DT.LIN

4.55 5.68 5.76 3.89 4.08 8.01 6.97 7.17 4.82 8.62 6.43

DT.LINDT
FSS

CORR
QSTAT

CV

ACC
OPT

ALL
TSEBDNR

3.58.5 7.5 6.5 5.5 4.5 
CD

Fig. 7. Graphical representation of post hoc Nemenyi test results of compared methods with ranks given in Table 12 [13]. The numbers on the line represent
the average ranks, CD is the critical difference for statistical significance, and bold lines connect the methods that have no significant difference.

Table 13
Average number of base classifiers (/discriminants) contained in different ensembles.

BEST RND ALL OPT ACC CV QSTAT CORR FSS DT

SUM 2.79 4.89 14.00 4.53 2.39 1.05 8.16 5.74 4.58/1.83 5.60/2.76
LIN 5.84 6.58 14.00 6.08 3.95 1.08 8.16 5.74 5.60/2.76
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� BEST is also as accurate as OPT but needs more base classifiers than ACC does. The similarity between ACC and BEST ensembles
is 0.61 (which is the second highest value in the table), showing that the greedy algorithm selects from the best m but
sometimes it chooses differently. ACC ensembles contain fewer base classifiers than those of BEST, indicating that instead
of choosing the best m classifiers it is better to do some choosing for those which complement each other and then we can
do with less.

� Even RND works quite well but needs a larger ensemble, requiring more than two times more base classifiers than ACC does.
� According to the average number of base classifiers they choose to include in their ensembles, we have the following

ordering: CV < ACC < BEST < OPT < FSS < RND < DT < CORR < QSTAT < ALL.
� ACC and CV use different base classifiers, because ACC selects the classifier with the highest accuracy, whereas CV also takes

complexity into account and chooses the classifier which is the least complex among the most accurate. Because CV

ensembles contain a single base classifier, they are generally less accurate than other ensembles.
� In 32 of the 38 data sets, OPT contains BEST.1, which means that an incremental algorithm beginning with the best individ-

ual algorithm has higher probability of finding OPT than an incremental algorithm beginning with a random classifier. On
the remaining six data sets, OPT contains the second best algorithm (and on five of them OPT contains the same algorithm
as BEST.1 with a different hyperparameter.).

� CV requires statistically significant difference for a classifier that is to be added and rarely adds more than one classifier
(average number of base classifiers found by this method is 1.05), but ACC, which looks at accuracy only, may achieve sta-
tistically significant improvement after more than one step of classifier addition.

� Diversity-based methods, QSTAT and CORR, do not work well. Most of the other methods are significantly more accurate than
them. The similarity between the ensembles found by these two is 0.66, indicating that they tend to find similar (but not
very similar) ensembles, but their similarity to OPT is around 0.20–0.25, showing that they do not choose good base clas-
sifiers. Their similarity to other accuracy-based methods (other than ALL) is also around 0.2. These results indicate that
rather than using such diversity measures alone, it is best to combine them with accuracy in some general goodness
measure.

� Among the three discriminant ensembles, FSS is significantly more accurate than DT.LIN and more accurate than DT (with
seven wins to one losses; this is significant at p ¼ 0:93). FSS on the average chooses fewer discriminants than DT variants,
and the similarity of discriminants selected by them is only 0.26. We believe this is because FSS chooses a feature that
decreases the error over the whole training set, while DT tries to minimize error over the data arriving to the current node
(subtree) by choosing a different feature, and when we take a union over such features we get a larger set.

Table 14
Average similarity of base classifiers (discriminants) between ensembles found by different methods.

BEST ALL OPT ACC CV QSTAT CORR FSS DT

BEST 1.00 0.20 0.44 0.61 0.11 0.13 0.14 0.32 0.20
0.20 0.13

ALL 0.20 1.00 0.32 0.17 0.08 0.58 0.41 0.33 0.40
0.13 0.20

OPT 0.44 0.32 1.00 0.48 0.14 0.23 0.20 0.37 0.28
0.21 0.17

ACC 0.61 0.17 0.48 1.00 0.09 0.13 0.15 0.29 0.19
0.19 0.14

CV 0.11 0.08 0.14 0.09 1.00 0.06 0.09 0.16 0.07
0.12 0.05

QSTAT 0.13 0.58 0.23 0.13 0.06 1.00 0.66 0.23 0.32
0.11 0.17

CORR 0.14 0.41 0.20 0.15 0.09 0.66 1.00 0.24 0.24
0.14 0.14

FSS 0.32 0.33 0.37 0.29 0.16 0.23 0.24 1.00 0.26
0.20 0.13 0.21 0.19 0.12 0.11 0.14 1.00 0.12

DT 0.20 0.40 0.28 0.19 0.07 0.32 0.24 0.26 1.00
0.13 0.20 0.17 0.14 0.05 0.17 0.14 0.12 1.00

Table 15
Comparison of accuracies (wins/losses over 38) of .SUM vs .LIN.

BEST RND ALL OPT ACC CV QSTAT CORR

test 2/1 2/3 0/5 0/0 1/0 6/0 3/6 5/5
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� DT.LIN seems to be more accurate than DT (with four wins to one loss, but it is not significant: p ¼ 0:62) and has less var-
iance, but using an additional linear combiner has disadvantages that we cited above. DT also has the advantages of being a
tree: it is interpretable and during test, we only need to evaluate the nodes (discriminants) in our path, implying faster
test performance.

� All discriminant ensembles are as accurate as ALL (FSS has nine wins, six losses compared to ALL). This implies that a dis-
criminant ensemble is simple, interpretable and accurate.

� ACC uses fewer classifiers but FSS uses fewer discriminants. ACC uses all the discriminants of the chosen classifiers, which
makes it costly but robust to noise due to redundancy; FSS and DT use a subset of the discriminants, are less noise-tolerant,
but are simpler and faster.

� The similarity between the classifiers used by FSS and ACC is 0.29, whereas the similarity between ACC and DT is 0.19. Both
being incremental forward methods, ACC and FSS tend to choose more similar classifiers, slightly different from those
selected by a decision tree.

� Although the classifier and discriminant ensembles seem to contain a comparable number of base classifiers, in terms of
the discriminants, the discriminant ensembles tend to need around half as many base discriminants, cutting by half the
space and time complexity of training/testing. On some data sets, this can be as low as one-fifth.

5.4. Comparison with ensemble techniques

We also compared our proposed algorithms with the most frequently used ensemble techniques such as AdaBoost
[16], bagging [8] and a variant of the random subspace [22] ensemble proposed by Bertoni et al. [7]. Theory of bagging
has been analyzed by Fumera et al. [17]. The accuracy of these ensemble methods can be increased by combining
with other methods (Zhang and Zhang [62] combined AdaBoost with rotation forests to come up with a new ensemble
technique called RotBoost) or changing the order of aggregation [38]. We compare ACC and DT.LIN with the following
algorithms:

� ADA: Standard AdaBoost implemented as proposed in [16]. We make a slight change and instead of stopping at 100% accu-
racy, we reset the instance weights and continue. We train decision tree ensembles of size 5, 10, 15, 20, 25, 30 and choose
the one with the best val-B accuracy.

� BAG: The original bagging algorithm proposed in [8]. We train decision tree ensembles of size 5, 10, 15, 20, 25, 30 and
choose the one with the best val-B accuracy.

� KNE: We train k-nn ensembles ðk ¼ 1;3;5;7;9Þ using random subspace method (we choose a different set of attributes for
each fold) and combine them using voting.

We compare accuracies of these methods in a pairwise manner on test in Table 16. These are the number of significant
wins and losses of method in the row over the method in the column. The sum of wins and losses subtracted from 38 gives
the number of ties. If the entry is bold, this means that the number of wins/losses over 38 is statistically significant using the
sign test. We do further statistical analysis with nonparametric tests using the average ranks of the five ensemble methods
on 38 data sets (Table 18). Friedman’s test rejects the hypothesis that the five methods have equal ranks. Doing Nemenyi’s
post hoc test for pairwise comparison, we get the results in Fig. 8. Looking at these tables, we can see by using the parametric
sign test that ACC is better than all the other ensemble methods, there is no statistically significant difference between ADA

and DT.LIN, and they are significantly more accurate than BAG and KNE. If we use the nonparametric Friedman’s test, and its
post hoc Nemenyi’s test, we see that we get the same results as the sign test, with the only difference that ADA and ACC have
no significant difference.

In Table 17, we can see the average and standard deviation of number of classifiers used by the compared ensemble meth-
ods. We can see that, though ACC and ADA have comparable accuracies, ACC uses fewer classifiers. This is because ADA uses the
same base classifier, and to create diversity, needs more classifiers, whereas ACC uses different base classifiers and benefits
from the diversity of those.

5.5. Recipe for constructing an ensemble

In this section, we will discuss how to best choose algorithms and construct ensembles for best performance.2 Different
learning algorithms have different inductive biases, which make them better for different data sets. There are parametric or
nonparametric methods, those which work in the original space and those which map to a new space and work there. Further-
more, some algorithms are advantageous in terms of memory, some in terms of classification speed. The linear perceptron, for
example, is cheap and fast but assumes linear separability; k-nearest neighbor is more flexible but expensive. Support vector
machines and multilayer perceptrons may be slow to train on large data sets. The best classifier hence depends on the con-
straints of the application, availability of data and how much memory and computation can be afforded.

2 We would like to thank the anonymous reviewer for suggesting us to write this section.
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In constructing ensembles, the most critical factor is to have classifiers that are accurate and diverse. Our experiments
have shown that the best way for this is to use different algorithms. We have seen that this is more effective in generating
a candidate set than using different feature subsets (for example, by the random space method), different samples of the data
(for example, by bootstrapping), or different hyperparameters (for example, by combining multilayer perceptrons with dif-
ferent number of hidden units). Only if we are determined to use a single algorithm (for example, a decision tree), we can
play with features/training sets/hyperparameters to generate a diverse and accurate set of versions of the single algorithm (a
decision forest).

As the training set gets larger, different bootstraps will be more and more similar, there will be more positive correlation
between classifiers and there will be less gain through bagging. Similarly, when there are few features, different feature sub-
sets will generate more correlated classifiers. Furthermore, different algorithms may imply different constraints: For exam-
ple, with k-nearest neighbor, different samples or different k will not have a large effect on diversity, one should use different
feature sets (or better still, k-nn should be combined with a completely different algorithm, for example, a linear perceptron).

In all this, we see the advantage of ICON, where we do not need to worry about how best to choose the classifiers in the
ensemble; we train them all and let ICON pick the best subset.

We have also seen that it is better to combine classifiers with soft outputs (for example, posterior probabilities) rather
than 0/1 decisions. In this work, we do not see a difference because we have well-trained classifiers with softmax outputs
and the soft outputs are close to 0/1 anyway; but in general, soft outputs allow representing confidence and provide more
information to the combiner.

If the base classifiers are all equally accurate and if there is no great difference among them in terms of accuracy, a fixed
rule (for example, the sum rule) is cheap and accurate. In cases where there is difference, a trained rule works better as it
allows assigning a small weight to bad classifiers. An ensemble construction method such as ICON also allows pruning inac-
curate classifiers (which is equal to giving them zero weight). Note that a trained combiner needs its own training data
which should be distinct from the data used to train the classifiers. If a model selection is to be done for the combiner, it
also needs its own validation data; that is why, we have both val-A and val-B in this study.

If in a data set, we expect to have all classes with similar distributions then a classifier can be trusted for all classes. But
this may not be true in a data set where certain classes are easily separated from others and some classes may be more dif-
ficult. In such a case, we would recommend using an ensemble of discriminants where a classifier is used for some classes
but not all.

To summarize, classifier combination is not some magical tool which is always guaranteed to increase accuracy; it does
increase memory and computational needs because there is the extra cost of training/storing/using many classifiers instead
of one. Care should be taken that classifiers that are to be combined are both accurate and diverse and that they are com-
bined appropriately; otherwise we will just pay without any significant gain.

Table 16
Pairwise comparison of accuracies (wins/losses over 38) of ensemble methods using 5� 2 cv F-test.

ACC DT.LIN ADA BAG KNE

ACC 0 10 11 14 19
DT.LIN 1 0 9 10 17
ADA 0 7 0 10 16
BAG 0 2 0 0 5
KNE 0 1 0 1 0

245 CD

BAG

ACC
KNE

DT.LIN
ADA

13

Fig. 8. Graphical representation of post hoc Nemenyi test results of compared methods with ranks given in Table 18.

Table 17
Average and standard deviation of number of base classifiers contained in different ensemble methods.

ACC ADA BAG

2.39 	 1.50 22.10 	 8.11 10.13 	 8.01
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6. Related work

Since choosing from a subset of classifiers is of exponential complexity, heuristic methods have been developed, which
are similar to the ones we have evaluated in our study. Below, we divide work into categories, and give a chronological sur-
vey of literature for each category (Table 19 gives a summary). Since these categories have overlaps, we mention related
work in the most appropriate subsection.

6.1. Subset selection algorithms

Besides the complexity and performance of evaluation of the ensemble, a subset of the given classifiers may outperform
the whole set. So, methods that construct an ensemble using a subset of the available classifiers have been developed.

Partridge and Yates [41] use the concept of ‘‘methodological diversity” to come up with diverse classifiers and use three
different methods for combining RBF or MLP neural networks. They use a subset selection technique, which first trains multi-
ple base classifiers and chooses amongst them. The evaluations are carried out on three data sets, and no cross-validation is
mentioned.

Ueda [56] combines multiple neural networks linearly to come up with an ensemble, similar to the work of Ting and Wit-
ten [55]. The approach is to first find best neural networks for each class and combine them linearly using optimal weights.
Only neural network classifiers are used in the study, and weight decay regularization is used. The method is compared with
voting, bagging and majority voting. Leave-one-out cross-validation is used for evaluating the results on one artificial and
two real data sets; no statistical testing is provided.

Zhou et al. [65] show that choosing a subset of classifiers may be more accurate than combining all, and propose a genetic
algorithm-based method to find the subset and evaluate their results on 10 regression and ten classification data sets. Their
base classifiers are neural networks with one hidden layer. They compare their results with bagging and AdaBoost and show
that their method finds ensembles which are smaller and which have better generalization ability. They use tenfold cross
validation in their experiments and statistical tests are used to assess the performance.

Caruana et al. [10] propose an incremental algorithm that adds classifiers to the ensemble one at a time, as in ICON. The
stopping conditions are different: They stop after a predefined number of steps or when all the classifiers are chosen. Their
work uses thousands of models trained with different hyperparameters using six base algorithms, and they use seven data
sets (which are binary or binarized) for evaluation purposes using ten performance metrics that are normalized to [0, 1].

Ruta and Gabrys [49] evaluate various methods for combining classifiers and compare error-based and diversity-based
selection criteria. They make experiments on 27 data sets using 15 classifiers (different algorithms) using crisp (0/1) outputs.
They evaluate various search methodologies including forward and backward search, single best and m-best, and evolution-

Table 18
Average ranks of ensemble methods.

ACC DT.LIN ADA BAG KNE

1.55 2.61 2.42 3.84 4.58

Table 19
Work similar to ICON analyzed in five dimensions: (1) Aim: SS: subset selection, EP: ensemble pruning, EC: ensemble construction, OWC: optimal weight. (2)
Optimization criterion: A: accuracy, D: diversity, TP-FP: TP-FP spread, RCM: realistic cost, TC: test cost, AHR: average hit rate. (3) Base classifiers. (4)
Optimization method: M: best m, G: genetic algorithm, F: forward, B: backward, R: random, L: floating, tabu search, X: exhaustive, E: early stop, O: optimization
algorithms (integer programming, etc.), RLO: random linear oracle, C: clustering, DP: tree pruning, BC: best for class, MSE: squared error, MCE: classification
error, MDM: margin minimization, CM: complementariness, CAL: calibration.

Reference Aim Criteria Base classifiers Method # of data sets

Margineantu and Dietterich [37] EP A, D dt L, F, E 10
Sharkey et al. [51] SS A ann, som R, X 2
Ueda [56] SS, OWC MCE, MSE ann BC 3
Roli et al. [48] SS A, D mlp, rbf, pnn, knn F, M, BC, B, L, C 1
Zhou et al. [65] SS A ann G 20
Caruana et al. [10] SS A, CAL svm, ann, knn, dt F 7
Ruta and Gabrys [49] SS A, D nmc, ann, knn, parzen, lp, rbf F, B, G 27
Demir and Alpaydın [12] SS A, TC mlp, lp F 1
Rokach et al. [47] SS AHR, QRecall, PEM dt M 1
Zhang et al. [64] EP A dt O 16
Kuncheva and Rodriguez [33] EC A dt RLO 42
Martínez-Munoz and Suárez [39] SS A dt M, E 18
Yang et al. [59] SS, EC A, TC SPODE F, B, R 58
This work SS A, D knn, mlp, svm, mdt, dt F, B, L 38
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ary algorithms. They use 16 measures (based on accuracy, diversity or both) to assess the performance of constructed sys-
tems, and their conclusion is the ‘‘inappropriateness of diversity measures used as selection criteria in favor of the direct
combiner error-based search”. They also conclude that ‘‘greedy algorithms are the best resistant to bad selection criteria”.
After the selection process they use majority voting for the combination of the classifiers. They divide the data set into
100 different train/test splits (half of test set is used for validation and the other half is used for evaluation). Their empirical
results support our findings: It is best to use accuracy as the search criteria; using diversity alone as the selection criteria,
which gives very bad results because it chooses most diverse but inaccurate classifiers. They use crisp (0/1) outputs, whereas
using posterior probabilities as we do is more informative.

Kuncheva and Rodriguez [33] propose a hybrid selection–fusion approach to classifier combination. For each classifier, a
random linear oracle is created as a hyperplane and the data residing in each half is trained using the ensemble approach.
They test their method on 35 data sets from UCI and 7 other medical data sets. Tenfold cross validation was carried out with
decision trees used as base classifiers. They see that all the ensemble methods benefit from this approach, with bagging and
the random subspace methods having the highest benefits.

Sohn and Shin [52] compare bagging and combination using linear regression and see that on large data sets, they work
equally well and bagging is better on small data sets (where probably a trained combiner overfits). They find that a trained
combiner is suitable when there is strong correlation between input variables.

Yang et al. [59] combine Bayesian network classifiers and compare subset selection (in forward/backward direction using
various criteria) vs. trained weighted combiner. They make their experiments on 58 benchmark data sets and use four dif-
ferent statistical testing methods for comparison. They conclude that there is no clear winner and that the choice between
model selection and model weighing depends on the problem at hand.

6.2. Pruning algorithms

Some methods, instead of selecting a subset, begin with the whole set of classifiers and prune the unnecessary (according
to an evaluation criterion) classifiers from the set to form the ensemble. Backward and tabu search in [48] and backward
search in [49] are examples of this method.

Margineantu and Dietterich [37] use the idea that combining diverse classifiers leads to better ensembles: They first use
boosting to form an ensemble of 50 decision trees from which they then prune (i.e., using backward search) non-diverse clas-
sifiers using five different diversity criteria. They use decision trees as base classifiers and they compare their results on ten
data sets with tenfold cross-validation.

Sharkey et al. [51] propose the ‘‘test and select” approach to ensemble construction. The focus is on selecting a subset
from a larger set. If the number of classifiers is small, they use exhaustive search; else they generate and test a number
of candidates. One method is to generate random subsets, especially when there are too many base classifiers. They compare
their results on two data sets and use neural networks for the first data set and self-organizing maps for the second data set.
The data sets are divided into training, validation and testing sets, but statistical comparison is not mentioned.

Roli et al. [48] define the ‘‘overproduce and choose” paradigm where they initially construct a set of candidate classifiers
and then select a subset amongst them. Their forward and backward search is the same as ours, using accuracy and diversity
criteria; they also implement a forward version which does not start with the best classifier but a random one. They use only
one data set and compare their results with ALL and BEST, with three different sets of base classifiers. No statistical evaluation
is presented in the study and they combine using majority voting.

Tamon and Xiang [53] use a method called ‘‘weight shifting” to prune the ensembles of decision trees constructed using
AdaBoost. They evaluate this method by using tenfold cross-validation on eight data sets, but no statistical testing is men-
tioned. They also show that subset selection problem is intractable, and propose a solution using integer programming.

Prodromidis and Stolfo [43] form a meta decision tree for the classifiers in an ensemble and use cost-complexity-
based pruning to prune the tree. They first model the ensemble (constructed by any method) into a decision tree,
which mimics the behavior of the original ensemble. They then prune this constructed tree, which results in the dele-
tion of some of the classifiers in the original ensemble. The remaining classifiers are used to construct the final ensem-
ble with the same method that is used to construct the original ensemble. The methods used for constructing the
initial ensemble are weighted voting, majority voting, SCANN [40], and stacking, and five base classifiers were used
in the study.

Bakker and Heskes [5] use clustering to reduce the size of bootstrap ensembles. They use cluster centers as representa-
tives of each cluster and use a measure of methodological diversity to make the cluster centers optimally diverse. Islam et al.
[23] use incremental algorithms based on the negative correlation learning to come up with neural network ensembles, tak-
ing into account both accuracy and diversity. They evaluate their proposed method on eight data sets. The diversity measure
is added to the error function, so that networks try to maximize diversity during training.

Martínez-Munoz and Suárez [39] train L classifiers using bagging, and then use AdaBoost to prune the ensemble (i.e.
change the random order of bagging and early stop). They use 18 data sets in their experiments and use decision trees as
base classifiers; and they also check for statistical improvement. Their conclusion is that, by selecting a subset of base clas-
sifiers, one can achieve better accuracy, with less complex ensembles. Their method outperforms bagging and is comparable
to AdaBoost, though when the noise level is high, their method outperforms AdaBoost, which makes it a better alternative
ensemble method when the noise level is not known. In their recent work, Martínez-Munoz et al. [38] compare methods for
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selecting a subset of classifiers constructed with bagging. They compare different methods for changing the order of aggre-
gation in bagging.

In a recent work, Dos Santos et al. [50] propose a dynamic overproduce and choose strategy which outperforms and is
more efficient than a static ‘‘overproduce and select” strategy and a dynamic classifier selection method. They use random
subspaces and bagging for overproduction phase, four different methods as search criteria, and use single and multiobjec-
tive genetic algorithms for optimization. The selection phase is divided into two phases: optimization and dynamic selec-
tion. For each test instance, a subset of classifiers is selected according to some confidence measure and they are
combined.

6.3. Diversity-based algorithms

Kuncheva et al. [34] use nine different diversity measures and eight different combination techniques for bagging and
boosting. The results indicate that there is no clear distinction between the diversity measures, and no clear relation between
diversity and accuracy, but there are some interesting patterns.

Kuncheva and Whitaker [35] define ten different diversity measures and their relationship with classifier ensemble accu-
racy. They define ten different diversity measures used in the literature, some of which are closely related with one another,
and classify them into groups such as pairwise and non-pairwise. At the end they conclude that there is no clear relationship
between the ensemble accuracy and the diversity measures used.

Roli et al. [48] use diversity measures for evaluating the search algorithms used in subset selection. Goebel and Yan [18]
use q-correlation-based diversity measure with an incremental learning algorithm to find an ensemble. They express the fact
that q-correlation is a better indicator of contribution to overall accuracy than that of the individual accuracy of the base
classifier that is to be added. They use neural network classifiers as base classifiers and they evaluate their results on one
data set. No statistical testing is done.

A recent special journal issue edited by Kuncheva [32] contains papers on diversity measures and their role in ensemble
construction: Banfield et al. [6] propose another diversity measure called the percentage correct diversity measure and use it
for thinning (pruning).

Though most studies show that the relation between accuracy and diversity is unclear, Ko et al. [28,29] propose com-
pound diversity measures, which combine accuracy and diversity, and show that these measures have high correlation with
the ensemble accuracy.

6.4. Genetic and optimization algorithms

Kim et al. [26] train multiple ensembles using genetic algorithms. They evaluate their algorithm on 17 data sets using
cross-validation and using neural networks as base classifiers. The diversity of the ensembles is achieved using multiple fea-
ture subsets. The difference of their method from most of the methods in the literature is that they build multiple ensembles
at the same time. The genetic algorithm determines the membership of classifiers for the ensembles and the selected feature
subsets of each classifier.

Zhang and Bhattacharyya [63] propose genetic programming (GP) to create ensembles particularly when there are
much data at hand. A GP classifier consists of nodes that are of any possible mathematical operators and leaves that
are of any features of the data. They create and compare mean combiners of genetic programming, decision tree and lo-
gistic regression classifiers, and report that the GP classifiers are more accurate than the other two. The possible reasons
for this is the diversity created due to recombination processes (crossover and mutation) and the fitness function. They
also note that since their GP classifiers evolve to contain only the features containing much information, there is also fea-
ture selection.

The fuzzy linguistic quantifiers can be used to represent the opinions of the individual decision makers [42]. There are
two proposed methods to fuse the decisions. In one method, the ordered weighted averaging is used for obtaining a scalar
value where the quantifiers help to determine the weights. In the other method, the majority opinion is represented as a
vague concept, a fuzzy subset.

Zhang et al. [64] define the problem of pruning an ensemble as a quadratic integer programming problem and use semi-
definite programming to get a better approximate solution.

6.5. Combining different representations

Perhaps the best way to form independent base classifiers is to have them use different representations of the same object
or event. Different representations make different characteristics apparent and an object ambiguous in one representation
may be clearly recognizable in another [1]. Demir and Alpaydın [12] generate multiple feature sets from different represen-
tations, feed them to separate base classifiers and incrementally find the best subset of classifier/representation pairs; dif-
ferent representations may have different costs associated with them and the chosen ‘‘cost conscious” ensemble best trades
off accuracy and cost. They perform their experiments on a handwritten digit data set with multiple representations using
multilayer perceptrons as base classifiers, and compare the accuracy with voting over all and boosting. Gökberk et al. [19]
use different face representations.
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7. Conclusions

We discuss two ensemble construction methods. In an ensemble of classifiers, we choose a subset from a larger set of base
classifiers. In an ensemble of discriminants, we choose a subset of base discriminants, where a discriminant output of a base
classifier by itself is assessed for inclusion in the ensemble.

A greedy, forward, incremental classifier ensemble finds ensembles that are small, as accurate as the optimal ensemble,
and does this in polynomial time. It is best to maximize the final overall ensemble accuracy, rather than some intermediate
diversity criterion; one may also envisage some combination of accuracy and diversity to be able to get the best of both
worlds. We see that the incremental ensemble has statistically significantly higher accuracy than bagging and random sub-
space method; and when compared to AdaBoost no statistical difference can be found. On the other hand, ACC uses fewer
classifiers other than bagging and AdaBoost.

When the base classifiers are trained with enough data and are accurate, there is no need for a trained linear combiner,
and the fixed sum rule works as well, in a cheaper manner. Our experience in this and other studies is that stacking works
better than voting when there is disparity between the accuracies of the base classifiers. When all base classifiers are accu-
rate and equally trustworthy, voting works fine; stacking is needed when we need to weight some, those that are more accu-
rate, higher and some, the erroneous ones, less.

The discriminant ensemble is interesting in the sense that not all discriminants of chosen classifiers are used. In many
real-world data mining applications, training is typically done much less frequently than testing and decreasing test com-
plexity at the expense of more training is preferred. The idea is the same as a classifier ensemble: just as not all base clas-
sifiers may not be needed and it is better to weed out those not needed to keep complexity in check, it may not be necessary
to use a base classifier for all classes. Considering a classifier not as a single entity but as a collection of discriminants, one for
each class, we can choose a subset of the discriminants thereby using a base classifier for some classes but not all. The cor-
responding discriminant is included, when the inductive bias of that classifier matches for a class, otherwise it is not used.
This makes the whole ensemble much simpler, faster, and interpretable. In large scale data mining applications, where both
accuracy and time/space complexity are important, such improvements in efficiency may be critical.
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