An Incremental Neural Network Construction
Algorithm for Training Multilayer Perceptrons

Oya Aran, Ethem Alpaydin
Department of Computer Engineering,
Bogazici University TR-34342
Istanbul, Turkey
{aranoya, alpaydiy@boun.edu.tr

Abstract— The problem of determining the architecture of a problems where prior information exists, the initial steda be
multilayer perceptron together with the disadvantages of he stan-  different. In pruning approach [3], in contrast to the comst
dard backpropagation algorithm, directed the research tovards tive approach, the algorithm starts with a large network aad
algorithms that determine not only the weights but also the suc- ’ .
ture of the network necessary for learning the data. We propse a moves the unnecessary nodes ahd c_onnectlons. The seartch mus
Constructive Algorithm with Multiple Operators using Stat istical € terminated when the generalization performance of the ne
Test (MOST) for determining the architecture. The networksthat ~work begins to decrease. Some algorithms continue until all
are constructed by MOST can have multiple hidden layers with training examples are correctly classified but these alyos
multiple hidden units in each layer. The algorithm uses nodee- fail to learn noisy data and generate larger networks.

moval, addition and layer addition and determines the numbe of .
nodes in layers by heuristics. It applies a statistical testo com- The search strategy determines how to reach to the best ar-

pare different architectures. The results are promising aml near ~ Chitecture starting with the initial architecture in gealerin
optimal. particular, it determines the next state and how to movedo th

next state from the current state. In some algorithms threere i
only one next state. The disadvantage of this type of algmst
I. INTRODUCTION is that, finding a good architecture for any kind of problem ca
Multilayer networks with fixed topology trained using stanbe impossible since there is only one possible next statifeln
dard backpropagation based orgradient descent are the most n_wulu—valued case, there are candld'c_lte next state§ andgihe a
common use of neural network models. These networks 4f&m chooses one among the candidates. The disadvantage of
only useful with the appropriate network architecture. $tam- these algorithms is their high computation time. ,
dard back propagation algorithm finds the network weights us Constructive approach is generally preferred to the pginin
ing gradient descent procedure but the network architedeur 2PProach with a number of advantages. Specifying the nitia
found by trial and error. The optimal architecture is a netwo "WOrK is easier in constructive methods. In pruning mesho
large enough to learn the underlying function, and as snsall @€ has to decide how big the initial network must be whereas
possible to generalize well. A network smaller than theropti 1t1S €asy to found an initially small network. Since constive
architecture can not learn the problem, but on the other haf§thods start with smaller networks, the computation tige i
a larger network will overlearn the data with a poor generdSS and they are likely to find smaller networks.
ization performance. The generalization performance ofale
networks can be viewed as thag/variance dilemma [1]. The Il. DETERMINING THE NETWORK ARCHITECTURE
trade off between the bias and the variance is the key fagtor i The problems in backpropagation [2], [4] and the need for
the generalization performance of a neural network. A smdihding the appropriate architecture resulted in algorithhat
network will have a high bias and will fail to learn the undertearns the necessary architecture from data. Construaitie
lying function generating the data. If we use a large networkthms can solve some of the problems of the standard back-
then the bias will be close to zero (it will even be zero if #herpropagation but also introduce some other problems. Tha mai
are enough number of units in the network; in that case, thsadvantage of the constructive algorithms is their weakn
network will interpolate the data) but then a high variand w on noisy data. The different training techniques used in con
be introduced. The optimal architecture is the one thatlzas. structive algorithms try to overcome these problems ané+o r
the bias and the variance so that the network can generaézeduce both time and space complexity.
data, ignoring the noise. The simple way of training the new network is to train only
All algorithms that determine the network architecturednavthe newly added unit and freezing the previous weights. The
to start with an initial architecture. The initial architere is assumption in this approach is that, the existing unitsemikt-
determined by the nature of the algorithm used. In construserk are already trained and are useful in obtaining theetarg
tive approach, the algorithm starts with a small network arfdnction. Cascade-correlation algorithm uses weightZireg
constructs the network by adding nodes and connections [ training the network [4]. Although this kind of training+
The simplest network is the network with no hidden units. lduces the time and space complexity of the whole process, re-



search on weight freezing [5], [6] shows that, in generdhils  Algorithm for Real Valued Examples (CARVE), was proposed
to find the desired solution. When an extra degree of freedom1998. CARVE [12] uses convex hull methods for the de-
is introduced by adding a new unit in the network, freezirgy thermination of network weights. The algorithm starts with a
existing weights only allows finding the solution in an affinempty hidden layer into which thresholds units are added one
subset of the weight space [5]. On the other hand, algorithraisa time until the layer is complete. Feedforward Neural Net
using weight freezing can sometimes find good solutions witiork Construction Using Cross Validation [13] uses crods va
a high generalization power, also with a huge decrease in tfegtion for adding units to a single hidden layered netwotie T
learning time. network with more hidden units is only accepted if the total a
When a new unit is added to the network, its appropriat@iracy on training and cross validation samples is highan th
weights are initialized to random values and the traininthef that of the previous network.
whole network continues with the old weights. The idea here
is that, the information learned so far will be useful in fieiag V. MOST
the final network. Dynamic Node Creation algorithm uses this '
kind of training [5]. This kind of training decreases theiiiag Many of the algorithms proposed so far make some important
time but it may cause the algorithm to get stuck in local maimassumptions on the architecture such as the number of layers
Training of the new network can be done with all the weight® general, an architecture with a single hidden layer iames!
initialized to random values. This kind of training is thevsa and the number of nodes in the network is determined. Archi-
with the standard backpropagation training. These algmst tectures with no hidden layers or more than one hidden lager a
have the advantages and disadvantages of backpropagationdiscarded. Cascade correlation constructs a network watte m
than one hidden layer but it has another assumption: eaeh lay
I1l. CONSTRUCTIVE ALGORITHMS consists of a single hidden unit. Another problem is that-com

An early work on the problem is Projection Pursuit Reglre&gl_f':lr_ing the error value_s of two networks once is unreliab!a: S
sion (PPR) [7], proposed in 1989. PPR is a statistical tegeni tistical tests over multiple runs must be used for comparirg

for multivariate data analysis using a two layer feedfocget- 2rchitectures. MOST uses<2 cv F Test [14]. Another prob-
work with linear output units. lem is incrementing the number of hidden nodes in the network

In Group Method of Data Handling (GMDH) type of algo-f)”? b)_/ one since one hidden node difference can be stdltigtica
rithms [8] the number of incoming connections to a hiddetgsignificant. _ _ _ _
unit is fixed but the sources of these incoming connections ca Constructive Algorithm with Multiple Operators using Sta-
change. It can be any combination of input units and other hiistical Tests (MOST) makes no assumptions on the number of
den units. The algorithm selects the next architecture gmo@Yers of the network and overcomes the problem of one hidden
these different combinations. The Upstart algorithm [9his N0d€ addition by applying multiple operators. One hiddesteno
constructive algorithm for binary classification problerihe 2dditions or removals are used for finetuning the network.
algorithm starts without hidden nodes and tries to sepanate MOST starts with an initial network, which is a network with
data. If separation is not possible, then corrector nodes &° hidden layers. Then it tries to apply the next applicape o
added. The generated network is very much similar to a n&f&tor. The pseudocode of the MOST algorithmiis given in Fig-
work with one hidden layer by defining all the corrector nodd&® 1. The application of operators, in order of precedetwe (
as hidden units. Cascade-correlation method [4] constraictPréfer simple networks), is as follows:
network with multiple hidden layers. The algorithm starigwv 1) Remove a percentage of hidden units from a layer.
an initial network and incrementally adds one-unit hidden | 2) Remove a hidden unit from a layer.
ers to the network until a satisfying solution is found. The 3) Add a hidden unitto a layer.
inputs are directly connected to the outputs and to the hidde 4) Add a percentage of hidden units to a layer.
units. A hidden unit is connected to the inputs, to the owtput 5) Add a new layer between the output and the layer below
and to all the preceeding hidden units. The calculated isiplet the output. When we add a new layer, the number of
weights are also frozen. Dynamic Node Creation (DNC) [5]  hidden units in all the layers are redetermined.
starts with an initial network and incrementally adds hidde An initial value for the minimum number of hidden units,
nodes to the network until a satisfactory solution is foudidl- MINHIDDEN, in a layer is specified since the performance of a
den nodes are added one at a time and to the same hidden ldiyear perceptron is better in most of the problems than dimul
The whole network is re-trained after each hidden node ddyer perceptron with small number of hidden units. Thitahi
dition. In DNC, a new hidden node is added to the netwonalue can be changed in the algorithm as a result of statisti-
when the average error curve begins to flatten out too quickbal comparisons. When we apply an operator, if the calodilate
In Grow and Learn (GAL) [10] algorithm, the network growsvalue for the number of hidden units in a layer is smaller than
when it learns class definitions. In the "sleep” phase of the MINHIDDEN, thenMINHIDDEN is used. Similarly, a maxi-
gorithm, the units that are no longer necessary are remavedrtum number of hidden units for each layer is also specified.
reduce the complexity. When a new layer is to be added to the network, the hard
An algorithm that adds, deletes units and layers is propogeaint is to determine the number of hidden units in each layer
in 1994 [11]. The algorithm applies an intelligent genesatd A popular heuristic is using the average of the number of hid-
test procedure, explores different alternatives and tekbe den nodes in the upper and the lower layers. But this can lead
most promising one. A relatively new algorithm, Construeti to wrong results if the input dimension is very large or small



We applied four heuristics in order to be able to cover déffer TABLE|

architectures in the search space. DATASETS USED IN EXPERIMENTS
1) Number of nodes in the upper layer
2) (Number of nodes in the upper layet)2 No. of | No. of | Train. | Test
3) Average of the nodes in the upper and lower layers Type | out. inp. set set

4) (Average of the nodes in the upper and lower layers) / Z gine (artifical)| reg 1 1 500 500

Heuristics one and three are the base heuristics. Hesris[iGalifornia [15]] reg 1 8 10320| 10320
two and four are useful when heuristics one and three arereit boston [15]| reg 1 13 200 106
too small or too large. When adding hidden layers, we first de-= pum8fh [16] | reg 1 3 2096 | 4096
termine the number of nodes in the newly added layer, which pum8nh [16]| reg 1 ) 2096 | 4096

is the layer before the outputs. The simplest of the fouriseur,
tics is chosen and the number of hidden nodes in the prece ing 2! (AT&T) | cls 10 256 600 600

layer is then calculated. The algorithm starts from the st Bptdi_gi_ts [17]] cls 10 64 3823 | 1797
pendigits [17]| cls 10 16 7494 | 3498

1) Start with an initial networkNy, Ny = LP
2) For all applicable operators i
= Operator;(Ny) units. This is because the optimal solution has three or fike h
- if preferable(V,, N;) thenN; = N, den nodes in those datasets and sincétiéHIDDEN param-
and start new loop at step 2 eter is initially three in MOST. The search fem dataset is
given in Figure 3. The search trees of other regression elatas
are similar.

Fig. 1. The MOST algorithm

erator and applies that operator if it is applicable. If ehex LP

no hidden layer in the current netv_vork, then first four opera- acc(LP) < acc(MLP,) add layer

tors are not applicable. The algorithm adds a new layer and  comp(LP) < comp( MLP )

tries the above mentioned heuristics starting from the Emp .

one to the complex one. In order to prevent the algorithm to @99 7 hidden node add layer s

go in a loop, if a simple architecture is selected and aftenth ~_ 2C(MLP;) = aCC(MLP4) acc(MLP,) = accMLB,)
R S o comp(MLP,) < comp(MLP,)  CORP(MLP;) < comp(MLP%)

a complex one is selected due to statistical significan@ th 3

the algorithm never selects a simpler architecture agaS MLP, MLP,

Function preferable(new, current) Fig. 3. MOST search tree fain dataset. MOST starts with LP and applies
. _ : _ adding a hidden layer since there is no other operator. écteMLP with 3
C; = candidate networl¢/; . = Cu_rrent network . hidden units as the candidate network. After appliying25cv F test, MLP3
- Ci_4 = last network before the hidden layer addition s found to be more accurate than LP and accepted. Next opésaidding a

. f E(Ct) < E(thl) then preferablezTRUE single hidden node. MLP4 is not accepted since it is more ¢t@xntphan MLP3
. o with no improvement in the accuracy. Next operator is addirigdden layer.
- Elseif E(C;) = E(Ci—1) andE(Cy) < E(Cy—2) MLP3-3 is not accepted with the same reasons as in MLP4 aetels steps.

andcomp(C;) < comp(Ci—_1) then preferable=TRUE

- Elseif E(Cy) = E(Cy—1) andE(C}) = E(Cy—>) In classification datasets MOST generates a larger search
andcomp(C;) < comp(Ci—2) then preferable=TRUE tree. Inocr andoptDigits  datasets, MOST finds an ar-
- Else preferable=FALSE chitecture as well as the optimal architecture. The seageh t
forocr is givenin Figure 4. lipenDigits  dataset, the archi-

Fig. 2. Deciding between two architecturés; is the network,E2(Ct) is the K R .
er?or ofC; andcfmp(ct) is the complexity ol () tecture found by MOST has two hidden layers and this architec

ture performs better than the single hidden layer netwotk wi

020 hidden units. The results of all algorithms on all datset
are given in Table 1. Newman-Keuls [18] range test is afplie
to these results and the test results are given in Table Il1.

applies 52 cv F test to compare the current and the can
date architecture. If one of them is significantly bettentttze
other, that network is selected. If the two networks are gt s
nificantly different, then the current network is comparedthw
the last network before the hidden node addition. If the can- VI. CONCLUSIONS

didate network is significantly better, and it is simple tlhea The optimal neural network architecture is the architextur
current network, candidate network is selected. If theneois which generalizes the underlying function of a given ddtase
significant difference then selection is done by comparireg t Too complex or too simple architectures fail to learn this un
complexities of the candidate network and the network eefodlerlying function. Determining the architecture by triabeer-

the hidden node addition. The complexity measure is definegt takes too much time and can eliminate some architectures

as the number of connections in the network (Figure 2). that can be successful. Determining the architecture foreng
problem in the learning process is the desired goal.
V. EXPERIMENTS In MOST, there is no assumption on the number of layers

Datasets used in experiments are given in Table I. In all rie+ the network. The resulting network can have no, one, or
gression datasets, MOST finds an architecture with threseehid many hidden layers. In choosing the candidate network, more



TABLE Il

OVERALL RESULTS. NUMBER OF HIDDEN UNITS: AVERAGE ERROR+ ST. DEV.
MLP cascade DNC | MOST |

sine| 3:0.04:0.12 | 3:0.04£0.00 | 5:0.0G6t0.00 | 3:0.03:0.13

california | 10: 0.29: 0.02 | 4: 0.3 0.01 | 15: 0.24- 0.01| 3:0.29+0.01

boston| 5:0.7A4 0.26 | 6:0.32£0.09 | 8:0.84£0.45 | 3: 0.974 0.48

pum8fh| 8:0.41+0.01 | 5:0.39+0.00 | 5:0.44-0.06 | 3:0.43+ 0.05

pum8nh| 5:0.38:0.04 | 10: 0.34£ 0.01 | 10: 0.3 0.02| 3:0.42-0.04

ocr | 20: 0.03: 0.01 | 0:0.04-0.00 | 6:0.12£ 0.02 | 11: 0.04+ 0.01

optdigits | 20: 0.04- 0.00 | 7: 0.06+ 0.00 | 12: 0.08t 0.00 | 21: 0.03t 0.00

pendigits| 20: 0.03t 0.00 | 20: 0.03t 0.00 | 11: 0.04t 0.01 | 43: 0.02+ 0.01
LP algorithm. But then the test results will be less reliablglfler

acc(LP) = acc(MLP,,)
comp(LP) < comp(MLP,

MLP

type | error and less power). The effect of the confidence®f th
test can be examined in detail. Some other heuristics tleat ar
used to determine the candidate architectures can be dgplie

i acc(LP) < acc(MLP,)

ww MLP

20 acc(MLP,,) = acc(MLP,)
acc(LP) < acc(MLP,,)
comp(MLP,,) < comp(MLP,)

T

1 20 20
MLP,, MLP,, MLP,''MLP,®MLP

(1]
(2]

Fig. 4. MOST search tree facr dataset. MOST starts with LP and applies

adding a hidden layer since there is no other operator. écseMLP with 10 3l
hidden units as the candidate network. MLP10 has the sameamycas LP but 4]

with high complexity so it is not accepted. Next candidatevoek is MLP20.

The accuracy of MLP20 is higher than LP, so it is selected. tNd@erator is
removing a percentage of hidden nodes. MLP11 is accepteg ditas the [5]

same accuracy as MLP20 and simpler and also its accuracghsrthan LP.
The algorithm tries other operators but none of them is dedep [6]

TABLE 11l
NEWMAN-KEULS RANGE TEST RESULTSA<B MEANS THAT A IS [7]
STATISTICALLY SIGNIFICANTLY HAS LESS ERROR THANB. A=B MEANS
THAT THE TWO CLASSIFIERS ARE THE SAME (8]
sin MOST=MLP=cascade=DNC 9]
california DNC < MLP < MOST=cascads
boston cascadec MOST=MLP=DNC [10]
pum8fh MOST=MLP=cascade=DNC
pum8nh | cascadec MLP=DNC < MOST (11]
ocr MOST=MLP=cascade: DNC
optDigits MOST=MLP < cascade< DNC [12]
penDigits MOST < MLP=cascade< DNC

[13]
[14]

than one architecture is considered and the one that sigmilfjc
increases the accuracy is selected, if any. The resultseof th.
algorithms are promising. MOST algorithm finds near optimal
results and is useful since the only extra parameter it nised$L6]
the confidence percentage value and it can easily be set. 'H),?
disadvantage of the algorithm is that the time complexibigh
since it performs %2 cross validation for each architecture. L
As future work, some other statistical tests that do not ne[agl
5x2 cross validation (e.g., McNemar’s test that needs one run)
can be applied in order to reduce the time complexity of the

that the search space gets larger.
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