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Abstract

A synthesis system based on a circuit simulator and a silicon assembler for analog neural networks to be implemented in MOS technology
is presented. The system approximates on-chip training of the neural network under consideration and provides the best starting point for
‘chip-in-the-loop training’. Behaviour of the analog neural network circuitry is modeled according to its SPICE simulations and those models
are used in the initial training of the analog neural networks prior to the fine tuning stage. In this stage, the simulator has been combined with
Madaline Rule III for approximating on chip training by software, thus minimizing the effects of circuit nonidealities on neural networks. The
circuit simulator partitions the circuit into decoupled blocks which can be simulated separately, with the output of one block being the input
for the next one. Finally, the silicon assembler generates the layout for the neural network by reading analog standard cells from a library. The
system’s performance has been demonstrated by several examples.q 1999 Elsevier Science Ltd. All rights reserved.

Keywords:Neural network implementations; Multilayer perceptrons; Circuit simulation; Madaline rule; CMOS neural networks; Neural network training;
Macromodeling

Nomenclature

m Synapse function
x Input
w Weight
f Sigmoid function
y Output of a multilayer perceptron
H Output of a hidden unit
T Weights in the second layer
W Weights in the first layer
x Training set
r Desired output
p Pattern number
E Squared error
h Learning rate
l Weight decay coefficient

1. Introduction

Neural networks have gained popularity in the last few
years due to their success in diverse applications. However,
many applications require real time or very fast operation.
This is possible only with dedicated neural network hard-

ware. Due to the inherently parallel nature of neural
networks, they are suitable for VLSI implementation.
These implementations may be digital or analog. Many digi-
tal implementations have been reported in the literature
owing to the fact that they offer several advantages such
as predictable accuracy, high noise immunity, ease of multi-
plexing communication and computation, availability of
well-established tools for digital design, and ease of inter-
facing with other digital systems (Beiu, 1997). Analog
implementations, on the other hand, have many advantages
such as small size, high speed, and straightforward inter-
facing with the outside world which is analog by nature
(Annema, 1995).

Synapses, which are the most common elements in a
neural network, can be represented at the circuit level by
multipliers. Parallel digital multipliers require a very large
area compared to analog multipliers of comparable preci-
sion which use less than 20 transistors. For instance, parallel
digital multipliers of 8× 8 input word lengths have transis-
tor counts of the order of at least several thousand (Binici et
al., 1995). Serial digital multipliers are smaller than their
parallel counterparts; however, they are much slower. On
the other hand, the speed of an analog multiplier is limited
mostly by its settling time. When one looks at neurons, a
similar picture can be seen. Again, an adder and nonlinearity
can be realized by less than 20 transistors in the analog
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domain, whereas the same operations require transistor
counts which are at least an order of magnitude larger in
the digital domain assuming that multiple input parallel
adders and efficient look-up tables for the nonlinearity are
utilized. (Treleaven et al., 1989; Intel, 1991; Rossetto et al.,
1989; Dündar and Rose, 1992).

However, analog neural network implementations have
been rather ad hoc in that very few, if any, have explored the
constraints that circuit non-idealities bring about. Examples
are nonlinear synapses (Du¨ndar et al., 1996; S¸ imşek et al.,
1996), neurons that deviate from ideal functions, or errors
and limitations in storing weights (Du¨ndar and Rose, 1995;
Dolenko and Card, 1995; Piche´, 1995). It has previously
been shown (Hollis and Paulos, 1990; Lont and Guggen-
bühl, 1992; Edwards and Murray, 1996; Du¨ndar et al., 1996;
Şimşek et al., 1996) that for many applications, multiplier
nonlinearity can be a very severe problem even for nonli-
nearity factors of less than 10%. Limited precision in storing
weights has also proven to be a crucial problem in analog
neural network design. The work in this area has been
mostly limited to predicting these effects either through
simulation or through theoretical analysis, and developing
some methods to partially overcome these problems.
Şimşek et al. (1996) studied the effects of some non-ideal-
ities through circuit simulation with SPICE and the impor-
tance of circuit level simulation in analog neural network
design has been demonstrated. Although SPICE is the stan-
dard tool for circuit simulation, it is not specially tailored for
simulating neural networks. Neural networks consist of the
interconnection of many identical blocks so that by parti-
tioning the network during simulation, it is expected that the
simulation speed will be increased tremendously.

Different approaches are used to obtain the weights of an
analog neural network which also dictate the implementa-
tion style and the architecture of the network. These
approaches can be summarized as follows (Annema, 1995):

• Non-learning network. In this method, the weights are
hardwired through the implementation of the fixed gain
multiplier. In this case, the weights to be hardwired must
be calculated before the operation of the neural network.
The calculations are done on a computer which uses the
model of the analog neural network. The performance of
this method depends heavily on the matching between
the model and the real circuit, which is a task that is very
difficult to achieve.

• Neural networks in analog hardware implementation
with externally adjustable weight construction. For this
realization, the weights are again computed on a host
computer and downloaded to the chip. Then the weights
are fine tuned. The chip is used for forward pass, host
computer is used for feedback (weight adaptation). In
this way, the matching of the model and analog hardware
is considerably increased.

• Neural network with on-chip learning. In this scheme,
both the feedforward structure and all circuitry required

to adapt the weights are realized on the chip. A major
disadvantage of this approach and the previous one is that
they both require additional hardware which is used only
at the training stage.

An implementation of a general purpose analog VLSI
neural network with on-chip learning has been presented
in Montalvo et al. (1997a, 1997b). One commercial imple-
mentation of analog neural networks is the ETANN
80170NX chip (Intel, 1991). This chip has been plagued
by limited resolution in storing the synapse weights in that
the long time resolution of the weights is not more than five
bits. Implementing Madaline Rule III (Widrow and Lehr,
1990) has been suggested for the ETANN chip; however,
this requires a host computer and external hardware besides
there being many timing problems which limit the perfor-
mance of training. Problems like these have prevented the
success of this chip on the market so that commercial appli-
cations using this chip and similar ones have been limited.
Several applications reported in the literature have demon-
strated successful operation, whereas other reported appli-
cations have suffered from the aforementioned problems.
Another major deficiency of this chip is the issue of
cyclability in the weight storing EAROMs. Therefore the
number of iterations required for chip-in-the-loop training
has to be minimized or eliminated if possible. This can be
achieved by having a suitable initial weight set.

The best approximation to a circuit is its SPICE model.
The difference between the actual chip and its SPICE model
is mainly due to variations in process parameters over which
the user has no control and most often no a priori informa-
tion. For this purpose, the approximation of on-chip training
by software using circuit models of the actual nonideal
synapse and neuron circuitry is proposed and a special
circuit simulator has been developed. The proposed system
approximates on-chip training of the neural network under
consideration and provides the best starting point for ‘chip-
in-the-loop training’. Moreover, starting chip-in-the-loop or
on-chip training from scratch will introduce convergence
problems, since the error surface will have many spurious
local minima and plateaus. In the approach presented in this
paper, the nonidealities are incorporated using soft
constraints; that is, we start gradient descent assuming
ideal components and thereby converge rapidly to the rele-
vant part of the weight space. Afterwards, we switch to the
analytical models of the nonideal components and also
introduce weight decay to keep the weight values small by
adding a soft penalty term to the error function. The final
part of the training is performed on the circuit simulator
using Madaline Rule III and it follows that the best starting
point is achieved with minimal convergence problems.

The outline of this paper is as follows. Section 2 intro-
duces the Analog Neural Network Simulation System
(ANNSiS) which is based on circuit partitioning techniques.
This system is used to simulate neural networks composed
of the building blocks discussed in Section 3 at circuit level.
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Modeling those nonideal components for best performance
is discussed in Section 4. Training on ANNSyS is proposed
in Section 5. SAFANN: Silicon Assembler For Analog
Neural Networks, which generates the layout of the analog
neural network for VLSI realization, is introduced in
Section 6, with sample layouts generated by SAFANN.
The design examples are discussed in Section 7. Finally,
Section 8 concludes the paper.

2. ANNSiS: Analog Neural Network Simulation System

The general structure of a multilayer perceptron with a
single hidden layer is given in Fig. 1. Each neuron can be
represented as a collection of three main blocks, namely
synapses, adders and a nonlinearity. The synapse function

can be denoted asm (w,x) where w and x represent the
weight and the input connected to the synapse, respectively.

Feedforward multilayer neural networks are regular
structures where every neuron is connected to every other
neuron in the previous layer through synapses. Therefore,
they yield themselves easily to partitioning and automatic
netlist generation.

The most commonly used tool for circuit simulation is
SPICE. However, the size of a neural network circuit for a
practical example is very large to be simulated by SPICE.
The simulation time of SPICE for neural network circuits
increases almost quadratically with the circuit size. Besides,
when the circuit size is increased beyond a limit, SPICE
starts to have difficulties in simulating the network. This
problem can be solved by using partitioning techniques.
For DC analysis, if the layers are completely decoupled,
i.e. the outputs of the neurons are not loaded by the inputs
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Fig. 1. The general structure of the multilayer perceptron.

Table 1
Simulation results of various neural network architectures with SPICE2G6 and ANNSiS

SPICE2G6 ANNSiS

Without partitioning With partitioning

Structure Synapses1 opamps FETs Nodes Memory (k) Time (s) Memory (k) Time (s) Memory (k) Time (s)

2 × 1 3 49 148 672 3.6 448 0.8 560 0.8
2 × 2 × 1 9 147 426 908 13.3 596 2.7 812 1.7
2 × 3 × 1 13 213 611 980 19.6 672 4.3 956 2.4
2 × 4 × 1 17 279 796 1040 26.3 748 6.6 1084 3.0
2 × 5 × 1 21 345 981 1100 31.9 820 8.8 1208 3.7
2 × 5 × 2 27 445 1258 1212 49.3 928 14.5 1400 5.1
2 × 5 × 3 33 545 1535 * * 1028 20.6 1564 6.3
2 × 5 × 4 39 645 1812 * * 1128 26.6 1696 7.0
2 × 5 × 5 45 745 2089 * * 1264 32.3 1912 8.8
4 × 8 × 7 103 1721 4766 * * 2136 128.0 3112 19.4

* SP1CE2G6 did not converge up to the predefined number of iterations of SPICE which is 10000.



of the synapses of the next layer, the circuit can be parti-
tioned into blocks which can be simulated separately start-
ing from the input layer. Most of the neural network
implementations in the literature use CMOS technology.
Considering this technology, the assumption of being
completely decoupled holds and allows partitioning of the
network.

ANNSiS is initiated by simulating all partitions in the first
layer and finding the outputs. The output values of the first
layer are then applied to the next layer as independent
voltage sources being input to the synapses of the neurons
in that layer. In this way, the input is propagated to the
output.

Different sized analog neural network structures were first
created with the building blocks described in Section 3,
namely, Synapses (current output Gilbert multiplier),
OPAMPs (used as an I–V converter), and Sigmoid genera-
tors (nonlinearity for the neurons). These structures were
first simulated without partitioning by SPICE2G6 and
ANNSiS. Next, they were simulated using ANNSiS by

partitioning into blocks which consisted of a neuron and
all synapses connected to that neuron. Simulation results
of SPICE2G6 and ANNSiS were compared for accuracy
and found to be exactly matching. Table 1 shows the
sizes, CPU times, and the memory requirements for differ-
ent structures for simulations performed on SunSPARC2
workstations.

Various MLP structures were simulated both with and
without partitioning using ANNSiS. As seen in Figs. 2
and 3, the simulation time increases almost linearly for
the partitioned case and almost quadratically for the non-
partitioned case. Remarkable decreases in simulation time
show the effectiveness of partitioning. Thus, it is possible to
simulate large neural network circuits in a faster manner and
without any convergence problems.

3. Implementation of analog neural network circuitry

Several representative circuits are described in this
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Fig. 2. Simulation time for different MLP structures (without partitioning).

Fig. 3. Simulation time for different MLP structures (with partitioning).



section for demonstrating the proposed approach. The
approach is not limited to the circuits described here, but
can be used with other synapse and neuron implementa-
tions.

The synapses in a neural network can be realized by
analog multipliers if the inputs and the weights can be repre-
sented by voltages. An illustrative synapse circuit which is a
modified version of the well known Gilbert multiplier
(Gilbert, 1968; Kub et al., 1990) is shown in Fig. 4. The
inputs are in the form of voltage differences and are denoted
by x1 2 x2 andy1 2 y2. The output of the original Gilbert
multiplier is a current difference and this difference is
converted to a single ended current (Z) through current
mirrors. This improves the linearity of the multiplier as
well as providing easy interfacing to the following circuitry.
The output current characteristics of the synapse circuit (for
different weight values,w� { 22,21,0,1,2} volts) is shown
in Fig. 5(b).

The use of current-output synapses enables the summa-
tion of those currents by simply connecting them together in
a neuron. This current sum can be converted to a voltage by
using an OPAMP as a current-to-voltage converter. The
general structure of the analog neural network cell can be
seen in Fig. 6. Fig. 7 shows an OPAMP that can be used for
the above mentioned purpose. This OPAMP consists of two
stages; the first stage is a differential amplifier whose differ-
ential current output is mirrored into the next stage and
converted to a single ended output through circuitry very
similar to the synapse circuit above. A sigmoid generator
introduced in (Shima et al., 1992) is used after the OPAMP
to generate the activation function for the neuron. This
generator is depicted in Fig. 8, and the characteristics are
plotted in Fig. 9. Layouts of the analog neural network
circuitry described above are designed in a full-custom

manner based on 2.4mm CMOS technology. The netlists
are extracted from the layouts and simulated for character-
ization purposes using SPICE. It is evident from those char-
acteristics that the actual circuits exhibit nonideal behaviour
so that an adaptation in the training algorithm is required. As
seen in Fig. 5(b), the nonideality is best visible in the
synapse characteristics where the output current curves
deviate highly from linearity for large values of inputs
and/or weights.

4. Modeling nonideal components

Since a tool optimized for simulating analog neural
networks at the circuit level has been developed, it can be
used in conjunction with Madaline Rule III (Widrow and
Lehr, 1990) for training purposes. However, the computa-
tional complexity of such a training technique renders it
unuseable for most practical problems. In order to reduce
the computational complexity, the number of Madaline
Rule III iterations must be kept as low as possible. Hence,
an appropriate weight set must be obtained prior to circuit
level training. This can be achieved by backpropagation
using relatively simple macromodels for synapses and
neurons.

For macromodeling the synapses and neurons, three
different approaches were used, namely, regression by
analytical functions, approximation by neural networks,
and representation by look-up tables which will be
described below.

4.1. Modeling by regression

Analytical expressions for the functional behavior of the
synapse and neuron circuits are not available. Hence, the
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Fig. 4. Four-quadrant Gilbert multiplier.
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Fig. 5. (a) Ideal multiplier; (b) Multiplier data provided by SPICE simulation; (c) Neural network approximation to (b).

Fig. 6. ANN unit cell.



synapses were modeled as a polynomial function of the two
variablesw andx with errors of less than 8% based on data
obtained from SPICE simulations. The polynomial used to
approximate the synapse function is given as,

m�x;w� � A 1 Bw1 Cx1 Dxw1 Exw2 1 Fx2w 1 Gx2w2

1 Hx2w3 1 Kx3w2 1 Lx3w3 �1�
wherem (x,w) is the output current for the input pairx,w, and
A,B,…,L are the coefficients to be determined. Data for the

multiplier are taken in a small neuron structure with two
synapses connected to a neuron in order to take the effect
of the current summing circuitry into account. The values
for the coefficientsA,B,…,L found by regression using the
method of least-squares fitare given in Table 2. Their
normalized values with respect toD are also given. It is
evident that the coefficientD for the linear term dominates
for smallx,w values whereas the coefficientL for the cubic
term comes next in effect. Hence, it can be concluded that
the nonlinearity of the multiplier is mainly in cubic terms.
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Fig. 7. General purpose OPAMP.

Fig. 8. Sigmoid generator.



The sigmoid and the current-to-voltage conversion circuitry
are modeled together as a single unit, in a more general form
of sigmoid function, given as

f�x� � A 1
B

1 1 eCx1D �2�

wherex denotes the sum of the currents from the synapses
connected to the neuron andf (x) is the output of the neuron
as a voltage. The model used has an error below 5%. The
values for the coefficients are as follows:A� 2 0.5986;B�
1.5745;C � 1.1462× 105; D � 0.3711. Partial derivatives
of current (2m /2x, 2m /2w) and f 0 can be calculated
directly using Eqs. (1) and (2). The nonlinearityf(x) as
implemented and modeled can be seen in Fig. 9. Note that
it is a negative sigmoid because the summation operation at
the OPAMP introduces a negative sign which has to be
cancelled.

4.2. Modeling by neural networks

Approximators used are multilayer perceptrons. Finite
difference was used to calculate the derivatives of the
approximators. The same technique was also used to
approximate a partial derivative.

The multiplier characteristics are given in Fig. 5(b). The
approximator is a multi-layer perceptron with four hidden
units. This neural network is trained using standard back-
propagation. Data obtained from the SPICE characteriza-
tions of the netlists extracted from the layout are used as
training samples. Compared with the ideal multiplier, it has
nonlinear behaviour for large inputx, with the nonlinearity
becoming pronounced for large weight values (Fig. 5(c)).
The neural network approximator to the sigmoid circuit is a
multilayer perceptron with one hidden unit, the model for
the nonlinearityf (x) is given in Fig. 9.

4.3. Modeling by table look-up

The synapses are modeled by a look-up table of size 81×
81 where the inputs and weights varying between2 2 V
and 2 V are quantized to 81 different values, each centered
around 0 V with 40 values residing on both positive and
negative voltage axes. The closest value is chosen when
the inputs or the weights do not match the values in the
table. Derivatives are computed from finite differences. It
is obvious that the training time required is inversely
proportional and the approximation performance is directly
proportional to the size of the table. The 81× 81 size was
chosen as it gave superior performance to the previous two
methods. It was observed that larger look-up tables yielded
long simulation times with marginal improvements in
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Fig. 9. Nonideal sigmoid implemented and its approximation by regression and 1× 1 × 1 neural network.

Table 2
Regression coefficients for the multiplier

Coefficient Value (× 1026) Value normalized with respect toD

A 0.00029 0.0007
B 20.00182 20.0042
C 0.00095 0.0022
D 0.43850 1.0000
E 20.00443 20.0100
F 0.00132 0.0030
G 20.00099 20.0023
H 0.00092 0.0021
K 0.00056 0.0013
L 20.01864 20.0425



approximation performance, whereas the weak approxima-
tion performance of smaller tables made this method
inapplicable.

When all these models were compared, it was observed
that regression gave the best results for the neuron model-
ing. Regression also gave good results for synapse model-
ing, especially for small examples. However, it appears that
modeling by table look-up will yield better results for larger
networks employing many synapses.

5. Training using Madaline Rule III

For simplicity of notation, a scalar input-output case will
be considered. (Solid drawings in Fig. 1.) Extension to
multidimensional inputs and outputs is straightforward.
The output of a multilayer perceptron (y) is a weighted
sum of the outputs of a number (h) of hidden units,Hi,
filtered through a nonlinear functionf (x):

y�x� � f
Xh
i�1

m�Ti ;Hi�x��1 m�T0;1�
 !

; �3�

wherex is the input, andTi are the weights associated with
the outputs of hidden units.T0 is the bias weight. Output of
each hidden unit is another similar sum:

Hi�x� � f�m�Wi ; x�1 m�Wi0; 1��; �4�
whereWi are the weights associated with the hidden units.
Wi0 are the bias weights for the units in the hidden layer.

Given a training setx � { xp,r p} p, wherer p is the desired
output corresponding to the inputxp, the sum of squared
errors is:

E�W;T� �
X
p

Ep �
X
p

�rp 2 y�xp��2: �5�

In the backpropagation algorithm, parametersW,T are
updated to minimizeE using gradient-descent, where in
the online version, for each pattern pair, the following
updates are done:

DTi � h�rp 2 yp� 2m�Ti ;Hi�xp��
2Ti

DT0 � h�rp 2 yp� 2m�Ti ; 1�
2Ti

DWi � h�rp 2 yp� 2m�Ti ;Hi�xp��
2Hi�xp�

df�xp�
dxp

2m�Wi ; x
p�

2Wi

DWi0 � h�rp 2 yp� 2m�Ti ;Hi�xp��
2Hi�xp�

df�xp�
dxp

2m�Wi0;1�
2Wi0

�6�

whereh is the learning rate. So the learning method can be
implemented using any synapse and nonlinearity ifm (w,x),
2m /2x, 2m /2w, f andf 0 are given. However, describing
the behaviour of the synapses and neurons analytically is not
a simple task, as shown in the modeling section. In the ideal
case, the synapse performs the multiplication of the input

and the weight, i.e.,m (w,x) � w·x, 2m /2x � w and2m /
2w � x. Most frequently, the nonlinearity is the sigmoid
function:

f�a� � 1
1 1 exp�2a� : �7�

Then, the output becomes:

y�x� � f
Xh
i�1

TiHi�x�1 T0

 !
: �8�

Consequently, we get the classical update equations for
the backpropagation algorithm by rewriting Eq. (6):

DTi � h
2Ep

2Ti
� dEp

dyp

2yp

2Ti
� h�rp 2 yp�Hi�xp�

DT0 � h�rp 2 yp�
DWi � h�rp 2 yp�TiHi�xp��1 2 Hi�xp��xp

DWi0 � h�rp 2 yp�TiHi�xp��1 2 Hi�xp��;

�9�

wheref 0(xp) � f (xp)(1 2 f (xp)) if f (x) is the sigmoid
function, as given in Eq. (7).

As explained in Section 4, the approximate weights are
calculated with the backpropagation algorithm as modified
according to Eqs. (3) and (6) using the table look-up model
for the synapses and the regression model for the sigmoidal
block. Given a training setx � { xp,r p} p and a certain
network topology, the input–output values need to be scaled
such that they fall within the operational range of the analog
circuitry. That is, input values have to be within the linear
region (22 V to 12 V) of the multipliers, and the output
values have to be within the output range (20.6 V to11 V)
of the sigmoid function generator. At this stage, a further
modification in the update rules is applied to favor small
weight values so that the synapses operate in their linear
region. This is done by theweight decaytechnique. In
weight decay, the error function Eq. (5) is modified to be:

E�W;T� �
X
p

�rp 2 y�xp��2 1 l
X

i

w2
i �10�

wherewi are the weights in the network (including bothW
and T values). The first term is the usual sum of squared
errors. The second term is thepenalty term that penalizes
weights that have large magnitude. Performing gradient-
descent on this:

Dwi � 2h
2E
2w

2 lwi : �11�

Thus at each iteration, there is an effect of pulling a
weight towards zero. So a weight decays towards zero
unless pushed away to decrease the sum of squared errors.
From a Bayesian perspective, weight decay corresponds to
assuming that weightswi are sampled from a Gaussian
distribution with zero mean and variance 1/l . Minimizing
Eq. (10) is the maximum a posteriori solution (Bishop,
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1995). Using weight decay and a suitable choice ofl , w
values are found that minimize error and also stay in the
linear region of the multiplier.

These weights are then downloaded to the circuit level
representation of the network to start Madaline Rule III. In
order to closely approximate the analog neural network
hardware, the circuit level representation is based on the
extracted layout of the neural chip. Madaline Rule III is
an algorithm that can be used when analytical expressions
for the derivatives of error with respect to weights are not
available or the expressions present excessive error. Instead
of using the derivatives, a small amount of disturbance is
added to the summation of the synapse outputs and the
difference in the error is measured. Dividing the error differ-
ence by the disturbance, the derivative of the error with
respect to the input of the neuron is found if the disturbance
is small enough. Assuming linear neurons and using the
chain rule, one can find the derivative of error with respect
to the weights. However, if the neurons are not perfectly
linear, this method will not produce the real derivatives.
Another method could be adding disturbance to the weights
and then finding the derivative with respect to the weights
directly. However, this will increase the simulation time
considerably. Thus another method was devised where a
Madaline iteration consists of the following steps. For
each training sample, a small amount of current is injected
into each neuron sequentially via a current source. That is,
starting with the first neuron of the hidden layer, all neurons
will be disturbed one by one where the same training sample
will be applied as the input. At each disturbance the circuit
is simulated and the difference in the error at the output as
compared to the undisturbed case will be found. The deri-
vatives of error with respect to the weights are calculated
using the models of the neurons and the synapses (as

described in the previous section). However, weights will
not be updated until all patterns are applied, that is, batch
update is performed on the weights where the stored weight
updates are added algebraically. This method is still referred
to as Madaline Rule III because it is a reformulation of the
same algorithm. It should also be noted that the simulator
normally spends most of its processing time trying to reach a
DC convergence point. However, when implementing
Madaline Rule III, the proposed circuit simulator keeps
the previous DC operating points in memory so that DC
convergence is reached in one iteration as the disturbances
in Madaline Rule III are very small. The computational time
required for one Madaline iteration was observed to be
approximately twice that of one forward simulation by
ANNSiS. The Madaline iterations continue until the error
decreases below a user-defined value, or until a maximum
iteration count is exceeded. The flow of the above algorithm
is summarized in Table 3.

6. Silicon assembler

The automatic generation of the analog neural network
layout is possible if there are suitably designed synapses and
neurons. These basic blocks (subcells) can be placed in
arrays and the complete circuit layout will be obtained. As
part of this study, a silicon assembler (SAFANN) was
developed to accomplish this task.
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Table 3
Madaline Rule III training algorithm

while ((error . tolerance) and
(no_of_iteration, iteration_limit))

{
for (index1� 1, no_of_samples)

{
simulate the network using ANNSiS,
computeerror;
for (index2� 1, no_of_neurons)
{
add disturbance at the input ofneuron[index2];
simulate the network using ANNSiS,
computeerror_disturbed;
computeerror_difference, weight updates,
delta_w[index2,index1], forneuron[index2];
w_update[index2]� w_update[index2]
1 delta_w[index2,index1];
}
}
update the weights;
no_of_iteration11;

}

Fig. 10. Topology of a single cell with three inputs.



The starting point is the layout for a single cell which
consists of three types of subcells and some interconnec-
tions. A sample 3-input cell structure is given in Fig. 10. It is
mainly made up of three multipliers, a neuron and three of
the so-called channels. In fact, each channel consists of
three subchannels employing two lines each. There are
several reasons for selecting this topology. First, the design
has to be modular; that is, it should support any number of
inputs. Hence, the weights for the inputs are carried on
channels whose number can easily be manipulated. It should
also be noticed that only one weight, i.e., 2 weight lines,
should be connected to each multiplier, so that a decoding
scheme is necessary. Next, the input lines have to travel
throughout the cell in the horizontal direction because that
input will also be required in the next cell placed to the right
of the first one. Finally, the output lines of the multiplier
have to be aligned such that they are common in the vertical
direction so that they will be connected together which is
also part of the abutment property. The supply and bias lines
will also run through the cells for alignment.

SAFANN performs the automatic placement of the layout

building blocks and routing between them by placing
instances of symbols created for those blocks, namely the
multiplier, neuron and subchannel. The structure of this
methodology can be understood by considering a single
layer of an analog neural network given in Fig. 11. Here,
the channels will be described by collection of boxes repre-
senting metal-1, metal-2 lines and vias. Neuron cells,
however will be called by the symbols. Fig. 12 presents
the layout generated by SAFANN for an XOR gate consist-
ing of two inputs, three hidden units, and an output unit.
Similarly, layout generated by SAFANN for a 1× 10 × 1
structure is given in Fig. 13.

7. Numerical experiments

ANNSyS has been applied to a number of neural network
problems. Two rather small examples are the classical XOR
problem and a sine function generator. Recognition of
spoken phonemes is also included as a large sized example.

7.1. Learning XOR problem

For the XOR problem, a 2× 3 × 1 structure was used. The
weights were calculated via modified backpropagation
using the models for the synapse and neuron circuits and
the error decreased below 1% for the four training samples.
At this time, the network was simulated by ANNSiS and the
error was found to be 13% for the XOR function. Finally,
Madaline Rule III was applied for 50 epochs and the error
obtained using the simulator decreased below 1% again.

7.2. Learning sine function

A l × 4 × 1 structure was employed for the sine function
(0.3 sin(2px)) where the training set contains 20 pairs from
the interval (0,1). (desired in Fig. 14) Again, the neural
network was trained via modified backpropagation until
the error decreased below 1% (modified backpropin Fig.
14), and then the network was simulated by ANNSiS with
the weights found. The error was around 30% (ANNSiS
before Madalinein Fig. 15). Finally, Madaline Rule III
was applied for 50 epochs and the error decreased below
3% (ANNSiS after Madalinein Fig. 15). The result of circuit
simulation with weights obtained via the standard backpro-
pagation training assuming ideal components, i.e., linear
synapses and ideal sigmoid function, is also included (back-
prop. with ideal components) in Fig. 14 to show that macro-
modeling is necessary for proper operation.

7.3. Speech phoneme recognition

For /b, d, g, m, n, N/ speech phoneme recognition (SR)
experiments, the database contains 5240 Japanese isolated
words and phrases (Alpaydin and Gu¨rgen, 1998). Two
hundred samples for each class are taken from the even-
numbered and odd-numbered words. 600 samples are used
for training and 600 for testing. Phonemes are extracted
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Fig. 11. Topology of a single layer with three inputs and four neurons.

Fig. 12. Layout of XOR generated by SAFANN.



from hand-labeled discrete word utterances and phrase
utterances which have a sampling frequency of 12 KHz.
Seven speech frames (each 10 ms) are used as input. For
each 10 ms frame, 16 Mel-scaled FFT coefficients are
computed as feature values. This 112 dimensional input is
then reduced to 21 using principal components analysis that
explains 98.1% of the variance. A 21× 8 × 6 neural network
structure is employed for the training. There were 600
samples and the modified backpropagation algorithm
accomplished a correct classification rate of over 90% by
the software. However, when the same neural network
circuitry is simulated by ANNSiS, the correct classification
rate dropped to 87% and finally, the neural network is

trained by the Madaline approach and the correct classifica-
tion rate increased to 92%. The results from the training and
test samples are displayed in Table 4.

8. Conclusion

In this study, an Analog Neural Network Synthesis
System (ANNSyS) was developed. This package consists
of an Analog Neural Network Simulation System
(ANNSiS), a Silicon Assembler For Analog Neural
Networks (SAFANN), a function approximator for synapses
and neurons, a modified backpropagation algorithm, and a
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Fig. 13. Layout of 1× 10 × 1 structure generated by SAFANN.

Fig. 14. Training results for sine function (Part 1).



circuit level neural network trainer using modified Madaline
Rule III as well as a control shell. ANNSiS is based on
circuit partitioning techniques and has superior performance
compared to other circuit simulators for simulating analog
neural networks.

In this work, a new approach to designing and training
analog neural networks was presented. Analog synapse and
neuron circuitry were designed and these were modeled
analytically by various methods. Although the models
looked adequate by themselves, the performance of neural
networks trained using these methods were well below
expectations. The errors obtained by ANNSiS before Mada-
line Rule were larger than the errors estimated by the back-
propagation algorithm. This shows that, even in simple
examples, small model mismatches (less than 5%) can
create considerable problems. This performance loss was
especially severe in function approximation applications
rather than pattern classification applications. From these
results, it was clear that using models for neural network
components was not enough for training the neural networks
and that the network itself should be used in training.
However, using the neural network chip in the training
loop is something that should be avoided as much as pos-
sible. Hence, a circuit level representation of the chip
was used in training instead. This had previously been

prohibitive due to the huge simulation times. As an
example, for the speech recognition task described above,
the 21 × 8 × 6 network employs more than 4300 MOS
transistors so that the computational load is very high. A
software package that allows one to realize this training in a
reasonable computation time with the help of ANNSiS was
developed, where the neural network is partitioned for simu-
lation. For the same example, the largest partition to be
simulated at one time contains 386 transistors only. Further-
more, the efficient implementation of the Madaline Rule III
allows each Madaline iteration to run in approximately just
twice the time required for a single forward pass calculation.
For applications where high performance is desirable, the
weight set obtained via ANNSyS can be utilized as the best
starting point for chip-in-the-loop training given reasonably
accurate device models. Furthermore, the results of training
with ANNSyS can be made more robust with respect to
device mismatches in the actual circuit by perturbing device
sizes and threshold voltages during training.
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