
Neurocomputing 258 (2017) 63–73

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Unsupervised feature extraction with autoencoder trees

Ozan İrsoy

a , ∗, Ethem Alpaydın

b

a Department of Computer Science, Cornell University, Ithaca, NY 14853, United States
b Department of Computer Engineering, Bo ̆gaziçi University, Bebek, İstanbul 34342, Turkey

a r t i c l e i n f o

Article history:

Received 20 May 2016

Revised 31 January 2017

Accepted 18 February 2017

Available online 16 March 2017

MSC:

00-01

99-00

Keywords:

Unsupervised learning

Decision trees

Autoencoders

a b s t r a c t

The autoencoder is a popular neural network model that learns hidden representations of unlabeled data.

Typically, single- or multilayer perceptrons are used in constructing an autoencoder, but we use soft de-

cision trees (i.e., hierarchical mixture of experts) instead. Such trees have internal nodes that implement

soft multivariate splits through a gating function and all leaves are weighted by the gating values on

their path to get the output. The encoder tree converts the input to a lower dimensional representation

in its leaves, which it passes to the decoder tree that reconstructs the original input. Because the splits

are soft, the encoder and decoder trees can be trained back to back with stochastic gradient-descent to

minimize reconstruction error. In our experiments on handwritten digits, newsgroup posts, and images,

we observe that the autoencoder trees yield as small and sometimes smaller reconstruction error when

compared with autoencoder perceptrons. One advantage of the tree is that it learns a hierarchical repre-

sentation at different resolutions at its different levels and the leaves specialize at different local regions

in the input space. An extension with locally linear mappings in the leaves allows a more flexible model.

We also show that the autoencoder tree can be used with multimodal data where a mapping from one

modality (i.e., image) to another (i.e., topics) can be learned.

© 2017 Elsevier B.V. All rights reserved.

1

t

b

l

t

i

o

s

r

d

e

g

p

s

o

l

t

c

b

l

a

i

d

r

d

e

t

s

d

d

o

t

t

m

l

w

e

l

h

0

. Introduction

One of the basic tenets of statistics and machine learning is that

hough the data may be big, it can be explained by a small num-

er of factors; that the data has an underlying pattern or regu-

arity that can be explained by a small number of variables and

heir interaction, and the rest are variations that have no signif-

cant effect. For example, an image may contain a large number

f pixels in many colors, but it can be broken into basic shapes

uch as lines and edges of different orientations. Similarly, a movie

ecommendations data set with many movies and customers may

efine a very large database but if we think about customer prop-

rties such as age, gender, and so on, and movie properties such as

enre, year, and so on, we can posit the existence of simpler de-

endencies that underlie the large database. Hence, extraction of

uch hidden features and how they combine to explain the data is

ne of the most important research areas in statistics and machine

earning, and many different methods have been proposed towards

his aim [1] .

One approach that can be used for this purpose is the autoen-

oder, which had been originally proposed almost thirty years ago
∗ Corresponding author.

E-mail address: oirsoy@cs.cornell.edu (O. İrsoy).

h

b

t

ttp://dx.doi.org/10.1016/j.neucom.2017.02.075

925-2312/© 2017 Elsevier B.V. All rights reserved.
ut has recently become popular again with the popularity of deep

earning. An autoencoder is composed of two models, the encoder

nd the decoder placed back to back. The encoder takes the orig-

nal data as its input (e.g., an image) and maps it to an interme-

iate or hidden representation, and the decoder takes this hidden

epresentation and reconstructs the original input. When the hid-

en representation uses fewer dimensions than the input, the

ncoder performs dimensionality reduction; one may impose addi-

ional constraints on the hidden representation, for example, spar-

ity. When both the encoder and decoder are implemented using

ifferentiable models, they can be trained by stochastic gradient-

escent together, backpropagating the reconstruction error at the

utput of the decoder first to the parameters of the decoder, and

hen by chain rule further on to the parameters of the encoder.

The idea is that if after training, the decoder can reconstruct

he original input faithfully, the hidden representation should be a

eaningful and useful one. Conventional autoencoders use a single

ayer, perceptron-type neural network for encoding and decoding,

hich implements an affine map followed by a nonlinearity for the

ncoder [2] . Using multilayer perceptrons with one or more hidden

ayers as encoder and decoder allow more complex mappings and

ence more complex hidden representations to be learned.

One of the nice characteristics of the autoencoder is that it can

e trained with unlabeled data, and once such a hidden represen-

ation is learned, it can then be taken as input to a supervised

http://dx.doi.org/10.1016/j.neucom.2017.02.075
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.02.075&domain=pdf
mailto:oirsoy@cs.cornell.edu
http://dx.doi.org/10.1016/j.neucom.2017.02.075

64 O. İrsoy, E. Alpaydın / Neurocomputing 258 (2017) 63–73

p

s

o

m

s

x

c

s

l

a

d

s

t

s

t

t

d

m

t

i

I

s

o

c

c

c

s

u

w

l

s

t

i

p

c

i

e

n

s

i

a

s

o

e

c

s

t

d

3

3

m

n

r

a

c

o

t
learner that can then be trained with a smaller labeled data set. It

is also possible to train autoencoders sequentially where the next

autoencoder is trained with the learned hidden representation of

the previous autoencoder. Such an approach allows learning a se-

quence of increasingly complex and abstract representations which

then can be stacked as successive layers in a deep network [3] .

We explore an autoencoder model where the encoder and de-

coder are decision trees, instead of single or multilayer percep-

trons [4] . We use the soft decision tree model whose internal

nodes implement a soft multivariate split as defined by a gating

function. The effect of the soft splitting is that the final output

is not found by following a single path, but is the average of all

the paths to all the leaves weighted by the soft gating values on

each path [5,6] . Soft splitting also implies that the output of the

tree is continuous and so we can use stochastic gradient-descent

to update the parameters of encoder and decoder trees to min-

imize the reconstruction error. The training of the two trees are

done together in a coupled manner: The error terms of the hidden

representation of the decoding layer are passed back to the en-

coding layer as its external error using chain rule. Our simulation

results we report below indicate that the autoencoder tree works

as well, and sometimes better than the autoencoder perceptrons.

The rest of this paper is organized as follows: we review au-

toencoder perceptrons in Section 2 and then we discuss autoen-

coder trees in Section 3 . Our experimental results in Section 4 in-

dicate that such autoencoder trees can learn, in an unsupervised

manner, hierarchical decompositions of data into subspaces which

respect localities in the data. Section 5 concludes and discusses fu-

ture work.

2. Autoencoder perceptrons

An autoencoder is a composition of two functions, the encoder

and the decoder . The encoder maps the original d -dimensional in-

put x to a k -dimensional intermediate or hidden representation

h = φe (x) . The decoder maps this h back to a d -dimensional vector

which we want to be as close as possible to the original input of

the encoder: ˆ x = φd (h) [7,8] . We call this process a reconstruction

and the difference between the output of the decoder and the in-

put to the encoder is called the reconstruction error . If k < d , the

encoder works as a dimensionality reducer, and as such learns the

best k features that allow the reconstruction of the original higher

dimensional input with minimum reconstruction error.

A simple way to realize an autoencoder is by using a single-

layer perceptron for both the encoder and the decoder:

φe (x) = σe (W e x) = h (1)

φd (h) = σd (W d h) (2)

where σ (·) is an elementwise nonlinearity function, such as the

sigmoid σ (x) = 1 / (1 + exp (x)) . Alternatively, the nonlinearity can

be omitted by setting σ (·) to the identity function, in which case

the process simply becomes a linear projection.

Having a continuous definition with respect to the encoder and

decoder weight parameters { W e , W d }, autoencoder perceptrons can

be trained with a gradient-based optimization procedure using to-

tal reconstruction error as the objective function. It is possible to

extend the capacity of the autoencoder by using multilayer per-

ceptrons for each of the φe and φd . Deep autoencoders have been

shown to outperform their shallow counterparts for the purpose of

compression [9] .

Many variants of the basic autoencoder model have been pro-

posed in the literature: one might impose additional constraints

on the hidden representation h to produce additional structural

properties. One such soft constraint is the sparsity penalty, which

results in a sparse autoencoder [10,11] . The addition of such a
enalty encourages the encoding h to activate its features in a

parse fashion, resulting in a potentially useful feature set for some

ther end task such as classification.

Other modifications of the autoencoder framework include

odifying the objective function. Denoising autoencoders, for in-

tance, attempt to reconstruct a corrupted version of the input

 [12–14] . Therefore the resulting autoencoder needs to undo this

orruption rather than just reconstructing the original input. A pos-

ible interpretation of denoising autoencoders is that it attempts to

earn the input manifold by realigning points that were perturbed

nd pushed back onto the manifold.

Besides the most prevalent application of dimensionality re-

uction, autoencoders can also be used as feature extractors with

ome other end task in mind, such as classification, information re-

rieval, or search [9,15,16] . In the case where there are other con-

traints on h , such as the sparse autoencoder, the learned represen-

ation can even be overcomplete, i.e., have more dimensions than

he input x .

Autoencoder perceptrons have also been used with multimodal

ata where the aim is to learn cross-modality representations of

ultiple views of data, such as image and text [17–20] . Such mul-

imodal representations are shown to improve upon single modal-

ty representations for end tasks such as retrieval or classification.

t can also achieve transfer capabilities in the case where only a

ingle modality is available at test time [17] . Similarly, for the case

f multitask learning, autoencoders attempt to extract cross-task or

ross-domain features [21,22] .

Finally, by restructuring the encoder and decoder, one can ac-

ommodate the structure in data. For instance, one can use the re-

urrent neural network to encode an entire sequence into a fixed

ize vector and decode back. Such a sequence autoencoder can be

sed for semisupervised learning on natural language sentences,

hich are naturally modeled as sequences of vectors [23] . Simi-

arly, recursive autoencoders are used to encode a tree structure,

uch as parse trees of natural language sentences, into a vec-

or [24] . Representations that are learned this way are typically

nfused with syntactic properties as a byproduct of the usage of

arse trees, and again, are useful for end tasks such as sentiment

lassification [25] or machine translation [26] . Note that in these

nstances, the additional chain or tree structure is part of the data,

xtrinsic to the model itself. Both recursive and recurrent neural

etworks are essentially perceptron layers recursively applied in a

equence or tree type computational graph, with parameter shar-

ng across successive applications [27,28] . This is different from the

utoencoder tree model that is presented here, in which the tree

tructure in intrinsic to the model, not the data. In fact, in all of

ur experiments, the input data is simply a vector without any

xtra structure. These concepts of structure are orthogonal: one

an, for instance, replace the perceptron computation in a recur-

ive neural network with a soft decision tree to get a recursive au-

oencoder tree, to apply a tree-structured model on tree-structured

ata.

. Autoencoder trees

.1. The model

In an autoencoder tree, the encoder and decoder are imple-

ented by soft decision trees [4] . As opposed to the hard decision

ode which implements a hard split, a soft decision node redi-

ects instances to all its children but with different probabilities,

s given by a gating function g m

(x)—the hard decision tree is a spe-

ial case where g (x) ∈ {0, 1}. This architecture is equivalent to that

f the hierarchical mixture of experts [5,6] .

Let us consider a soft binary tree where each internal node has

wo children, named left and right. The response y m

at a node m

O. İrsoy, E. Alpaydın / Neurocomputing 258 (2017) 63–73 65

Fig. 1. The autoencoder tree is composed of an encoder tree and a decoder tree put back to back. The encoder tree takes the 28 × 28 = 784 -dimensional input image x

and generates a two-dimensional hidden representation h = (−2 . 26 , 4 . 06) by making a soft selection among its leaf responses. The decoder tree takes this as input and

reconstructs the original 784-dimensional image at its leaves. In the encoder tree, the splits are 784-dimensional and the leaves are two-dimensional; in the decoder tree,

the splits are two-dimensional and the leaves are 784-dimensional.

i

o

y

t

g

c

t

h

c

t

c

t

c

o

a

t

h

i

s

φ

s

t

x

t

s

t

a

g

d

u

w

c

s

n

3

w

t

c

g

E

g

w

a

L

t

e

d

t

t

s

u

g

s

L

e

w

f

w

δ

w

i

s recursively calculated as the weighted average of the responses

f its left child ml and right child mr :

 m

(x) =

{
ρm

if m is a leaf node

g m

(x) y ml (x) + (1 −g m

(x)) y mr (x) otherwise

(3)

The gating function, g m

(x) ∈ [0, 1], softly chooses among the

wo outcomes by applying the sigmoid function to a linear split:

 m

(x) =

1

1 + exp [−(w

T
m

x)]
(4)

Because the splits are soft, the output of a soft decision tree is

ontinuous with respect to the parameters for a fixed tree struc-

ure. Hence, all the parameters, namely the leaf values and split

yperplane weight vectors at the internal nodes, i.e., { ρm

, w m

} m

,

an be learned by stochastic gradient-descent. For any error func-

ion, gradients with respect to the split and leaf parameters can be

alculated over multiple levels using chain rule, i.e., backpropaga-

ion.

Using a soft decision tree as the main building block, we can

onstruct an autoencoder tree by putting two soft decision trees,

ne as encoder and one as decoder, back to back. Let t (x) denote

 soft decision tree as defined in Eqs. (3) and (4) . The encoder

ree encodes the d -dimensional input x into a k < d -dimensional

idden representation h = t e (x) and the decoder tree decodes the

nitial input from the hidden representation, ˆ x = t d (h) . This es-

entially replaces perceptrons with soft decision trees, by setting

e (·) ≡ t e (·) and φd (·) ≡ t d (·) in Eqs. (1) and (2) . An example is

hown in Fig. 1 . Here, MNIST dataset is used where the encoder

ree takes the 28 × 28 = 784 -dimensional digit image as its input

 ; it then uses Eq. (3) recursively and gets to all of the leaves—all

he gating weight vectors of this encoder tree has 784 + 1 dimen-

ions. Here, we want to decrease dimensionality to two and so all

he leaves store a two-dimensional value. We then calculate the

verage of all the leaves weighted by their gating values and this

ives us the final two-dimensional representation for the digit. We

enote this output by h = t e (x) .

From this two-dimensional vector, the decoder tree, again

ses Eq. (3) recursively, this time with 2 + 1 -dimensional gating

eights. Because the aim is reconstruction of the input, the leaves

ontain 784-dimensional values. Again by calculating a weighted

um of all the leaves we get the final reconstructed image. We de-

ote this by ˆ x = t (h) = t (t e (x)) .
d d
.2. Training the autoencoder tree

The aim is to minimize the reconstruction error, that is, we

ant the output of the decoder tree to be as similar as possible

o the input of the encoder tree. Note that this is an unsupervised

riterion. The total reconstruction error on a training set { x i } N
i =1

is

iven as:

 =

1

2

∑

i

‖ x i − ˆ x
i ‖

2 =

1

2

∑

i

‖ x i − t d (t e (x
i)) ‖

2 (5)

Both the encoder and decoder trees use soft splits and hence

iven the reconstruction error at the output of the decoder tree,

e can use chain rule and backpropagate this error to all the split

nd leaf parameters of first the decoder and then the encoder tree.

et us look at Fig. 1 : when we use the model for evaluation, given

he input, we go in the forward direction and evaluate first the

ncoder then the decoder tree. In training, we go in the opposite

irection. After having evaluated and calculated the output predic-

ions, given the desired output for the decoder tree, we compare

he predictions against the desired values and calculate the recon-

truction error; using backpropagation, that is, the chain rule, we

pdate the parameters of the decoder tree and then back propa-

ating even further, we update the parameters of the encoder tree.

In order to learn the parameters ρ and w of a single soft deci-

ion tree, with a gradient-based method, we use backpropagation.

et E denote the overall error to be minimized and E i denote the

rror over a single data instance x i . Let us define δm

= ∂ E i /∂ y m

(x i) ,

hich is the responsibility of node m . Backpropagating the error

rom the root towards the leaves, we have

∂E i

∂ w m

= g m

(x i)(1 − g m

(x i))
(
δ

iT
m

(y ml (x
i) − y mr (x

i))
)
x i (6)

∂E i

∂ ρm

= δ
i
m

(7)

ith

i
m

=

⎧ ⎨

⎩

y r (x) − r i if m is root

δ
i
pa (m) g m

(x i) if m is a left child

δ
i
pa (m) (1 − g m

(x i)) if m is a right child

(8)

here pa (m) is the parent of node m and r i is the true label of i th

nstance, represented as a one-hot vector.

66 O. İrsoy, E. Alpaydın / Neurocomputing 258 (2017) 63–73

t

o

3

h

p

b

f

ρ

w

d

o

v

a

t

c

h

i

t

l

c

4

4

c

w

d

t

a

w

m

c

t

I

t

a

v

t

c

(

w

e

a

t

i

a

e

f

s

r

t

p

d

s

f

F

i
We can use these derivations to compute the gradients of an

autoencoder tree pair as follows: let θ e ∈ { ρm

, w m

} m ∈ e and θd

∈ { ρm

, w m

} m ∈ d denote a parameter of the encoder and decoder

trees respectively. We can update the parameters of both trees by

gradient-descent using:

∂E i

∂θd

=

∂E i

∂ t d (h

i)

∂ t d (h

i)

∂θd

= (̂ x
i − x i) T

∂ t d (h

i)

∂θd

(9)

∂E i

∂θe
=

∂E i

∂ h

i

∂ h

i

∂θe
= (̂ x

i − x i) T
∂ t d (h

i)

∂ h

i

∂ t e (x i)

∂θe
(10)

where ∂ t ·(x)/ ∂ θ · can be computed as shown above for a single

tree. To be able to calculate δh = ∂ E/∂ h , we need the derivative of

a tree response with respect to its input (for the decoder tree):

∂ t (x i)

∂ x i
=

∑

m

g m

(x i)(1 − g m

(x i))
(
δiT

m

(y ml (x
i) − y mr (x

i))
)
w (11)

δh denotes the error responsibility of the hidden representation

backpropagated from the decoder tree to the encoder tree.

With trees having multiple levels, training the encoder and de-

coder trees together would be rather slow and to accelerate train-

ing, we use an incremental procedure, which is also sometimes

used in training autoencoder perceptrons. Initially, both trees start

with depth two, and after some number of epochs, in both trees,

every leaf is replaced by a subtree of depth two with one decision

node and two leaves; this adds a level to both trees. We continue

doing so until we get to some predefined maximum depth. When

the tree grows, we update all the tree parameters thereby finetun-

ing the previous parameters as well. When a leaf is split, its re-

sponse ρ is copied to its children leaves with some small additive

noise.

3.3. Training complexity

What determines the complexity of the autoencoder perceptron

is the complexity of a perceptron, which basically is a matrix–

vector product. So if we have d inputs and k hidden units, the time

complexity is O (d · k). The space complexity is the same.

If the autoencoder uses multilayer perceptrons with one hidden

layer of n nodes for encoding and decoding, the encoder has time

(and space) complexity of O (d · n) in the first layer and O (n · k)

in the second layer, and hence the encoder has a total complexity

of O (n · (d + k)) . We can simplify this as O (n · d) because d will

be larger than k in the more frequently encountered use of the

autoencoder for dimensionality reduction. The same also holds for

the decoder tree when we exchange d and k .

In the case of a tree, the complexity depends on the number of

internal nodes. An internal node has time (and space) complexity

of O (d) and if the encoder (or decoder) tree has n nodes, the total

complexity of the tree is O (n · d). If the hidden dimensionality is k ,

the two children can be combined in O (k) time with a total of O (n

· k) complexity. Summing these, we get O (n (d + k)) which again

can be taken as O (n · d), assuming d > k . Note that again this is

true also for the decoder tree, when we exchange d and k .

This analysis indicates that the autoencoder tree and the au-

toencoder multilayer perceptron have the same time and space

complexity if the number of nodes in the trees and the number

of hidden units in the multilayer perceptrons are comparable.

To be more concrete, we did timing experiments on an 8-core

CPU machine on which matrix multiplications are parallelized. We

use the MNIST data which has 60,0 0 0 training examples of dimen-

sion 784, and update in batches of size 256. A single training epoch

for a 6-level deep (63 nodes per encoder and decoder) autoencoder

tree takes on the average 2.598 s; an equivalent 2-layer (per en-

coder and decoder) autoencoder multilayer perceptron which has
he same number of parameters (31, 10, and 31 hidden units) takes

n the average 2.364 s.

.4. Autoencoder model trees

The leaves of a soft decision tree ρm

are constant vectors and

ence the response of a (soft) tree can be viewed as a (smoothed)

iecewise constant function. We can make the model more flexible

y using linear models at the leaves. We change Eq. (3) as follows

or leaf node m :

m

= V m

x (12)

here V m

are the parameters of the linear model. During gradient-

escent, we include one more term, ∂ ρm

/ ∂ V m

, to learn V m

. The use

f linear leaves implies that the overall response of the tree can be

iewed as a (smoothed) piecewise linear function.

Having linear response leaves in the encoder and decoder trees

dds flexibility to the autonencoder because it allows for a dis-

ributed representation at the leaf level—the leaves are (softly) lo-

al and specialize to regions in the input space, but in each leaf, we

ave a distributed model. We expect nearby regions to learn sim-

lar linear models and the soft gating mechanism allow a smooth

ransition from one to the other. When there is no additional non-

inearity, such an autoencoder might be interpreted as a hierarchi-

al mixture of locally linear projections.

. Experiments

.1. Results on handwritten digits data

We evaluate the autoencoder tree model on MNIST which

ontains 60,0 0 0 training and 10,0 0 0 test examples of hand-

ritten digit images, each of which is 28 by 28 pixels (784-

imensional) [29] . Output labels are the ten digits.

We use two autoencoder perceptrons: One has a single layer,

hat is, a linear model, with output nonlinearity for the encoder

nd linear map for the decoder. The second uses the autoencoder

ith a stacked two-layer perceptron where we first reduce the di-

ensionality to a larger, intermediate value (such as 50) using the

onventional autoencoder, and using the 50-dimensional represen-

ation, we once again reduce to the final dimensionality (10 or 2).

n both cases, nonlinearity is the hyperbolic tangent.

Both autoencoder perceptrons and autoencoder trees are

rained with stochastic gradient-descent. For both, we employ a di-

gonal variant of AdaGrad [30] , which yields smooth and fast con-

ergence. We train for a total of 240 epochs. Both the encoder and

he decoder trees start from a depth of two, and the depth is in-

remented at every 40th epoch, until they reach their final depth

five or six). We employ a simple L 2 regularization on connection

eights for autoencoder perceptrons and hyperplane split param-

ters (w m

) and the leaf responses (ρm

) for autoencoder trees with

 fixed penalty of 10 −5 . Both the autoencoder perceptron and au-

oencoder tree weights are uniformly randomly initialized in the

nterval of [−0 . 01 , 0 . 01] —in the case of autoencoder trees, this is

lso the noise added on top of the inherited weights from the par-

nt nodes. We show the convergence of the reconstruction errors

or all models per each epoch of stochastic gradient-descent, in the

cale of a single pixel in Fig. 2 . We see that the autoencoder trees

eaches a lower reconstruction error than the autoencoder percep-

ron when reducing to two dimensions, whereas the autoencoder

erceptron is better than the tree variants when reducing to ten

imensions. For the autoencoder trees, it seems as if the dimen-

ionality of the hidden representation does not have a strong ef-

ect. However, the error is less when the depth of tree is increased.

or the autoencoder tree therefore, the size of the tree (in terms of

ts depth) seems critical, and not the dimensionality of the hidden

O. İrsoy, E. Alpaydın / Neurocomputing 258 (2017) 63–73 67

0 50 100 150 200

0.
10

0.
11

0.
12

0.
13

0.
14

0.
15

Epochs

R
ec

on
st

ru
ct

io
n

E
rr

or

linear tree (10d)

multilayer perceptron (10d)

perceptron (10d)

linear tree (2d)

perceptron (2d)

multilayer
perceptron (2d)

trees of depth 5
 (2d and 10d)

trees of depth 6
 (2d and 10d)

Fig. 2. We compare the reconstruction errors of different autoencoder architectures on the MNIST data set, namely the autoencoder perceptron (black), the autoencoder tree

with a depth of five (blue), and the autoencoder tree with a depth of six (red). Purple denote the autoencoder model tree with dimensionality reduced to two. Solid and

dash denote dimensionality reduction to two and ten, respectively. Triangles show the multilayer perceptron that first reduces the dimensionality to 50 and then reduces

once more to 2 or 10. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

r

l

b

t

s

p

t

r

a

t

a

m

t

l

t

(

t

m

a

h

b

o

t

r

v

i

t

t

t

c

t

a

4

(

m

w

2

s

f

u

c

r

o

p

w

s

b

s

a

r

t

epresentation. The reconstruction error can be decreased by using

arger trees for encoding and decoding but one should be careful

ecause using models that are too complex may lead to overfit-

ing the data. L 2 regularization, as we do, becomes important in

uch a case. One can try different models and choose the one that

erforms best on a held-out data. Another factor that determines

he reconstruction error is the dimensionality of the hidden rep-

esentation. In our experiments, we use two or ten which define

 serious bottleneck; using a larger hidden representation between

he encoder and decoder would both decrease reconstruction error

nd speed up learning, at the expense of losing from compactness.

We plot the distribution of MNIST digits in the learned two di-

ensions in Fig. 3 . We see that the autoencoder perceptron maps

he instances to the corners because of the nonlinearity and hence

oses information. With the autoencoder trees, leaves define clus-

ers and we also see points intermediate implying interpolations

due to soft gating) between leaves.

With trees, unlike perceptrons, we learn a localized represen-

ation. It is not the directions of the hidden space that is infor-

ative, but we learn clusters at different resolutions. We see the

utoencoder tree as doing dimensionality reduction together with

ierarchical soft clustering. Because of this locality and clustering

ehavior, it is the structure of the tree and the resulting number

f leaves that define the capacity more than the dimensionality of

he leaves, whereas for the perceptrons with their distributed rep-

esentation, it is the number of hidden dimensions that is critical.

In the case of autoencoder model trees, we see that classes are

ery well-separated even in two dimensions although the train-

ng is unsupervised, indicating that the model has effectively cap-
ured the underlying distribution. In contrast to other models, au-

oencoder linear model trees provide a much smoother distribu-

ion in the hidden representation space, and move away from the

lustering-like behavior to a degree. This validates our intuition

hat linear models help incorporate a distributed representation in

ddition to locality. More results on this data set are in [4] .

.2. Results on newsgroup text data

We further evaluate autoencoder trees on 20 Newsgroups data

20News) which contains 18,846 instances of newsgroup docu-

ents (partitioned into training and test sets with 60–40% ratio),

ith output labels denoting the subject matter (category) out of

0 classes [31] . With the bag-of-words representation, the dimen-

ionality is about 60,0 0 0, but we sort the words in terms of their

requencies, discard the top 100 (non informative stop words), and

se the next 20 0 0.

We compare autoencoder trees to the shallow autoencoder per-

eptron. We borrow the same learning scheme and set of hyperpa-

ameters from MNIST experiments described above. More results

n this data set can be found in [4] ; here, we will only show a

art of the decoder tree learned over the 20News dataset, which

e believe is very interesting and informative (Fig. 4). Since the re-

ponse vector is a bag-of-words representation, we sort the words

y their coefficients and show only the top words. We show only

ome of the paths as an example. In the figure, we observe hier-

rchies captured by the tree as seen by word distributions; these

esemble topics at finer and finer grain as we split the nodes fur-

her.

68 O. İrsoy, E. Alpaydın / Neurocomputing 258 (2017) 63–73

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●

●

●

●

●

●

●

●

●

●

0
1
2
3
4
5
6
7
8
9

−5 0 5

−
5

0
5

10

−10 −5 0 5

−
5

0
5

10

−60 −40 −20 0 20 40

−
60

−
40

−
20

0
20

40

Fig. 3. MNIST digits mapped to two dimensions using the autoencoder perceptron (top left), the autoencoder trees of depth five (top right) and depth six (bottom left), and

the autoencoder model tree of depth five (bottom right).

b

e

g

o

t

s

t

u

t

p

f

c

t

F
What we see here is very similar to one gets with a hierarchical

topic model [32] —we can think of every document represented by

a distribution on the leaves of the tree (with the gating function)

and every leaf defines a distribution on words (by normalizing leaf

responses). In the figure for example, the leftmost leaf roughly cor-

responds to concepts related to internet anonymity, the next leaf

is about programs and output methods, and the last two are about

internet publishing of images. We also see that as we get closer to

leaves, the resolution increases and the word activations become

more specific.

4.3. Results on natural image patches

We evaluate the autoencoder tree on CIFAR which is a labeled

set of 50,0 0 0 training and 10,0 0 0 test images, each of which is 32
y 32 pixels in three channels [33] . Since we intend to qualitatively

valuate and interpret smaller models, we convert the images to

rey levels and work at a patch level of size 7 by 7, with an overlap

f 3 pixels. We then train autoencoders at the patch level. This is

o ensure that even small models can produce reasonable results,

o that we can easily interpret learned models.

To report example reconstructions, the autoencoder tree and

he autoencoder perceptron reduce dimensionality to ten. We also

se the autoencoder model tree that reduces the dimensionality

o two for visualization purposes. In the case of the autoencoder

erceptron, we employ a pair of single hidden layer perceptrons

or encoder and decoder both having 25 hidden units. Autoen-

oder trees have a maximum depth of six. Other hyperparame-

ers and the learning scheme follow from the previous setting.

ig. 5 shows the convergence of reconstruction errors of the au-

O. İrsoy, E. Alpaydın / Neurocomputing 258 (2017) 63–73 69

file program our available
said information most system

file available program
entry pub information
output image ftp server

file entry
output program

file available image pub

anonymous
internet privacy

information

entry output
file program
build printf

image
available
jpeg pub

file
available

pub
image ftp

Fig. 4. Response values (the most chosen words) for a subtree of the decoder tree on the 20News data set. Internal nodes show the latest response values before splitting.

We see that the leaves contain related words and the tree learns a hierarchical distribution of topics.

Fig. 5. We compare the reconstruction errors of different autoencoder architectures on image patches from the CIFAR data set, namely the autoencoder perceptron (black),

the autoencoder multilayer perceptron with 25 hidden units (green), the autoencoder tree with a depth of six (red) and the autoencoder model tree with a depth of six

(purple). All models compared here reduce dimensionality to two. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

t

a

m

g

c

h

t

l

t

a

b

t

t

a
oencoder tree and perceptrons. We see that the autoencoder tree

nd the multilayer perceptron perform better than the autoencoder

odel tree and the perceptron. This last has the smoothest conver-

ence since it has the smallest number of parameters. The autoen-

oder model tree performs not as well and oscillates, likely due to

igh variance because of the larger number of parameters. With

rees, we see a spike when we increase the depth by splitting the
eaves. n
As seen in Fig. 6 , both the autoencoder perceptron and

he autoencoder trees yield roughly similar reconstructions. The

utoencoder model tree has the most blurry reconstructions, likely

ecause reducing to two dimensions results in a very tight bot-

leneck. Fig. 7 shows the decoder of an autoencoder tree. We see

hat as the tree grows in size, the representations become more

nd more specific, in the sense that the leaf nodes specialize to a

arrower part of the input space, as we also see in Fig. 4 . Deep

70 O. İrsoy, E. Alpaydın / Neurocomputing 258 (2017) 63–73

Fig. 6. Random sample reconstructions for autoencoder with multilayer perceptron (left), autoencoder tree (middle) and autoencoder model tree (right). Autoencoder model

tree reduces to two dimensions whereas the other models reduce to ten.

Fig. 7. Decoder tree on CIFAR patches. Image patches denote ρ values of leaves. Internal nodes show the last ρ value before the node is split.

Fig. 8. Two-dimensional scatter of encodings of 10 0 0 random patches with the au-

toencoder model tree. Certain patches are enlarged for better visibility. We observe

an overall transition from black to white as we move from left to right. We also see

that similarly oriented patches are placed nearby.

fi

c

d
multilayer perceptrons, or in general deep neural networks, may

present a similar behavior in which representations become more

specialized and specific in a representation hierarchy. The depth of

a tree and the depth of a layered perceptron are not immediately

interchangable, but an investigation of the effect of depth on the

granularity of the representation learned with these two models

and their comparison would be an interesting research direction.

We also visualize the resulting two-dimensional scatter of

patches for the case of the autoencoder model tree; see Fig. 8 . We

observe that nearby patches have similar orientations. Additionally,

the overall spread in the encoding space seems to correlate with

the overall color of patches, such that there is a transition from

black to white as we move from left to right.

4.4. Results on multimodal data of images with topics

To show that the autoencoder tree, just like autoencoder per-

ceptron, can be used in a multimodal scenario, we evaluate it on

MIRFLICKR 25k data set which has 25,0 0 0 Flickr raw images with

associated topic labels [34] . We randomly partition the data into

training and test sets with 4–1 ratio. We treat topic labels as a

modality of the data and attempt to reconstruct them from images

(Fig. 9). Topics are represented as a 38-dimensional vector of bi-

nary values (not necessarily one-hot). Images are represented as a

3857-dimensional feature vector, using the preprocessed and ex-

tracted image features as in [35] . Both the autoencoder tree and

the autoencoder perceptron have a hidden dimensionality of ten.

Encoder and decoder perceptrons have a single hidden layer of di-

mension 200 and 25 respectively, and all layers are learned jointly.

Autoencoder tree has a maximum depth of six. Because the en-

coder and decoder models are trained together to generate one

modality from the other, the hidden representation in between ex-

tracts cross-modalty features.
Five randomly chosen samples and their estimated topics (top

ve predictions) are shown in Table 1 for both autoencoder per-

eptrons and autoencoder trees. We see that both models pro-

uce reasonable results—the autoencoder tree seems to fail on the

O. İrsoy, E. Alpaydın / Neurocomputing 258 (2017) 63–73 71

x = h

plant life flower animals ...

people male female ...

sky clouds water ...

water lake river ...

x̂ = sky clouds people male female ...

Fig. 9. Operation of an autoencoder tree on multimodal image and text data. Given an input image x , the encoder tree maps it to a hidden representation h . Then, the

decoder tree generates the textual topic representation from this h . Because the two trees are trained together, h learns to be a cross-modality representation.

Table 1

Sample images, their topics and topic predictions using autoencoder multilayer perceptron and autoencoder trees on MIRFLICKR.

Image True labels MLP AETR

people_r1 female_r1 sky structures

female people

Indoor structures plant_life animals

people

Indoor food animals people plant_life

people_r1 clouds_r1 male_r1 female_r1

plant_life sky male tree sunset

female clouds people

Sky plant_life clouds structures tree Sky clouds clouds_r1 water plant_life

Animals river bird_r1 bird water lake Indoor structures plant_life animals

people

plant_life sky animals structures tree

Flower plant_life sky structures clouds

flower_r1

Structures plant_life indoor sky people People people_r1 portrait portrait_r1

indoor

people_r1 female_r1 male structures

female people

People people_r1 female male portrait Structures people male people_r1

plant_life

f

a

t

W

q

t

o

s

s

5

f

r

c

c

e

i

i

r

s

t

t

e

t

m

a

s

b

r

s

c

r

i

l

c

c

c

a

W

t

g

t

ourth instance; note however that the autoencoder perceptron has

 larger number of parameters in these experiments.

Fig. 10 shows the convergence of the reconstruction errors for

he autoencoder tree and the autoencoder multilayer perceptron.

e see that the perceptron achieves good performance quickly, but

uickly starts to overfit (we use early stopping, that is, our qualita-

ive results above uses the best performing iteration on the devel-

pment set). The autoencoder tree model converges smoothly but

tarts overfitting too when trained too long. Both models perform

imilarly at their peak.

. Conclusions

The autoencoder tree uses two soft decision trees back to back

or encoding and decoding. We show that such an autoencoder

eaches as low or lower reconstruction error than autoencoder per-

eptrons on several data sets. A major advantage of the autoen-

oder tree is that because of the locality of the leaves and its hi-

rarchical structure, it is easier to interpret and hence allows for

nformation extraction.

When used in this unsupervised setting, the autoencoder tree

mplements soft hierarchical clustering and when the hidden rep-

esentation uses fewer dimensions than the input, it does dimen-

ionality reduction within the clusters. The autoencoder tree does
hese two in a coupled manner learning both the hierarhical split-

ing and the hidden representations in the leaves together. The hi-

rarchical organization of the decoder tree and the soft splitting at

he nodes allow for a smooth interpolation between the leaves and

akes the model more flexible.

The autoencoder tree is an unsupervised method that finds

 short, compressed representation of the input. In a semi-

upervised setting, such a learned hidden representation can then

e given as input to a supervised learner for a later classification or

egression task, which can be trained with a smaller labeled data

et. We see that though the training is unsupervised, the autoen-

oder tree learns internal nodes or leaves that become increasingly

esponsive to single or few classes, and we expect this to be useful

n the later training of a supervised mapping.

The gating values on the path from the root to a leaf softly de-

imit a local region in the input space which becomes more spe-

ific, or in other words, higher resolution, as the tree depth in-

reases. Not only is such a representation very informative, but it

an also improve prediction accuracy on supervised tasks.

As is, the structure of the encoder and decoder trees are fixed

nd pre-defined (as is also the case for autoencoder perceptrons).

e have recently proposed the budding decision tree model where

he tree structure can be adapted during training by dynamically

rowing and pruning subtrees [36] ; a possible research direction is

o use such budding trees as encoder and decoders.

72 O. İrsoy, E. Alpaydın / Neurocomputing 258 (2017) 63–73

Fig. 10. We compare the reconstruction errors of different autoencoder architectures on the FLICKR data set, namely the autoencoder multilayer perceptron with 200 hidden

units in the encoder and 25 hidden units in the decoder (green), and autoencoder tree with a depth of six. Both models reduce to 10 dimensions. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)

[

[

[

Denoising autoencoders (when there are missing features), re-

cursive autoencoders (when inputs are sequences), and other au-

toencoder variants in the literature currently use perceptrons as

their building blocks; it will be interesting to implement their tree

variants. We expect the hierarchical, multi-resolution representa-

tion capability of trees will be useful especially in interpretation.

Acknowledgments

This work is partially supported by Bo ̆gaziçi University Research

Funds with Grant number 14A01P4.

References

[1] E. Alpaydın , Introduction to Machine Learning, third edition, The MIT Press,
2014 .

[2] G.W. Cottrell , P. Munro , D. Zipser , Learning internal representations from
gray-scale images: an example of extensional programming, in: Proceed-

ings of the Ninth Annual Conference of the Cognitive Science Society, 1987,

pp. 462–473 .
[3] Y. Bengio , Learning deep architectures for AI, Found. Trends Mach. Learn. 2 (1)

(2009) 1–127 .
[4] O. ̇Irsoy , E. Alpaydın , Autoencoder trees, in: Proceedings of the 2015 Asian Con-

ference on Machine Learning, 2015, pp. 378–390 .
[5] M.I. Jordan , R.A. Jacobs , Hierarchical mixtures of experts and the EM algorithm,

Neural Comput. 6 (2) (1994) 181–214 .

[6] O. ̇Irsoy , O.T. Yıldız , E. Alpaydın , Soft decision trees, in: Proceedings of the 2012
International Conference on Pattern Recognition, 2012, pp. 1819–1822 .

[7] H. Bourlard , Y. Kamp , Auto-association by multilayer perceptrons and singular
value decomposition, Biol. Cybern. 59 (4–5) (1988) 291–294 .

[8] G.E. Hinton , R.S. Zemel , Autoencoders, minimum description length, and
Helmholtz free energy, in: Proceedings of the 1993 Advances in Neural Infor-

mation Processing Systems, 1993, pp. 3–10 .
[9] G.E. Hinton , R.R. Salakhutdinov , Reducing the dimensionality of data with neu-

ral networks, Science 313 (5786) (2006) 504–507 .

[10] C.P. Marc’Aurelio Ranzato , S. Chopra , Y. LeCun , Efficient learning of sparse rep-
resentations with an energy-based model, in: Proceedings of the 2007 Ad-

vances in Neural Information Processing Systems, 2007, pp. 1137–1144 .
[11] M.A. Ranzato , F.J. Huang , Y.-L. Boureau , Y. LeCun , Unsupervised learning of in-

variant feature hierarchies with applications to object recognition, in: Proceed-
ings of the 2007 Conference on Computer Vision and Pattern Recognition, IEEE,

2007, pp. 1–8 .
[12] G. Alain , Y. Bengio , What regularized auto-encoders learn from the data-gen-

erating distribution, J. Mach. Learn. Res. 15 (1) (2014) 3563–3593 .

[13] P. Vincent , H. Larochelle , I. Lajoie , Y. Bengio , P.-A. Manzagol , Stacked denoising
autoencoders: learning useful representations in a deep network with a local

denoising criterion, J. Mach. Learn. Res. 11 (2010) 3371–3408 .
[14] Y. Bengio , L. Yao , G. Alain , P. Vincent , Generalized denoising auto-encoders as

generative models, in: Proceedings of the 2013 Advances in Neural Information
Processing Systems, 2013, pp. 899–907 .

[15] A. Torralba , R. Fergus , Y. Weiss , Small codes and large image databases for

recognition, in: Proceedings of the 2008 Conference on Computer Vision and
Pattern Recognition, IEEE, 2008, pp. 1–8 .

[16] R. Salakhutdinov , G. Hinton , Semantic hashing, Int. J. Approx. Reason. 50 (7)
(2009) 969–978 .

[17] J. Ngiam , A. Khosla , M. Kim , J. Nam , H. Lee , A.Y. Ng , Multimodal deep learn-
ing, in: Proceedings of the 2011 International Conference on Machine Learning,

2011, pp. 689–696 .

[18] W. Wang , B.C. Ooi , X. Yang , D. Zhang , Y. Zhuang , Effective multi-modal retrieval
based on stacked auto-encoders, in: Proceedings of the 2014 International Con-

ference on Very Large Data Bases (VLDB) Endowment, 2014, pp. 649–660 .
[19] C. Hong , J. Yu , J. Wan , D. Tao , M. Wang , Multimodal deep autoencoder for hu-

man pose recovery, Trans. Image Process. 24 (12) (2015) 5659–5670 .
[20] Y. Liu , X. Feng , Z. Zhou , Multimodal video classification with stacked contrac-

tive autoencoders, Signal Process. 120 (2016) 761–766 .

[21] F. Zhuang , D. Luo , X. Jin , H. Xiong , P. Luo , Q. He , Representation learning via
semi-supervised autoencoder for multi-task learning, in: Proceedings of the

2015 International Conference on Data Mining, IEEE, 2015, pp. 1141–1146 .
22] M. Ghifary , W. Bastiaan Kleijn , M. Zhang , D. Balduzzi , Domain generalization

for object recognition with multi-task autoencoders, in: Proceedings of the
2015 International Conference on Computer Vision, IEEE, 2015, pp. 2551–2559 .

23] A.M. Dai , Q.V. Le , Semi-supervised sequence learning, in: Proceedings

of the 2015 Advances in Neural Information Processing Systems, 2015,
pp. 3061–3069 .

[24] R. Socher , E.H. Huang , J. Pennington , C.D. Manning , A.Y. Ng , Dynamic pooling
and unfolding recursive autoencoders for paraphrase detection, in: Proceed-

ings of the 2011 Advances in Neural Information Processing Systems, 2011a,
pp. 801–809 .

25] R. Socher , J. Pennington , E.H. Huang , A.Y. Ng , C.D. Manning , Semi-supervised

recursive autoencoders for predicting sentiment distributions, in: Proceedings
of the 2011 Empirical Methods in Natural Language Processing, Association for

Computational Linguistics, 2011b, pp. 151–161 .

http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0001
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0001
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0002
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0002
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0002
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0002
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0003
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0003
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0004
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0004
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0004
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0005
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0005
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0005
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0006
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0006
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0006
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0006
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0007
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0007
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0007
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0008
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0008
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0008
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0009
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0009
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0009
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0010
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0010
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0010
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0010
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0011
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0011
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0011
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0011
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0011
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0011
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0012
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0012
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0012
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0013
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0013
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0013
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0013
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0013
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0013
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0014
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0014
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0014
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0014
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0014
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0015
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0015
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0015
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0015
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0016
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0016
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0016
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0017
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0017
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0017
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0017
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0017
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0017
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0017
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0018
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0018
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0018
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0018
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0018
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0018
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0019
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0019
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0019
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0019
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0019
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0019
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0020
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0020
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0020
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0020
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0021
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0021
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0021
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0021
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0021
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0021
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0021
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0022
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0022
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0022
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0022
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0022
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0023
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0023
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0023
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0024
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0024
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0024
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0024
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0024
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0024
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0025
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0025
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0025
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0025
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0025
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0025

O. İrsoy, E. Alpaydın / Neurocomputing 258 (2017) 63–73 73

[

[
[

[

[

[

[

[

[

26] P. Li , Y. Liu , M. Sun , Recursive autoencoders for ITG-based translation., in: Pro-
ceedings of the 2013 Empirical Methods in Natural Language Processing, Asso-

ciation for Computational Linguistics, 2013, pp. 567–577 .
[27] J.L. Elman , Finding structure in time, Cognit. Sci. 14 (2) (1990) 179–211 .

28] J.B. Pollack , Recursive auto-associative memory., Neural Netw. 1 (1988) 122 .
29] Y. LeCun, C. Cortes, The MNIST database of handwritten digits, 1998.

30] J. Duchi , E. Hazan , Y. Singer , Adaptive subgradient methods for online learning
and stochastic optimization, J. Mach. Learn. Res. 12 (2011) 2121–2159 .

[31] 20Newsgroups, URL: http://qwone.com/ ∼jason/20Newsgroups/ .

32] D.M. Blei , T.L. Griffiths , M.I. Jordan , J.B. Tenenbaum , Hierarchical topic models
and the nested chinese restaurant process, in: Proceedings of the 2003 Ad-

vances in Neural Information Processing Systems, 2003, pp. 17–24 .
33] A. Krizhevsky , Learning Multiple Layers of Features from Tiny Images, Univer-

sity of Toronto, 2009 Master’s thesis .
34] M.J. Huiskes , M.S. Lew , The MIR Flickr retrieval evaluation, in: Proceedings of

the 2008 International Conference on Multimedia Information Retrieval, ACM,

2008, pp. 39–43 .
35] N. Srivastava , R. Salakhutdinov , Multimodal learning with deep Boltzmann ma-

chines, J. Mach. Learn. Res. 15 (2014) 2949–2980 .
36] O. İrsoy , O.T. Yıldız , E. Alpaydın , Budding trees, in: Proceedings of the 2014

International Conference on Pattern Recognition, 2014, pp. 3582–3587 .
Ozan İrsoy received the B.A. degree in mathematics and

the B.Sc. degree in computer engineering (double major)
from Bogazici University in 2012 and is currently working

toward the Ph.D. degree in computer science at Cornell

University.

Ethem Alpaydin received the B.Sc. degree from Bogazici
University in 1987 and the Ph.D. degree from EPF Lau-

sanne in 1990. He did his postdoctoral work at ICSI,
Berkeley, in 1991 and he visited MIT in 1994, ICSI,

Berkeley, in 1997 (as a Fulbright scholar) and IDIAP,

Switzerland, in 1998. He has been a professor of com-
puter engineering at Bogazici University since 1991. His

book Introduction to Machine Learning was published by
The MIT Press in 2004, which since has been translated

to German, Chinese, and Turkish. He is senior member of
the IEEE.

http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0026
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0026
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0026
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0026
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0027
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0027
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0028
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0028
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0029
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0029
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0029
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0029
http://qwone.com/~jason/20Newsgroups/
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0030
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0030
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0030
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0030
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0030
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0031
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0031
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0032
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0032
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0032
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0033
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0033
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0033
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0034
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0034
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0034
http://refhub.elsevier.com/S0925-2312(17)30418-6/sbref0034

	Unsupervised feature extraction with autoencoder trees
	1 Introduction
	2 Autoencoder perceptrons
	3 Autoencoder trees
	3.1 The model
	3.2 Training the autoencoder tree
	3.3 Training complexity
	3.4 Autoencoder model trees

	4 Experiments
	4.1 Results on handwritten digits data
	4.2 Results on newsgroup text data
	4.3 Results on natural image patches
	4.4 Results on multimodal data of images with topics

	5 Conclusions
	 Acknowledgments
	 References

