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2.1 Introduction
Multimodal data contains information from different sources/sensors that may
carry complementary information and, as such, combining these different modal-
ities intelligently improves accuracy in classification tasks. We are going to discuss
three approaches: (1) in early integration, features from all modalities are concate-
nated as one long input and a single classifier is trained; (2) in late recognition,
a separate classifier is trained with each modality, which independently makes a
decision and then the decisions are combined, and (3) intermediate integration is
between these two extremes—there is a single classifier but it is trained with some
suitably processed, a more abstract version of the input from each modality. We
consider two possibilities for this: one uses the multiple kernel learning framework
where each modality has its own specific kernel and the other is multimodal deep
neural networks where processing of different modalities are separate in early layers
but are combined later on. For each approach, we will discuss the pros and cons
in a comparative manner. We conclude that in building classifiers that combine
modalities, there is no single best method and one needs to think about the level
of abstraction where correlation is expected to occur between features and choose
a combiner accordingly.

2.2 Classifying Multimodal Data
The idea of having an ensemble of learners and combining their predictions is
not a new idea in pattern recognition and machine learning, and there is a variety
of methods; see Kuncheva [2004] for a comprehensive review. See the Glossary
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for key terminology related to machine learning and ensemble models. For such
a combination to be useful, two questions become important [Alpaydın 2014]:

1. Since it does not make sense to have multiple learners that make the
same mistakes, how can we generate learners that are diverse/independent/
uncorrelated so that they make errors on different cases and complement
each other?

2. When we have these multiple learners each making a prediction on a test
instance, how can we combine their predictions to calculate the overall
output for highest possible accuracy?

These two questions are not necessarily orthogonal but it may be useful to
answer them one by one. For the first question of how to generate different learners,
there have been a number of alternatives.

. The most popular approach is to use different learning algorithms or mod-
els. Each learning algorithm or model makes a different set of assumptions
about the data and picking one algorithm corresponds to one set of as-
sumptions. Learning is an ill-posed problem, that is, the data by itself is not
sufficient to get a unique model. The set of assumptions we need to make
to get a unique solution is called the inductive bias for the model or the al-
gorithm. For example, the linear discriminant assumes that the classes are
linearly separable in the input space and the k-nearest neighbor assumes
that nearby instances are likely to have the same label. Hence, to make a
safer bet and not “put all our eggs in the same basket,” we choose a number
of algorithms/models that we believe are likely to perform well and com-
bine their predictions. From the perspective of experiment design, we can
view the learning algorithm as a (controllable) factor that affects the accu-
racy of the final classifier and using many algorithms corresponds to aver-
aging over the many levels of this factor. Averaging over different models
also averages out the effect of random (uncontrollable) factors; for example,
neural networks are trained with gradient-descent that is randomly initial-
ized and averaging over multiple neural networks decreases dependence on
initialization.

. One can use the same learning algorithm or model, but with different hyper-
parameter settings. Each model has a hyper-parameter that allows its com-
plexity to be adjusted to the task; for example, with multi-layer perceptrons,
it is the structure of the network, i.e., the number of hidden layers and the
number of hidden units; with the k-nearest neighbor classifier, it is k, that is,
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Glossary

In machine learning, the learner is a model that takes an input x and learns to give out
the correct output y. In pattern recognition, typically we have a classification task
where y is a class code; for example in face recognition, x is the face image and y is
the index of the person whose face it is we are classifying.

In building a learner, we start from a data set X = {xt , rt}, t = 1, . . . , N that
contains training pairs of instances xt and the desired output values rt (e.g., class
labels) for them. We assume that there is a dependency between x and r but that it
is unknown—If it were known, there would be no need to do any learning and we
would just write down the code for the mapping.

Typically, xt is not enough to uniquely identify rt ; we call xt the observables and
there may also be unobservables that affect rt and we model their effect as noise.
This implies that each training pair gives us only a limited amount of information.
Another related problem is that in most applications, x has a very high dimensionality
and our training set samples this high dimensional space very sparsely.

Our prediction is given by our predictor g(xt |θ) where g() is the model and θ is
its set of parameters. Learning corresponds to finding that best θ∗ that makes our
predictions as close as possible to the desired values on the training set:

θ∗ = arg min
θ

N∑

t=1

L(rt , g(xt |θ))

L() is the loss function that measures how far the prediction g(xt |θ) is from the desired
value rt . The complexity of this optimization problem depends on the particular g()

and L(). Different learning algorithms in the machine learning literature differ either
in the model they use, the loss function they employ, or the how the optimization
problem is solved.

This step above optimizes the parameters given a model. Each model has an
inductive bias that is, it comes with a set of assumptions about the data and the
model is accurate if its assumptions match the characteristics of the data. This
implies that we also need a process of model selection where we optimize the model
structure. This model structure depends on dimensions such as (i) the learning
algorithm, (ii) the hyper-parameters of the model (that define model complexity),
and (iii) the input features and representation, or modality. Each model corresponds
to one particular combination of these dimensions.

An ensemble is a set of models and we want the models in the set to differ in their
predictions so that they make different errors. If we consider the space defined by
the three dimensions that define a model as we defined above, the idea is to sample
smartly from that space of learners. We want the individual models to be as accurate
as possible individually, and at the same time, we want them to complement each
other. How these two criteria affect the accuracy of the ensemble depends on the way
we do the combination.
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Glossary (continued)

From another perspective, we can view each particular model as one noisy estimate to
the real (unknown) underlying problem. For example, in a classification task, each
base classifier, depending on its model, hyper-parameters, and input features, learns
one noisy estimator to the real discriminant. In such a perspective, the ensemble
approach corresponds to constructing a final estimator from these noisy estimators—
for example, voting corresponds to averaging them.

When the different models use inputs in different modalities, there are three
ways in which the predictions of models can be combined, namely, early, late, and
intermediate combination/integration/fusion.

In early combination, the inputs from all the different modalities are concatenated and
fed to a single model. In late combination, for each modality there is a separate model
that makes a prediction based on its modality, and these model predictions are later
fused by a combining model.

In intermediate combination, each modality is first processed to get a more abstract
representation and then all such representations from different modalities are fed
together to a single model. This processing can be in the form of a kernel function,
which is a measure of similarity, and such an approach is called multiple kernel
learning. Or the intermediate processing may be done by one or more layers of a
neural network, and such an approach corresponds to a deep neural network.

The level of combination depends on the level we expect to see a dependency be-
tween the inputs in different modalities. Early combination assumes a dependency at
the lowest level of input features; intermediate combination assumes a dependency
at a more abstract or semantic level that is extracted after some processing of the raw
input; late combination assumes no dependency in the input but only at the level of
decisions.

the number of nearest neighbors taken into account, and so on. Using multi-
ple copies of the same model but with different hyper-parameter values—for
example, combining three multi-layer perceptrons one with 20, one with 30,
and one with 40 hidden units, again corresponds to averaging over this factor
of the hyper-parameter.

. Another approach to generate learners that differ in their decisions is by
training them on different training data. This can be done by sampling from
the same training set and in bagging [Breiman 1996] we use bootstrap which
is sampling at random with replacement; in adaboost [Freund and Schapire
1996], sampling is done sequentially and is driven by error where the next
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learner is trained on instances misclassified by the one before. In the mixture
of experts model [Jacobs et al. 1991], there is a gating network that divides
the input space into regions and each learner (expert) is trained only with
the data falling in its region of expertise.

. Yet another approach is to train different models on different random feature
subsets [Ho 1998]. In the random forest, for example, each decision tree sees
only a random subset of the original set of features—the different subsets
can overlap. Different learners see slightly different versions of the same
problem; some of the features may be noisy and some may be redundant,
and combining over multiple learners averages out the effect of this factor
of the feature set.

. But the most promising approach, and it is the topic of this chapter, seems to
be training the different learners/models using data coming from different
modalities. Such data from different sensor sources provide different repre-
sentations of the same object or event to be classified, and hence can carry
information that has the highest chance of being diverse or complementary.
In machine learning literature, this is also known as multi-modal, multi-view,
multi-representation, or multi-source learning.

The earliest example is in speech recognition, where the first modality
is the acoustic signal captured by a microphone and the second modality
is the visual image of the speaker’s lips as they speak. Two utterances of
the same word may differ a lot in terms of the acoustics (e.g., when the
speaker is a man or a woman), but we expect their lips to move similarly;
so accuracy can be improved by taking this second visual modality into
account as well. Incorporating this new type of sensor, here a camera for
visual input, provides a completely new source of information, and this is the
power of multimodality—adding the visual source to acoustics can improve
the accuracy much more than what we would get if we combined multiple
learners all looking at slightly different versions of the same acoustic data;
see Chapter 1 of this volume [Baltrusaitis et al. 2018] for various examples of
multimodal settings.

When there are multiple modalities, the immediate approach would be
to concatenate features of different modalities to form one long vector and
use a single learner to classify it (early integration) but, as we will see shortly,
feeding different modalities to different learners (late integration) or feeding
them to a single learner after some preprocessing (intermediate integration)
may work better.
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When it comes to the second question of how to combine/integrate/fuse the pre-
dictions of multiple learners, again, there are different possibilities.

. The most intuitive, and the most frequently used approach is voting: Each
learner looking at its input votes for one class, we sum up the votes for all
classes and choose the class that receives the highest vote. In the simplest
case, the votes are binary 0/1: a classifier votes 1 for the class that it believes
is most likely, and majority voting chooses the class that gets the highest
number of votes.

Let us say gij(x) ∈ {0, 1} is the output of model i = 1, . . . , m for class
j = 1, . . . , k: gij [x) is 1 if model i votes for class j and is 0 otherwise. The
total vote for class j is

yj =
m∑

i=1

gij(x) (2.1)

and we choose class l if

yl = k
max
j=1

yj (2.2)

This is known as majority voting.
Certain classifiers can generate outputs that indicate their belief in

classes; for example, some classifiers estimate class posterior probabilities,
and in such a case, a classifier gives soft votes (e.g., in [0, 1]) for all classes, in-
dicating the strength of the vote. Frequently, these soft votes are nonnegative
and sum up to 1 (as we have with posterior probabilities) or are normalized
to be so before any combination. In such a case, using Equations (2.1) and
(2.2) implies the sum rule where we choose the class that gets the maximum
total soft vote:

l = arg max
j

∑

i

gij (x). (2.3)

This is the most straightforward rule for combination and an equivalent is
the average rule where we choose the class that gets the highest average vote.
Other possibilities are the median, minimum, maximum, and product rules
each of which has its use in particular circumstances [Kittler et al. 1998]. For
example, the median rule

l = arg max
j

median
i

gij (x) (2.4)
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makes more sense than the average rule when we have a large number of
possibly unreliable voters whose votes may be noisy outliers.

Regardless of whether the votes themselves are binary or continuous, one
can use simple or weighted voting:

l = arg max
j

∑

i

wigij (x). (2.5)

In the simplest case when we have no a priori reason to favor one learner
over another, we use simple voting where all learners have the same weight:
wi = 1/m. We use weighted voting when for some reason or another “some
are more equal than others.” For example, one learner may have higher
accuracy on a left-out validation set and hence we may want to give it more
weight. In this case, with the sum rule, we calculate the weighted sum and
then choose the class with the maximum total weighted vote. We generally
require these weights to be non-negative and sum up to 1: wi ≥ 0,

∑
i wi = 1.

We can also interpret weighted voting from a Bayesian perspective. We
can write:

P(Cj |x) =
m∑

i=1

P(Mi)P (Cj |Mi , x). (2.6)

Here, P(Cj |Mi , x) is the estimate of the posterior probability for class
Cj by model Mi given input x. We cannot integrate over the whole space of
possible models, so we sample m likely models and take the average of their
predictions weighted by the model probabilities P(Mi).

. In stacking, this task of combination is viewed as another learning task
[Wolpert 1992]. The learners to be combined are named the L0 learners and
we have the L1 learner whose task is to predict the correct class given the
predictions of L0 learners as its input:

yj = f (g1j (x), . . . , gmj(x)|ψ). (2.7)

Here, gij(x) are the L0 base learners and f () denotes the combining L1

learner with its own parameters ψ . Note that L1 does not see the original
input x, it only learns to correctly combine the predictions of L0 learners.
Typically, L0 learners and the L1 learner are trained on different data sets
because L1 needs to learn when, and how, L0 learners succeed or fail in
predicting the correct class.
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When L1 is a linear model, stacking works just like weighted voting except
that weights are learned; they need not be positive nor sum up to 1 (although
we can constrain them to do so if we want). But the nice property of stacking
is that L1 can be any model—for example, L1 can be a multi-layer perceptron
or a decision tree—thereby allowing a nonlinear combination of learner
outputs implying a much more powerful combination than voting.

. The mixture of experts, which we mentioned above, can also be seen as a
variant of weighted voting where the weight of a learner is dynamic. There is
a gating model that also sees the input and its output are the combination
weights—the gating model works like a probabilistic classifier and its task
is to assign the input to the expert that it believes is the right model to make
decision for it [Jacobs et al. 1991]. Learners are given different weights by the
gating model depending on the input; a learner is given the highest weight
in its region of expertise.

We generalize Equation (2.5) as

l = arg max
j

∑

i

wi(x)gij (x), (2.8)

where wi(x), i = 1, . . . , m are the outputs of the gating model calculated for
input x.

In the hierarchical mixture of experts, this partitioning of the input space
among experts is done hierarchically [Jordan and Jacobs 1994]. One can view
this as a soft tree where gating models act as decision nodes and experts
are the leaves, so the final output is again calculated as a weighted sum but
propagated from the leaves to the root level by level.

. Cascading differs from the approaches above in the sense that the learners
do not work in parallel but in series [Alpaydın and Kaynak 1998, Kaynak
and Alpaydın 2000]. They are ordered and the input is first given to the first
classifier, it makes a prediction for a class, and if it is confident in its output
(e.g., if the highest posterior is greater than a certain threshold) we use that
output, otherwise the input is fed to the second classifier, which in turn
makes a prediction and we check if it is confident, and so on. The classifiers
are ordered in terms of complexity so stopping early decreases the overall
complexity. In a multimodal setting, the classifiers may be ordered according
to the cost of sensing these different modalities, so we do not pay for a costly
modality if the earlier cheaper ones suffice for confident classification.
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l =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

arg maxj gij (x) if g1(x) is confident

arg maxj g2j (x) if g2(x) is confident
...
arg maxj gmj(x) otherwise

(2.9)

These approaches for model combination, namely voting, stacking, and so on,
are typically used for combining learners that use different algorithms, hyper-
parameters, and/or training data. In the rest of this chapter, we will discuss how
these model combination approaches are applied when we have multimodal data.

2.3 Early, Late, and Intermediate Integration
Let us say we have input from different modalities and we want to make a decision
using information coming from all the modalities. We denote the input in modality
i as the d(i) dimensional vector x(i) where i = 1, . . . , m and m is the number of
modalities. Here, we assume that each x(i) is available at once; there are also
integration approaches where inputs are sequences; see Chapter 3 of this volume
[Panagakis et al. 2018].

The most straightforward approach is early integration where we concatenate
all these vectors to form a single x = (x(1), x(2), . . . , x(m)) which is a d = ∑m

i=1 d(i)

dimensional vector. We train a single classifier with this concatenated x (see Fig-
ure 2.1(a)):

y = g(x(1), x(2), . . . , x(m)|θ). (2.10)

Here, y is the output and g() is the model defined up to a set of parameters θ .
The advantages are that we train and use a single learner, and after concatenation
we can use any learning algorithm to learn the classifier.

But there are also two risks here. First, the concatenated input dimensionality
may be very high and this causes two type of problems. (i) With more inputs, the
classifier becomes more complex, in terms of space (more memory) and time (more
computation), and hence higher input dimensionality implies higher implemen-
tation costs. (ii) Because the model gets more complex with more parameters, we
also need more training data, otherwise there is a higher risk of overfitting; this is
called the curse of dimensionality.

The second and more important risk associated with early integration is that
these features from different modalities come from different sources, their units
and scales are different; they are like apples and oranges. Hence the joint space
define by their concatenation can be a very strange space and the class distributions
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(a)

x(1) x(1) x(m)

(b)

x(1) x(1) x(m)

(c)

x(1) x(1) x(m)

Figure 2.1 (a) Early, (b) late, and (c) intermediate (deep) integration drawn as multi-layer networks.
Squares are inputs in different modalities (each of which may be a vector), ovals are
extracted (hidden) features and shaded rectangles are predicted outputs. Each oval can
be one or more hidden layers.

in there can be very difficult to model. For example, consider a scenario where we
have image and speech; in such a case, some of the dimensions are pixels and some
are frequency coefficients; using dot product or Euclidean distance to compare
their concatenations does not make much sense.

Early integration may also lead to a problem of alignment—when we have a
sequence of observations in each modality, it may be tricky to know which ones
should be used together; see Chapter 3 of this volume [Baltrusaitis et al. 2018].

One clear application of early integration is when if for each modality we have
a representation with very few features that provide only limited information. For
example, when we are doing credit scoring, we have age, gender, profession, salary,
and so on; those are actually different modalities, but each by itself is not sufficient
to make a prediction with, so we concatenate them and consider the whole as
a four-dimensional vector. Concatenating and feeding them together may also
allow finding correlations between them—typically age and salary are positively
correlated.

But if for each modality, we have a representation that is long and detailed
enough, giving us enough information for prediction and we do not expect to see
much correlation between features of different modalities, we prefer to use late
integration where we have a separate learner for each modality that is trained with
the input in its corresponding representation. For example, for user authentication,
given the face image and speech, we have one classifier that looks at the image to
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make a decision and another that looks at the speech to make a decision and the
outputs of both classifiers are in the same scale and mean the same, e.g., both may
be class posteriors, and hence fusing them makes sense.

Given a test instance in m modalities, each learner, independently and in par-
allel, makes its prediction using its own modality and then we combine their deci-
sions (see Figure 2.1(b)):

y = f
(
g1(x

(1)|θ1), g2(x
(2)|θ2), . . . , gm(x(m)|θm) | ψ

)
, (2.11)

where gi(x
(i)|θi) is model i with its parameter θi taking input in modality i. As the

combining model f (), one can use any of the combining methods discussed before,
i.e., voting, stacking, mixture of experts, or cascading, and ψ are the parameters,
e.g., weights in voting, the parameters of the L1 model in stacking, and so on, also
trained on some data.

In combining such separately trained models, in practice, we see that no matter
how much we play with the learning algorithms, hyper-parameters, or any other fac-
tor that affects the trained model, classifiers turn out to be positively correlated—
they tend to make similar decisions. Depending on how the modalities are defined,
such a correlation may also occur when we have multimodal combination. This has
two consequences. First, if we have two models that are highly correlated, we do not
need both; we can just keep one and discard the other. The second consequence is
that when we have correlated models, having more models actually decreases accu-
racy; a larger ensemble is more accurate only if the voting models are independent.
Both of these consequences indicate the need for post-processing an ensemble to
reduce correlations.

One approach is subset selection [Ulaş et al. 2009]: If we have m models, we
want to choose a smaller subset of size k < m without losing from accuracy. The
algorithms proposed for this are basically the same as the ones we use for feature
extraction: if m is small, we can do an exhaustive search of all possible subsets,
otherwise we perform a greedy search with hill-climbing where we start with the
empty set and we add one learner at a time, adding the one that increases the
accuracy the most, until no further addition improves accuracy any further. We can
also do a backward search where we start with all models and remove one at a time
until one more removal drastically worsens performance, or we can do a floating
search that allows both additions and removals. When we use a subset instead of
all, we save the space/time complexity of the pruned learners and in case where
they use inputs from different modalities with associated costs, we also save the
cost of sensing the modalities that turn out to be unnecessary.
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The other approach is to post-process outputs to remove correlations. This is
reminiscent of feature extraction algorithms, such as principal components analy-
sis, where we define new features in terms of the original features, e.g., by linear
projection. Indeed, in the approach of eigenclassifiers, we define new features tak-
ing into account the correlations between classifiers [Ulaş et al. 2012].

Easy integration combines at the lowest level of input features and late integra-
tion combines at the highest level of output predictions. Intermediate integration,
as its name suggests, is between these two extremes of early and late integration.
First, for each modality, there is some processing done to convert the raw input to
some more abstract representation and then these are fed together to a classifier.
That is, there is a single learner but it is trained with some abstract version of the
input from each modality (see Figure 2.1(c)):

y = g(z(1), z(2), . . . , z(m)|θ), (2.12)

where z(i) is a processed version of x(i). We discuss below two variants, one using
multiple kernels and the other one using deep neural networks.

2.4 Multiple Kernel Learning
In a kernel machine, such as the support vector machine, we write the class dis-
criminant in terms of kernel functions [Cortes and Vapnik 1995]. A kernel function
is a measure of similarity between two vectors, one of which is the input and the
other is a training instance (on or inside the margin, or on the wrong side of the
discriminant), named a support vector in the support vector machine algorithm.
The kernel function implicitly defines a basis space that these vectors are mapped
to and are compared in: K(x , y) = φ(x)T φ(y). That is, K() returns a value which is
equal to the dot product of the images of the two vectors in the space of the basis
function φ(.). Every valid kernel corresponds to a different basis space.

In kernel machines, the most critical model selection problem is the choice
of the appropriate kernel. The good kernel calculates a good similarity measure
between instances so that, for example in classification, the similarity between
two instances of the same class is larger than the similarity between instances of
different classes. In the typical case where instances are represented as vectors,
kernels typically use the dot product or its variants, such as the polynomial kernel,
or the Euclidean distance or its variants, such as the Gaussian kernel.

But one of the attractive properties of the kernel approach is that we do not need
to have our inputs represented vectorially. We can define kernels starting directly
with similarities. That is, if we have some application-specific similarity measure
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that we can apply to pairs of instances, we can define a kernel in terms of it. So if
we have some complex data structure such as a graph or a document, we do not
need to worry about how to represent it in terms of a vector, as long as we can
come up with some similarity measure to compare two graphs or documents. For
documents, for example, the need for a vectorial representation led to the bag of
words representation which has various disadvantages; it may be easier to directly
define a function to compare two documents for similarity. This advantage also
holds for the multimodality case: it may be easier to define a similarity measure for
a modality instead of generating a vectorial representation and then using a kernel
in terms of such vectors.

The analog of multiple learners in kernel machines is multiple kernels: just
like we have different learning algorithms to choose from, in kernel machines we
have different kernels available. Typically, we do not know beforehand which one
is the most suitable and the typical approach is to try different kernel functions
and choose the best (e.g., by checking accuracy on a left-out validation data set),
treating kernel selection as a model selection problem. The other possibility is to
combine those kernels; this is called multiple kernel learning [Gönen and Alpaydın
2011]. The idea is that each kernel is a different measure of similarity and we use
a set of candidate measures and write the discriminant as a combination of such
similarities, again averaging out the effect of this factor.

This multiple kernel learning framework can easily be applied to the multi-
modal setting where we have one kernel for each modality. The simplest and most
frequently used approach is a linear combination:

K(x , y) =
m∑

i=1

wiKi(x
(i), y(i)), (2.13)

where x(i), y(i) are the representations of two instances x , y in modality i and
Ki(x

(i), y(i)) is the kernel measuring their similarity by kernel i according to that
modality.

The weights wi , i = 1, . . . , m are trained on labelled data [Lanckriet et al. 2004,
Sonnenburg et al. 2006]. Frequently, they are constrained to be nonnegative, and
sometimes also to sum to 1. This helps interpretation—a higher wi implies a more
important kernel and hence a more important modality. If the kernel weights are
nonnegative, such a combination corresponds to scaling and concatenation of the
underlying feature representations φi(x)—this implies a combination similar to
early integration but in the space of the basis functions.
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Various variants of the multiple kernel learning framework have been proposed
(Gönen and Alpaydın [2011] is a survey), including also nonlinear combinations.
One variant is local combination where wi are not constant but are a function of the
input, effectively working as a gating model choosing between kernels depending
on the input [Gönen and Alpaydın 2008]; such an approach can also be viewed as
the kernelized version of the mixture of experts.

2.5 Multimodal Deep Learning
Recently, deep neural networks have become highly popular in a variety of applica-
tions. A neural network is composed of layers of processing units where each unit
takes input from units in the preceding layer through weighted connections. The
unit then calculates its value after this weighted sum is passed through a nonlinear
activation function. Given an input, the processing proceeds as the units calculate
their values layer by layer until we get to the final output layer.

The network structure, i.e., the number of layers, the number of units in each
layer, and the way the units are interconnected, define the model and the weights
of the connections between the units are the parameters. Given a training set
of pairs of input and the desired output, the weights are updated iteratively to
make the actual outputs in the output layer as close as possible to the desired
outputs.

If there is no a priori information, layers are fully connected among them.
In applications where the input has locality, connectivity is restricted to reflect
dependencies; for example, in vision applications, the input is a two-dimensional
image and in a convolutional layer, a hidden unit sees only a small local patch of
the inputs. With data where there is temporal dependency, a recurrent connection
allows a hidden unit to take into account not only the current input but also its value
in the previous time step. In certain network structures, there are gating units, as
we have in the mixture of experts, that allow or not the value of a unit to propagate
through. A judicious use of all these type of units and connectivity makes neural
networks quite powerful in a variety of applications.

The idea in a neural network is that each hidden layer after the input layer
learns to be a feature detector by responding to a certain combination of values
in its preceding layer, and when we have a network with many such layers, i.e.,
in a deep neural network, successive layers learn feature detectors of increasing
abstraction. A deep learning model in its many layers extract increasingly higher-
level and abstract set of features and this allows a better representation of the task
and hence improves accuracy [Bengio 2009, Goodfellow et al. 2016].
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The most important advantage of neural networks is that such a model makes
very simple assumptions about the data and because it is a universal approximator,
it can learn any mapping. The disadvantage is that because the model is general, we
need large amount of data to constrain it and make sure that it learns the correct
task and generalizes well to data outside of the training set.

Another advantage of neural networks is that calculations are local in hidden
units and parallel architectures such as GPUs can be efficiently programmed to
handle the computation in a neural network with significant speed-up.

We can view each hidden layer of neural network as learning a kernel and when
we have many such hidden layers in a deep network, it is as if we are learning in-
creasingly abstract kernels calculated in terms of simpler kernels. The advantage is
that the kernels are not defined a priori but are learned from data; the disadvantage
is that the optimization problem is non-convex and we need to resort to stochastic
gradient-descent with all its concomitant problems.

In learning the weights of the feature-detecting hidden units, the earlier ap-
proach was to use the autoencoder model [Cottrell et al. 1987] where the output
is set to be equal to the input and the hidden layer in between has fewer hidden
units. The hidden layer hence acts as a bottleneck and learns a compressed and ab-
stract representation with minimum reconstruction error. The autoencoder model
can also be trained to be robust to missing inputs [Vincent et al. 2008]. Roughly
speaking, we can view the hidden representation learned in the autoencoder as the
φi(.) basis of kernel Ki() in kernel machines. We can then stack such autoencoders
to generate a deep neural network with multiple hidden layers. The autoencoder
model has the advantages that first, it can be trained with unlabeled data, and,
second, learning is fast because we train one layer at a time.

Deep architectures have also been used to combine multiple modalities. The
idea is to first train separate autoencoders for each modality and then learn to com-
bine them across modalities by training a supervised layer on top (see Figure 2.1(c)).
This is an example of intermediate combination defined in Equation (2.12) where
the earlier modality-specific layers learn to generate the z(i) which are then fused
in the later layer(s) (denoted by g() with its weights ψ).

Nowadays with large labeled data sets and processing power available, end-to-
end deep neural networks are trained directly in a supervised manner, bypassing
the training of autoencoders altogether. Because the whole training is supervised
and all the parameters are trained together, we can achieve higher accuracy, but
the disadvantage is that training multiple layers using stochastic gradient-descent
is slow and one needs to use regularization methods such as dropout to make sure
that the large network does not overfit.
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If we use early combination and just concatenate features from different modali-
ties and feed them to a single network, feature-extracting (hidden) units have strong
connections to a single modality with few units connecting across modalities; it is
not possible to correlate basic features from one modality with basic features of
another modality. But if both are separately processed using separate hidden units
(trained either as an autoencoder or end-to-end) to get a higher-level and more ab-
stract representation, these extracted features can be combined to learn a shared
representation and a classifier that uses such a cross-modality representation has
higher accuracy. This has been shown to be true in combining audio and lip image
features for speech recognition [Ngiam et al. 2011].

A similar approach and result also holds for image retrieval where in addition to
image data, there are also text tags [Srivastava and Salakhutdinov 2012, Srivastava
and Salakhutdinov 2014]. For each modality, there is a separate deep network
whose hidden units learn the abstract features that are modality specific; then the
two such abstract representations can be combined in a set of features and we can
for example use such a network to map one modality into another, so that, for
example, given an input image, the network can generate a set of candidate tags,
or given a set of tags, the network can find the best matching image.

In training the shared features that we mention above, that combine raw fea-
tures from different modalities, different unsupervised criteria can also be used.
Additional to minimization of the reconstruction error, one can also use variation
of information [Sohn et al. 2014] or canonical correlation analysis [Andrew et al.
2013, Wang et al. 2015].

Multimodal deep networks can also be trained to combine similarities. Separate
autoencoders learn modality-specific representations and instead of using them as
vectors, a similarity measure is applied to each and their weighted sum is calculated
to get an overall similarity [Wu et al. 2013]. This approach is very similar to multiple
kernel learning where we take a weighted sum of kernels (which are also measures
of similarity); see also McFee and Lanckriet [2011]. See Keren et al. [2018] for
an extensive survey of deep learning methods for multi-sensorial and multimodal
interaction.

2.6 Conclusions and Future Work
Combining multiple models to improve accuracy is an approach frequently used
in pattern recognition and machine learning. Mostly it is used to average out the
effect of factors such as the learning algorithm, hyper-parameters, or randomness
in the data or in initialization. Combining multiple modalities promises to bring
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significant improvement in accuracy because data from different modalities have
the highest chance of providing complementary information about the object or
event to be classified.

To combine multiple modalities, there are different possibilities that we have
outlined above, and the right one, that is, the level where combination is to be done,
depends on the level of abstraction where correlation is expected to occur between
the different modalities.

If features in different modalities are correlated at the feature level, one can use
early combination by just concatenating all the modalities and feeding it to a single
classifier. This is the easiest and fastest approach and works well if its assumptions
hold and if there are not many features in total.

But if the data in different modalities are correlated at a more abstract semantic
level, one can use intermediate integration. For example, if we have an image and
a set of tags, no individual image pixel is correlated with any tag, but the existence
of a lot of blue patches in the upper half of the image may be correlated with the
tag “sky.” To find such an abstract representation in each modality, one can use
modality-specific hidden layers to extract it from data. By suitably combining and
stacking such representations, a deep neural network can be trained. In some ap-
plications, we may know a good measure of similarity in advance for each modality
which we can write down as a kernel, and a smart combination of kernels is another
way to combine modalities. One big advantage of kernels is that one can define a
similarity between instances without necessarily generating a vectorial representa-
tion and using a vectorial kernel.

Late combination is used when there is no correlation at any level in the input,
neither at the lowest level of input features nor after any amount of feature extrac-
tion. For example, in biometrics, if we have face image and fingerprint image, there
is no correlation between the pixels of the two images, nor can we extract any cor-
relation between any higher-level features extracted separately from these images.
The only correlation is at the level of labels—whether they belong to the same per-
son or not. In such a case, we can only do late integration where we classify the two
images separately and combine their decisions.

The take away message of this chapter should be that in building classifiers that
combine modalities, there is no single best method and one needs to think about
the level where correlation is expected to occur and choose a combiner accordingly.

Multimodal classification and learning is a relatively recent idea but we expect
to see it applied more in the future with a wider availability of divers sensors
in many modalities. Mobile devices, smart objects, and wearable sensors detect
and record data in different modalities [Neff and Nafus 2016]. Each such device
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or sensor provides a partial clue from a different modality, but combining them
higher precision may be attained. With advances in digital technology and all
types of smart online objects with their sensors—the Internet of Things [Greengard
2015]—appearing in the market, multimodal combination will only become more
important in the future.
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Number 14A01P4.

Focus Questions
2.1. Consider the level of dependency between modalities in example applications,
and for each, which combination—early, intermediate, or late is appropriate.

2.2. Consider the average of identically distributed gi:

y =
m∑

i=1

gi/m.

Show that (a) the variance of y is minimized when gi are independent, and (b)
the variance of y increases when gi are positively correlated.

2.3. In some studies on multimodal deep learning, researchers split each digit
image into two, as left or right halves, or top and bottom halves, and process them
as if they are two different modalities. Discuss the suitability of this approach for
testing intermediate integration.

2.4. A kernel machine uses fixed kernels but defines a convex problem, which we
can solve optimally. A multi-layer perceptron is trained using stochastic gradient-
descent that converges to the nearest local minimum but its hidden units can
be trained. Discuss the pros and cons of the two in the context of multimodal
classification.

2.5. Some researchers have proposed methods for learning good kernel functions
from data. Discuss how such a method can be used in multiple kernel learning in
the context of multimodal classification.

2.6. In a multimodal deep learner, some layers learn features that are specific to a
modality, and some learn features across modalities. How can we decide how many
layers to have for each in a deep neural network?
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2.7. In training a deep neural network with many hidden layers, the earlier ap-
proach was to train autoencoders one layer at a time and then stack them; nowa-
days, however researchers prefer to train the whole network end-to-end. Discuss
the advantage and disadvantages of the two approaches.

2.8. In this chapter, we discussed methods for multimodal classification. Discuss
how these can be adapted for multimodal regression and multimodal clustering.
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