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Dietterich (1998) reviews five statistical tests and proposes the 5 × 2 cv t
test for determining whether there is a significant difference between the
error rates of two classifiers. In our experiments, we noticed that the 5× 2
cv t test result may vary depending on factors that should not affect the
test, and we propose a variant, the combined 5×2 cv F test, that combines
multiple statistics to get a more robust test. Simulation results show that
this combined version of the test has lower type I error and higher power
than 5× 2 cv proper.

1 Introduction

Given two learning algorithms and a training set, we want to test if the
two algorithms construct classifiers that have the same error rate on a test
example. The way we proceed is as follows: Given a labeled sample, we
divide it into a training set and a test set (or many such pairs), train the
two algorithms on the training set, and test them on the test set. We define a
statistic computed from the errors of the two classifiers on the test set, which
if our assumption that they do have the same error rate (the null hypothesis)
holds, obeys a certain distribution. We then check the probability that the
statistic we compute actually has a high enough probability of being drawn
from that distribution. If so, we accept the hypothesis; otherwise we reject it
and say that the two algorithms generate classifiers of different error rates.
If we reject when no difference exists, we incur a type I error. If we accept
when a difference exists, we incur a type II error. 1 − Pr{Type II error} is
called the power of the test and is the probability of detecting a difference
when a difference exists.

Dietterich (1998) analyzes in detail five statistical tests and concludes that
two of them, McNemar’s test and a new test, the 5 × 2 cv t test, have low
type I error and reasonable power. He proposes to use McNemar’s test if,
due to high computational cost, the algorithms can be executed only once.
For algorithms that can be executed 10 times, he proposes to use the 5 × 2
cv t test.
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2 5× 2 cv Test

In the 5× 2 cv t test, proposed by Dietterich (1998), we perform five replica-
tions of twofold cross-validation. In each replication, the data set is divided
into two equal-sized sets. p(j)i is the difference between the error rates of
the two classifiers on fold j = 1, 2 of replication i = 1, . . . , 5. The aver-
age on replication i is pi = (p(1)i + p(2)i )/2, and the estimated variance is
s2

i = (p(1)i − pi)
2 + (p(2)i − pi)

2.

Under the null hypothesis, p(j)i is the difference of two identically dis-
tributed proportions and, ignoring the fact that these proportions are not
independent, p(j)i can be treated as approximately normal distributed with
zero mean and unknown variance σ 2 (Dietterich, 1998). Then p(j)i /σ is ap-
proximately unit normal. If we assume p(1)i and p(2)i are independent normals
(which is not strictly true because their training and test sets are not drawn
independently of each other), then s2

i /σ
2 has a chi-square distribution with

one degree of freedom. If each of the s2
i is assumed to be independent (which

is not true because they are all computed from the same set of available data),
then

M =
∑5

i=1 s2
i

σ 2

has a chi-square distribution with 5 degrees of freedom. If Z ∼ Z and
X ∼ X 2

n and Z and X are independent, then

Tn = Z√
X/n

has a t-distribution with n degrees of freedom. Therefore, ignoring the var-
ious assumptions and approximations described above,

t = p(1)1√
M/5

= p(1)1√∑5
i=1 s2

i /5
(2.1)

is approximately t-distributed with 5 degrees of freedom (Dietterich, 1998).
We reject the hypothesis that the two classifiers have the same error rate
with 95 percent confidence if t is greater than 2.571.

We note that the numerator p(1)1 is arbitrary; actually there are 10 different

values that can be placed in the numerator—p(j)i , j = 1, 2, i = 1, . . . , 5—
leading to 10 possible statistics

t(j)i =
p(j)i√∑5
i=1 s2

i /5
. (2.2)

Changing the numerator corresponds to changing the order of replica-
tions or folds and should not affect the result of the test. A first experiment
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Table 1: Comparison of the 5× 2 cv t Test with Its Combined Version.

LP vs. MLP

5× 2 cv t(j)i Combined
Rejects 5× 2 cv F

Out of 10 Rejects

GLASS 0 No
WINE 0 No
IRIS 2 No
THYROID 2 No
VOWEL 2 No
ODR 8 Yes
DIGIT 7 Yes
PEN 10 Yes

Notes: LP is a linear perceptron, and MLP
is a multilayer perceptron with one hidden
layer. Just changing the order of folds or
replications (using a different numerator),
the 5 × 2 cv t test sometimes give differ-
ent results, whereas the combined version
takes into account all 10 statistics and aver-
ages over this variability.

is done on eight data sets to measure the effect of changing the numerator
where we compare a single-layer perceptron (LP) with a multilayer percep-
tron (MLP) with one hidden layer. ODR and DIGIT are two data sets on
optical handwritten digit recognition, and PEN is a data set on pen-based
handwritten digit recognition. (These three data sets are available from the
author. The other data sets are from the UCI repository; Merz & Murphy,
1998).

As shown in Table 1, depending on which of the 10 numerators we use—
that is, which of the 10 t(j)i , j = 1, 2, i = 1, . . . , 5 we calculate—the test some-
times accepts and sometimes rejects the hypothesis. That is, if we change
the order of folds or replications, we get different test results, a disturbing
result since this order is not a function of the error rates of the algorithms
and clearly should not affect the result of the test.

3 Combined 5× 2 cv F test

A new test that combines the results of the 10 possible statistics promises to

be more robust. If p(j)i /σ ∼ Z , then
(

p(j)i

)2
/σ 2 ∼ X 2

1 and

N =
∑5

i=1
∑2

j=1

(
p(j)i

)2

σ 2
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Table 2: Average and Standard Deviations of Error Rates on Test Folds of a
Linear Perceptron and Multilayer Perceptrons with Different Number of Hidden
Units.

LP MLP MLP MLP

IRIS 3.75, 2.05 3: 3.85, 2.57 10: 3.18, 1.95 20: 2.77, 1.73
WINE 2.84, 1.66 3: 2.86, 2.02 10: 2.57, 1.61 20: 2.63, 1.61
GLASS 38.66, 4.03 5: 37.52, 4.21 10: 35.81, 4.32 20: 35.04, 4.19
VOWEL 38.70, 2.48 5: 36.86, 2.86 10: 27.69, 2.60 20: 22.48, 2.37
ODR 5.31, 1.08 10: 5.14, 1.07 20: 3.16, 0.78
THYROID 4.61, 0.38 10: 4.26, 0.34

Note: The numbers of hidden units are given before the colon.

is chi-square with 10 degrees of freedom. If X1 ∼ X 2
n and X2 ∼ X 2

m and if X1
and X2 are independent, then (Ross, 1987)

X1/n
X2/m

∼ Fn,m.

Therefore, we have

f = N/10
M/5

=
∑5

i=1
∑2

j=1

(
p(j)i

)2

2
∑5

i=1 s2
i

(3.1)

is approximately F distributed with 10 and 5 degrees of freedom, assuming
N and M are independent (which is not true). For example, we reject the
hypothesis that the algorithms have the same error rate with 0.95 confidence
if the statistic f is greater than 4.74. Looking at Table 1, we see that the
combined version combines the 10 statistics and is more robust; it is as if
the combined version “takes a majority vote” over the 10 possible 5 × 2
cv t test results. Note that computing the f statistic brings no additional
cost.

4 Comparing Type I and Type II Errors

On six data sets we trained a one-layer LP and MLPs with different numbers
of hidden units to check for type I and type II errors. The average and
standard deviation of test error rates for LP and MLP are given in Table 2.
The probabilities are computed as proportions of rejects over 1000 runs.

To compare the type I error of 5×2 cv test with its combined version, we
use two MLPs with equal numbers of hidden units. Thus the hypothesis is
true, and any reject is a type I error. On six data sets using different numbers
of hidden units, we have designed 15 experiments of 1000 runs each. In each
run, we have a 5 × 2 cv t test result (see equation 2.1) and one combined
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Figure 1: Comparison of type I errors of two tests. All the points are under the
y = x line; the combined test leads to lower type I error. All of these type I errors
should be at 0.05 if the statistical tests were exactly correct instead of being
approximate.

5× 2 cv F result (see equation 3.1). As shown in Figure 1, the combined test
has a lower probability of rejecting the hypothesis that the classifiers have
the same error rate when the hypothesis is true and thus has lower type I
error. The reject probabilities are given in Table 3.

To compare the type II error of the two tests, we take two classifiers that
are different: an LP and an MLP with hidden units. Again on six data sets
using different numbers of hidden units, we have designed 15 experiments
of 1000 runs each, where in each run, we have a 5× 2 cv t test result and a
combined 5× 2 cv F result. Reject probabilities with the 5× 2 cv t test and
the combined 5× 2 cv F test are given in Table 3.

As shown in Figure 2, the combined test has a lower probability of reject-
ing the hypothesis when the two classifiers have similar error rates (lower
type II error) and a larger probability of rejecting when they are different
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Table 3: Probabilities of Rejecting the Null Hypothesis.

MLP vs. MLP (Type I error) LP vs. MLP (Type II error)

Hidden Combined Combined
Units 5× 2 cv 5× 2 cv 5× 2 cv 5× 2 cv

IRIS 3 0.032 0.009 0.037 0.007
10 0.040 0.008 0.029 0.007
20 0.029 0.016 0.023 0.013

WINE 3 0.037 0.011 0.033 0.018
10 0.032 0.013 0.031 0.024
20 0.047 0.016 0.033 0.016

GLASS 5 0.034 0.021 0.025 0.021
10 0.026 0.012 0.063 0.039
20 0.047 0.015 0.070 0.075

VOWEL 5 0.033 0.018 0.050 0.027
10 0.027 0.021 0.722 0.970
20 0.034 0.015 0.962 1.000

ODR 10 0.033 0.019 0.025 0.019
20 0.024 0.019 0.364 0.557

THYROID 10 0.031 0.014 0.041 0.031

Note: When comparing two MLPs with equal number of hidden units, any reject is a
type I error, and when comparing an LP with an MLP, if their accuracies are different,
any reject is lower type II error and implies higher power.

(higher power). The normalized difference in error rate between two clas-
sifiers is computed as

z = elp − emlp

smlp

where emlp, smlp are the average and standard deviation of error rate of the
MLP over the test folds. Note that z is an approximate measure for what we
are trying to test: whether the two classifiers have different error rates.

A small difference in error rate implies that the different algorithms con-
struct two similar classifiers with similar error rates; thus the hypothesis
should not be rejected. For a large difference, the classifiers have different
error rates, and the hypothesis should be rejected.

Dietterich (personal communication) has tested the 5 × 2 cv F test on
three tasks from Dietterich (1998): worst-case, EXP6, and letter recognition.
He has also found that the 5× 2 cv F test has lower type I error and better
power than the 5× 2 cv t test.

5 Conclusions

This article has introduced the 5 × 2 cv F test, which averages over the
variability due to replication and fold order that cause problems for the
5 × 2 cv t test. The simulations have shown that the combined 5 × 2 cv F
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Figure 2: Comparison of type II errors of two tests. (a) zooms the lower left
corner of (b) for small z, the normalized distance between the error rates of
the two classifiers. The combined test has a lower probability of rejecting the
hypothesis when the two classifiers have similar error rates and larger when
they are different.

test has a lower risk of type I error and higher power than the 5× 2 cv t test.
Furthermore, the 5×2 cv F test can be computed from the same information
as the 5× 2 cv t test, so it adds no computational cost.
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