
Bagging Soft Decision Trees

Olcay Taner Yıldız1(B), Ozan İrsoy2, and Ethem Alpaydın3

1 Department of Computer Engineering, Işık University, Şile, 34398 İstanbul, Turkey
olcaytaner@isikun.edu.tr

2 Department of Computer Science, Cornell University, Ithaca, NY 14853-7501, USA
oirsoy@cs.cornell.edu

3 Department of Computer Engineering, Boğaziçi University,
Bebek, 34730 İstanbul, Turkey

alpaydin@boun.edu.tr

Abstract. The decision tree is one of the earliest predictive models in
machine learning. In the soft decision tree, based on the hierarchical
mixture of experts model, internal binary nodes take soft decisions and
choose both children with probabilities given by a sigmoid gating func-
tion. Hence for an input, all the paths to all the leaves are traversed
and all those leaves contribute to the final decision but with different
probabilities, as given by the gating values on the path. Tree induction
is incremental and the tree grows when needed by replacing leaves with
subtrees and the parameters of the newly-added nodes are learned using
gradient-descent. We have previously shown that such soft trees gener-
alize better than hard trees; here, we propose to bag such soft decision
trees for higher accuracy. On 27 two-class classification data sets (ten
of which are from the medical domain), and 26 regression data sets, we
show that the bagged soft trees generalize better than single soft trees
and bagged hard trees. This contribution falls in the scope of research
track 2 listed in the editorial, namely, machine learning algorithms.

Keywords: Decision trees · Regression trees · Regularization · Bagging

1 Introduction

Trees are frequently used in computer science to decrease search complexity from
linear to log time. In machine learning too, decision trees are frequently used
and unlike other non-parametric methods such as the k-nearest neighbor where
an input test pattern needs to be compared with all the training patterns, the
decision tree uses a sequence of tests at internal decision nodes to quickly find
the leaf corresponding to the region of interest. In classification, a leaf carries the
class label and in regression, it carries a constant which is the numeric regression
value [1,2].

In the canonical hard binary decision tree, each decision node applies a test
and depending on the outcome, one of the branches is taken. This process is
repeated recursively starting from the root node until a leaf node is hit at which
point the class label or the numeric regression value stored at the leaf constitutes
c© Springer International Publishing AG 2016
A. Holzinger (Ed.): ML for Health Informatics, LNAI 9605, pp. 25–36, 2016.
DOI: 10.1007/978-3-319-50478-0 2



26 O.T. Yıldız et al.

the output. In the hard decision tree, therefore, a single path from the root to
one of the leaves is traversed and the output is given by the value stored in that
particular leaf.

There are different decision tree architectures depending on the way deci-
sion is made at a node: The most typical is the univariate tree where the
test uses a single input attribute and compares it against a threshold value
[2]. In the multivariate linear tree, the test defines a linear discriminant in the
d-dimensional space [3,4]. In the multivariate nonlinear tree, the test can use a
nonlinear discriminant—for example, a multilayer perceptron [5]. In the omni-
variate tree, the test can use any of the above, chosen by a statistical model
selection procedure [6].

So from a geometrical point of view, in the d-dimensional input space, each
univariate split defines a boundary that is orthogonal to one of the axes; a
multivariate linear split defines a hyperplane of arbitrary orientation, and a
multivariate nonlinear split can define a nonlinear boundary.

In the hierarchical mixture of experts, Jordan and Jacobs [7] replace each
expert with a complete system of mixture of experts in a recursive manner.
Though it can also be viewed as an ensemble method, this architecture defines
a soft decision tree where gating networks act as decision nodes. The soft gating
function in a binary decision node chooses both children, but with probabilities
(that sum up to 1). Hence, the node merges the decision of its left and right
subtrees unlike a hard decision node that chooses one of them.

This implies that in a soft tree for a test input, we are traversing all the
paths to all the leaves and all those leaves contribute to the final decision, but
with different probabilities, as specified by the gating values on each path. In our
proposed extension [8], the tree structure is not fixed but is trained incrementally
one subtree at a time, where the parameters of the node and the leaf values are
learned using gradient-descent.

Because the soft decision tree is multivariate and uses all input attributes in
all nodes, it may have high variance on small data sets. As a variance reduction
procedure, in this paper, we use bagging [9] which has been used successfully
to combine hard decision trees in many applications; in our case of soft decision
trees too, the use of bagging corresponds to averaging over soft trees trained
with different data splits and initial parameter values in gradient-descent, and
hence leads to a more robust estimate.

This paper is organized as follows: In Sect. 3, we review the soft decision
tree model and its training algorithm. We discuss bagging soft decision trees in
Sect. 4. We give our experimental results in Sect. 5 and conclude in Sect. 6.

Our work on extensions of decision trees falls in the scope of research track
2 of the editorial, namely machine learning algorithms.

2 Glossary and Key Terms

Bagging is an ensemble method where from a single training set, we draw multi-
ple training sets using bootstrapping, with each of these sets we train a different
model, and then combine their predictions, for example, using voting.



Bagging Soft Decision Trees 27

Bootstrapping is a resampling method where we randomly draw from a set with
replacement.

Decision tree is a hierarchical model composed of decision nodes applied to the
input and leaves that contain class labels.

Ensemble contains multiple trained models that are trained separately. In bag-
ging, each of these models is trained on a slightly different data sets and hence
may fail on slightly different cases, so accuracy can be increased by combining
these multiple predictions.

Multivariate model uses all of the input attributes in making a decision whereas
a univariate model uses only one of the input attributes.

Soft decision is different from a hard decision in that if there are m outcomes,
in a hard decision we choose one of the m and ignore the remaining m − 1; in a
soft decision, we choose all m but with different probabilities–these probabilities
sum up to 1.

3 Soft Decision Trees

3.1 The Model

As opposed to the hard decision node which directs instances to one of its chil-
dren depending on the outcome of the test at node m, gm(x), a soft decision
node directs instances to all its children with probabilities calculated by a gating
function gm(x) [7]. Without loss of generalization, let us consider a binary node
where we have left and right children:

Fm(x) = FL
m(x)gm(x) + FR

m(x)(1 − gm(x)) (1)

This is a recursive definition where FL
m(x) for example corresponds to the

value returned by the subtree whose root is the left child of node m. Recursion
ends when the subtree is just a leaf, in which case the value stored in the leaf is
returned.

In the case of a hard tree, the hard decision node returns gm(x) ∈ {0, 1},
whereas in a soft tree, gm(x) ∈ [0, 1], as given by the sigmoid function:

gm(x) =
1

1 + exp[−(wT
mx + wm0)]

(2)

Separating the regions of responsibility of the left and right children can be
seen as two-class classification problem and from that perspective, the gating
model implements a discriminative (logistic linear) model estimating the poste-
rior probability of the left child: P (L|x) ≡ gm(x) and P (R|x) ≡ 1 − gm(x).

In a hard tree, because gm(x) returns 0 or 1, in Eq. (1), the node copies the
value of its left or right child, whereas in a soft tree because gm(x) returns a
value between 0 and 1, the node returns a weighted average of its two children.



28 O.T. Yıldız et al.

This allows a smooth transition at the decision boundary, leads to a smoother fit
and hence better generalization. Because the tree is traversed recursively, Eq. (1)
is defined recursively and as a result, all the paths to all the leaves are traversed
and at the root node, we get a weighted average of all the leaves where the weight
of each leaf is given by the product of the gating values on the path to each leaf.

Incidentally, this model can easily be generalized to m-ary nodes where each
node has m > 2 children, by replacing Eq. (1) with a convex combination of the
values of the m children and the sigmoid of Eq. (2) by the softmax.

3.2 Training

Learning the soft decision tree is incremental and recursive, as with the hard
decision tree [8]. The algorithm starts with one node and fits a leaf. Then, as
long as there is improvement, it replaces the leaf by a subtree of a node and its
two children leaves. This involves optimizing the gating parameters at the node
and the values of its children leaves.

The error function is cross-entropy for classification and square loss for regres-
sion (In classification, the final output should be a probability and that is why
for a two-class task, the final output at root is filtered through a sigmoid):

E =

⎧
⎪⎨

⎪⎩

∑

t

(r(t) − y(t))2 Regression
∑

t

r(t) log y(t) + (1 − r(t)) log(1 − y(t)) Classification
(3)

At each growth step, node m, which was previously a leaf is replaced by a
decision node and its two children leaves. The gating parameters (wm) of the
decision node and the numeric leaf values of the children nodes (zLm, zRm) are set
to small random values initially and are then updated using gradient-descent:

Δwmi = −η
∂E

∂wmi
= η(r − y)[FL

m(x) − FR
m(x)]αmgm(x)(1 − gm(x))xi

ΔzLm = −η
∂E

∂zLm
= η(r − y)αmgm(x)

ΔzRm = −η
∂E

∂zRm
= η(r − y)αm(1 − gm(x))

where η is the learning factor,

αm =
n�=root∏

n=m,p=n.parent

δn,p.leftgp(x) + δn,p.right(1 − gp(x))

and δi,j is the Kronecker delta.
Note that only the three nodes of the last added subtree (current decision node

and the leaf values of its children) are updated and all the other nodes are fixed.
But since soft trees use a soft gating function, all the data points have an effect



Bagging Soft Decision Trees 29

on these parameters, whereas in a hard tree, only those data points that fall in
the partition of the current node have an effect. Any input instance should pass
through all the intermediate decision nodes until it reaches the added node and its
leaves and the error should be discounted by all the gating values along the way
to find the “back-propagated error” for that instance (denoted by α above). This
value is then used to update the gating parameters and the leaf values.

In the hierarchical mixture of experts [7], the tree structure is fixed and
the whole tree is learned using gradient-descent or expectation-maximization,
whereas in our case, the tree is built incrementally, one subtree at a time. One
recent work by Ruta and Li [10] is the fuzzy regression tree which is differ-
ent from our work in several aspects. First, their splits are defined over kernel
responses, hence, are univariate (one-dimensional), whereas our gating functions
are multivariate and defined directly over the input space. Second, they apply an
exhaustive search to learn the parameters (as in the hard univariate tree, which
is possible because the splits use a single dimension) whereas we use gradient-
descent.

For cases where the input dimensionality is high, we have previously proposed
to use L1 and L2-norm regularization where we add a model complexity term
to the usual misfit error of Eq. (3) to get an augmented error [11]:

E′ = E + λ

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d∑

i=0

|wmi| L1-norm

d∑

i=0

w2
mi L2-norm

and then we use the partial derivative of the augmented error in gradient-descent.
λ trades off data misfit and model complexity. wmi are the gating parameters of
all nodes m in the tree for all attributes i = 1, . . . , d.

Especially as we go down the tree, we localize in parts of the input space
where certain dimensions may not be necessary or when certain dimensions are
highly correlated; at the same time, as we go down the tree, we have fewer data
that reach there; so, regularization helps.

4 Bagging Soft Decision Trees

Bagging, short for bootstrap aggregating, was introduced by Breiman [9]. The
idea is to generate a set of training data from an initial data by bootstrapping,
that is, drawing with replacement, then train a predictor on each training data,
and then combine their predictions. Because drawing is done with replacement,
certain instances may be drawn more than once, and certain instances not at
all.

Different training data will differ slightly and the resulting trained predic-
tors can be seen as noisy estimates to the ideal discriminant; combining them
removes noise and leads to a smooth estimator with low variance, and hence
better generalization [12].



30 O.T. Yıldız et al.

Decision trees are frequently used in bagging and here we use soft decision
trees to see if we also have the advantage due to bagging when we combine
soft trees. The soft decision tree has multivariate splits and risks overfitting
when the input dimensionality is high and data set is small; hence averaging by
combination will have a regularizing effect.

Additional to the randomness due to data, there is also the randomness due
to the initialization of parameters before gradient-descent; averaging over trees
will also average this randomness out. A single soft tree may overfit due to noisy
instances in the data or a bad initialization, but we expect the majority of the
models to converge to good trees and hence by combining their predictions, we
get an improved overall estimate.

Figure 1 shows the pseudocode of the algorithm BaggedSoftTree that creates
B soft trees for a data set X containing N instances. For each, first we build a
bootstrap sample Di of size N by drawing with replacement from the original
X (Line 2). Because the new set also contains N instances and drawing is done
with replacement, the new set may contain certain instances multiple times and
certain instances may not appear at all. Therefore, Di will be similar to X but
also slightly different. Then on each Di, we learn a soft tree Ti (Line 3).

These trees will be similar but also slightly different due to the randomness in
training, both due to their sampled data and also the initialization of parameters.
As the last step, for any new given test data, we combine the predictions of these
soft trees using a committee-based procedure, such as voting.

BaggedSoftTree(X , B)
1 for i = 1 to B
2 Di = BootStrap(X )
3 Ti = LearnSoftTree(Di)
4 end for
5 Return prediction by aggregating classifiers Ti

Fig. 1. The pseudocode of the algorithm that creates bagged soft trees consisting of B
soft trees for a data set X .

5 Experiments

5.1 Setup

We compare single and bagged soft decision trees with single and bagged hard
decision trees on classification and regression data sets. Our methodology is as
follows: We first separate one-third of the data set as the test set over which we
evaluate the final performance. With the remaining two-thirds, we apply 5× 2-
fold cross-validation, i.e. we randomly separate the data into two stratified parts
five times, and for each time, we interchange the roles of the parts as training
set and validation set, which gives a total of 10 folds for each data set.



Bagging Soft Decision Trees 31

In bagging, we train and combine 100 models. In combining the output of the
100 trees to get the overall output, in regression we use the median of the 100
predictions, and in classification we take a vote over the 100 class predictions.

We compare soft and hard trees, single and bagged, in terms of their error on
the left-out test set. We give a table where for each data set separately we show
the average and standard deviation error for all compared tree algorithms. To
compare the overall performance on all data sets, we use Nemenyi’s test in terms
of average ranks on all data sets and check for statistically significant difference
[13]: On each data set, we rank the methods in terms of their average error so
the first one gets the rank of 1, the second rank 2, and so on. Then we calculate
the average rank of each method and Nemenyi’s test tells us how much difference
between ranks in significant.

5.2 Classification Data Sets

We compare the soft tree (Soft) with C4.5 tree (Hard), linear discriminant tree
(Ldt) (which is a multivariate hard tree) [4], and the bagged versions of Soft,
Hard, and Ldt trees (SoftB , HardB , LdtB) on 27 two-class classification data
sets from the UCI repository [14].

Ten of these classification data sets are from the medical domain: Breast is
a breast cancer database obtained from the University of Wisconsin Hospitals,
Madison, Haberman contains cases from a study on the survival of patients who
had undergone surgery for breast cancer, Heart is a database concerning heart
disease diagnosis, Parkinsons is composed of a range of biomedical voice mea-
surements from 31 people, 23 with Parkinson’s disease, Pima contains patients
with diabetes who are females at least 21 years old of Pima Indian heritage, Pro-
moters contains E. coli promoter gene sequences (DNA) with associated imper-
fect domain theory, Spect describes diagnosing of cardiac Single Proton Emission
Computed Tomography (SPECT) images. Acceptors and Donors are splice site
detection data sets and the trained models should distinguish ‘GT’ and ‘AG’
sites occurring in the DNA sequence that function as splice sites and those that
do not [15]. Polyadenylation datasets contains polyadenylation signals in human
sequences [16].

Table 1 shows the average and standard deviation of test errors of Hard,
Ldt, Soft, HardB , LdtB , and SoftB on the separate data sets, where we see that
bagged soft tree most of the time has the smallest error. Figure 2 shows the result
of post-hoc Nemenyi’s test applied on the average ranks of these algorithms in
terms of their error on all data sets.

We see that the bagged soft tree has the lowest average rank (slightly above
1) and is significantly better than all other tree variants. The bagged versions
of Ldt and Hard are only as good as a single soft tree. The single soft tree is
significantly more accurate than single Ldt or hard tree. Ldt is also multivariate
but uses hard splits; the fact that the soft tree (bagged or single) is more accurate
than Ldt shows that it is the softness of the split that leads to higher accuracy
rather than whether the split is uni or multivariate.



32 O.T. Yıldız et al.

Table 1. On two-class classification data sets, the average and standard deviation of
test errors of Hard, Ldt, Soft, and their bagged versions, HardB , LdtB , and SoftB .

Dataset Hard Ldt Soft HardB LdtB SoftB

acceptors 16.1 ± 2.0 9.6 ± 0.8 8.7 ± 0.7 18.2 ± 0.1 8.7 ± 0.5 8.1 ± 0.5

artificial 1.1 ± 1.8 1.5 ± 1.9 1.1 ± 1.8 1.1 ± 1.8 0.7 ± 1.6 0.7 ± 1.6

breast 6.7 ± 1.1 4.9 ± 0.6 3.5 ± 0.7 4.7 ± 0.8 4.7 ± 0.7 3.1 ± 0.4

bupa 38.6 ± 4.1 39.1 ± 3.4 39.7 ± 4.2 35.4 ± 3.6 38.2 ± 2.3 36.5 ± 2.7

donors 7.7 ± 0.4 5.4 ± 0.3 5.7 ± 0.4 7.2 ± 0.4 5.4 ± 0.2 5.3 ± 0.3

german 29.9 ± 0.0 25.8 ± 2.0 24.0 ± 3.0 29.9 ± 0.0 27.0 ± 2.8 23.2 ± 0.8

haberman 26.6 ± 0.3 27.2 ± 1.5 25.9 ± 1.8 26.5 ± 0.0 26.5 ± 0.0 24.7 ± 1.6

heart 28.3 ± 4.7 18.4 ± 2.3 19.7 ± 3.4 24.7 ± 6.0 18.4 ± 2.2 15.7 ± 1.3

hepatitis 22.1 ± 4.4 20.4 ± 2.9 20.2 ± 2.4 20.8 ± 1.2 20.2 ± 1.6 18.7 ± 2.4

ironosphere 13.1 ± 1.9 12.3 ± 2.2 11.5 ± 2.0 9.4 ± 3.2 12.4 ± 1.9 11.6 ± 1.3

krvskp 1.2 ± 0.4 4.5 ± 0.7 1.8 ± 0.6 1.2 ± 0.5 4.7 ± 0.7 1.8 ± 0.2

magic 17.5 ± 0.6 16.9 ± 0.1 14.7 ± 0.5 16.4 ± 0.3 16.7 ± 0.2 13.9 ± 0.1

monks 12.8 ± 7.8 23.8 ± 8.2 0.0 ± 0.0 11.9 ± 4.6 24.0 ± 2.0 0.0 ± 0.0

mushroom 0.0 ± 0.1 1.8 ± 0.5 0.1 ± 0.0 0.1 ± 0.1 0.9 ± 0.2 0.1 ± 0.1

musk2 5.5 ± 0.6 6.4 ± 0.3 4.3 ± 0.7 5.3 ± 0.1 6.3 ± 0.2 3.8 ± 0.3

parkinsons 13.8 ± 2.3 13.5 ± 2.5 14.3 ± 2.7 14.0 ± 3.1 14.8 ± 4.1 10.9 ± 0.9

pima 27.9 ± 3.4 23.1 ± 1.4 24.9 ± 2.0 24.2 ± 1.2 22.6 ± 1.0 23.6 ± 1.0

polyaden 30.5 ± 1.3 22.6 ± 0.6 22.9 ± 0.5 29.2 ± 0.5 22.4 ± 0.4 22.1 ± 0.3

promoters 26.1 ± 9.9 34.4 ± 9.4 15.3 ± 6.7 14.7 ± 9.7 31.7 ± 5.9 10.8 ± 4.0

ringnorm 12.2 ± 1.1 22.8 ± 0.3 9.9 ± 1.7 7.2 ± 0.7 22.7 ± 0.3 5.1 ± 0.3

satellite47 15.4 ± 1.5 16.7 ± 1.4 12.4 ± 1.4 12.2 ± 0.5 16.7 ± 0.6 11.5 ± 0.6

spambase 9.9 ± 0.7 10.1 ± 0.7 7.5 ± 0.5 8.1 ± 0.4 9.8 ± 0.4 7.2 ± 0.3

spect 19.1 ± 2.8 20.1 ± 2.4 19.6 ± 2.4 20.4 ± 2.1 21.1 ± 0.0 17.4 ± 3.3

tictactoe 23.8 ± 2.2 31.9 ± 2.4 1.8 ± 0.3 22.1 ± 2.5 29.4 ± 1.0 1.6 ± 0.0

titanic 21.8 ± 0.5 22.4 ± 0.4 21.5 ± 0.2 22.1 ± 0.0 22.7 ± 0.2 21.5 ± 0.2

twonorm 17.0 ± 0.7 2.0 ± 0.1 2.1 ± 0.2 4.8 ± 0.7 2.0 ± 0.1 2.0 ± 0.1

vote 5.2 ± 0.7 6.7 ± 2.6 5.1 ± 0.9 4.9 ± 0.2 6.4 ± 1.1 4.6 ± 0.6

5.3 Regression Data Sets

We also compare soft regression trees (Soft) with the univariate regression tree
(Hard) and their bagged versions, SoftB and HardB , on 26 regression data sets
[17].



Bagging Soft Decision Trees 33

1 2 3 4 5 6

Hard

Ldt

Soft

HardB

LdtB

SoftB

Fig. 2. On two-class classification data sets, the result of Nemenyi’s test applied on the
ranks of Hard, Ldt, Soft, HardB , LdtB , and SoftB in terms of error. Indicated points
are the average ranks and a thick underline implies no significant difference.

Table 2. On the regression data sets, the average and standard deviation of errors of
Hard and Soft trees and their bagged versions, HardB , and SoftB .

Dataset Hard Soft HardB SoftB

abalone 0.53 ± 0.01 0.41 ± 0.01 0.50 ± 0.02 0.41 ± 0.01

add10 0.24 ± 0.01 0.08 ± 0.01 0.19 ± 0.00 0.05 ± 0.00

bank32fh 0.50 ± 0.01 0.40 ± 0.01 0.46 ± 0.01 0.40 ± 0.01

bank32fm 0.12 ± 0.00 0.04 ± 0.00 0.10 ± 0.00 0.04 ± 0.00

bank32nh 0.59 ± 0.01 0.45 ± 0.01 0.56 ± 0.01 0.43 ± 0.00

bank32nm 0.41 ± 0.02 0.20 ± 0.00 0.34 ± 0.01 0.19 ± 0.00

bank8fh 0.30 ± 0.01 0.26 ± 0.01 0.28 ± 0.01 0.26 ± 0.01

bank8fm 0.08 ± 0.00 0.04 ± 0.00 0.08 ± 0.01 0.04 ± 0.00

bank8nh 0.69 ± 0.02 0.56 ± 0.02 0.65 ± 0.02 0.56 ± 0.02

bank8nm 0.37 ± 0.03 0.12 ± 0.01 0.35 ± 0.02 0.10 ± 0.01

boston 0.34 ± 0.09 0.23 ± 0.03 0.27 ± 0.05 0.24 ± 0.02

comp 0.03 ± 0.00 0.02 ± 0.00 0.08 ± 0.00 0.02 ± 0.00

concrete 0.93 ± 0.05 0.23 ± 0.02 0.67 ± 0.03 0.22 ± 0.01

kin32fh 0.73 ± 0.03 0.32 ± 0.01 0.64 ± 0.01 0.32 ± 0.01

kin32fm 0.61 ± 0.02 0.08 ± 0.00 0.51 ± 0.01 0.07 ± 0.00

kin32nh 0.94 ± 0.02 0.75 ± 0.03 0.92 ± 0.03 0.75 ± 0.02

kin32nm 0.90 ± 0.01 0.62 ± 0.03 0.87 ± 0.01 0.60 ± 0.01

kin8fh 0.54 ± 0.02 0.26 ± 0.00 0.42 ± 0.02 0.26 ± 0.00

kin8fm 0.32 ± 0.01 0.03 ± 0.00 0.22 ± 0.01 0.03 ± 0.00

puma8fh 0.42 ± 0.01 0.38 ± 0.01 0.39 ± 0.01 0.38 ± 0.01

puma8nh 0.40 ± 0.02 0.36 ± 0.01 0.37 ± 0.01 0.35 ± 0.01

puma8fm 0.07 ± 0.00 0.05 ± 0.00 0.08 ± 0.00 0.05 ± 0.00

puma8nm 0.06 ± 0.01 0.05 ± 0.00 0.08 ± 0.00 0.04 ± 0.00

puma32fh 0.59 ± 0.01 0.59 ± 0.01 0.59 ± 0.01 0.59 ± 0.01

puma32fm 0.04 ± 0.00 0.07 ± 0.01 0.08 ± 0.01 0.06 ± 0.00

puma32nh 0.39 ± 0.01 0.43 ± 0.02 0.36 ± 0.01 0.41 ± 0.01



34 O.T. Yıldız et al.

Table 2 shows the average and standard deviation of errors of Hard, Soft,
HardB , and SoftB on each data set separately. Figure 3 shows the result of
Nemenyi’s test applied on the ranks of the error rates of these algorithms.

We see again that the bagged soft tree has the lowest rank; the bagged
soft tree is significantly more accurate than the single soft tree and they are
significantly better than both the hard tree and bagged hard tree. Bagging the
hard tree leads to some improvement in terms of average rank but the difference is
not significant here. Note that this does not mean bagging hard trees is useless,
it is only with respect to the others that the difference between them seems
insignificant—single and bagged hard trees rank mostly in 3rd and 4th ranks.

1 2 3 4

HardSoft

HardBSoft B

Fig. 3. On the regression data sets, the result of Nemenyi’s test applied on the ranks
of errors of Hard and Soft trees and their bagged versions, HardB , and SoftB .

6 Conclusions and Future Outlook

The soft tree has several advantages: First, it provides a continuous fit whereas
the hard tree has a discontinuous response at the leaf boundaries. This enables
the soft tree to have smoother fits and hence lower bias around the split bound-
aries. Second, the linear gating function enables the soft tree to make oblique
splits in contrast to the axis-orthogonal splits made by the univariate hard tree.

In our previous experiments [8], we see that these two properties improve
accuracy and also reduce the number of nodes required to solve a regression or
a classification problem. Soft trees seem especially suited to regression problems
where the gating function allows a smooth interpolation between the children of
a node.

Here, we build on top of the soft decision tree model and show how its
accuracy can be further improved by bagging. We see that on both classification
and regression problems, we get significant improvement in terms of accuracy
by bagging soft decision trees.

Bagging averages over both the randomness in sampling of data and the
randomness in the initialization of parameters (before gradient-descent) and this
leads to a smoother fit and better generalization.

Bagging is only one way to build an ensemble. We previously worked on meth-
ods for training and pruning an ensemble [12] and combining them to construct
uncorrelated metaclassifiers [18] and these ensemble construction approaches can
also use soft decision trees as the base learner.



Bagging Soft Decision Trees 35

Another possible future direction is in combining multiple sources: In some
applications, there are multiple views or representations associated with each
instance that complement each other and one possible future work is to train
different soft trees with different views and then combine their predictions.

Even with a single representation, different soft trees can use different ran-
domly chosen subsets of the features [19] and we can have soft random decision
forests—these are possible future research directions.

Acknowledgments. This work is partially supported by Boğaziçi University
Research Funds with Grant Number 14A01P4.

References

1. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. John Wiley and Sons, New York (1984)

2. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann,
San Meteo (1993)

3. Murthy, S.K., Kasif, S., Salzberg, S.: A system for induction of oblique decision
trees. J. Artif. Intell. Res. 2, 1–32 (1994)

4. Yıldız, O.T., Alpaydın, E.: Linear discriminant trees. Int. J. Pattern Recogn. Artif.
Intell. 19(3), 323–353 (2005)

5. Guo, H., Gelfand, S.B.: Classification trees with neural network feature extraction.
IEEE Trans. Neural Netw. 3, 923–933 (1992)

6. Yıldız, O.T., Alpaydın, E.: Omnivariate decision trees. IEEE Trans. Neural Netw.
12(6), 1539–1546 (2001)

7. Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm.
Neural Comput. 6, 181–214 (1994)

8. İrsoy, O., Yıldız, O.T., Alpaydın, E.: Soft decision trees. In: Proceedings of the
International Conference on Pattern Recognition, Tsukuba, Japan, pp. 1819–1822
(2012)

9. Breiman, L.: Bagging predictors. Mach. Learn. 26, 123–140 (1996)
10. Ruta, A., Li, Y.: Learning pairwise image similarities for multi-classification using

kernel regression trees. Pattern Recogn. 45, 1396–1408 (2011)
11. Yıldız, O.T., Alpaydın, E.: Regularizing soft decision trees. In: Proceedings of the

International Conference on Computer and Information Sciences, Paris, France
(2013)

12. Ulaş, A., Semerci, M., Yıldız, O.T., Alpaydın, E.: Incremental construction of clas-
sifier and discriminant ensembles. Inf. Sci. 179, 1298–1318 (2009)

13. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

14. Blake, C., Merz, C.: UCI repository of machine learning databases (2000)
15. Kulp, D., Haussler, D., Reese, M.G., Eeckman, F.H.: A generalized hidden markov

model for the recognition of human genes in dna. In: International Conference on
Intelligent Systems for Molecular Biology (1996)

16. Liu, L., Han, H., Li, J., Wong, L.: An in-silico method for prediction of polyadeny-
lation signals in human sequences. In: International Conference on Genome Infor-
matics (2003)



36 O.T. Yıldız et al.

17. Rasmussen, C.E., Neal, R.M., Hinton, G., van Camp, D., Revow, M., Ghahramani,
Z., Kustra, R., Tibshirani, R.: Delve data for evaluating learning in valid experiments
(1996)

18. Ulaş, A., Yıldız, O.T., Alpaydın, E.: Eigenclassifiers for combining correlated clas-
sifiers. Inf. Sci. 187, 109–120 (2012)

19. Ho, T.K.: The random subspace method for constructing decision forests. IEEE
Trans. Pattern Anal. Mach. Intell. 20, 832–844 (1998)


	Bagging Soft Decision Trees
	1 Introduction
	2 Glossary and Key Terms
	3 Soft Decision Trees
	3.1 The Model
	3.2 Training

	4 Bagging Soft Decision Trees
	5 Experiments
	5.1 Setup
	5.2 Classification Data Sets
	5.3 Regression Data Sets

	6 Conclusions and Future Outlook
	References


