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Abstract. Combining machine learning models is a means of improving overall
accuracy. Various algorithms have been proposed to create aggregate models from
other models, and two popular examples for classification are Bagging and Ad-
aBoost. In this paper we examine their adaptation to regression, and benchmark
them on synthetic and real-world data. Our experiments reveal that different types
of AdaBoost algorithms require different complexities of base models. They out-
perform Bagging at their best, but Bagging achieves a consistent level of success
with all base models, providing a robust alternative.

1 Introduction

Combining multiple instances of the same model type is a means for increasing robust-
ness to variance, reducing the overall sensitivity to different starting parameters and
noise. Two well-known algorithms for this purpose are Bagging [1] and AdaBoost [2,3].
Both have been analyzed for classification in much more detail than regression, possibly
due to the wider availability of real-life applications. Adapting classification algorithms
to regression raises some issues in this setting. In this paper we compare the Bagging
algorithm and several AdaBoost variants for regression.

2 Bagging

The Bagging (Bootstrap Aggregating) algorithm [1] uses bootstrapping (equiprobable
selection with replacement) on the training set to create many varied but overlapping
new sets. The base algorithm is used to create a different base model instance for each
bootstrap sample, and the ensemble output is the average of all base model outputs for
a given input.

The best enhancement by Bagging is when the model instances are very different
from each other, since averaging will not have much effect when the outputs are already
close. Hence, the most suitable base models for Bagging are unstable models, where
small changes in the training set can result in large changes in model parameters. Multi-
layer perceptrons and regression trees are good candidates.

The particular bootstrap sample size being used has an effect on the performance
of Bagging, but the optimal ratio of sample to training set size depends on the data.
Instead of manually finetuning this ratio per application, we used validation to automate
a coarse adjustment that we named Best-Ratio Bagging. It removes a fraction of the
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training set for validation, performs multiple Bagging instances with different ratios on
the remaining training examples, and chooses the Bagging model with the lowest error
on the validation set as the final model. Although costly, Best-Ratio Bagging is useful
for illustrating the best case performance of Bagging with respect to sample size.

Bagging takes a simple average of outputs, but the evaluation part of AdaBoost can
be adopted and a weighted median may be used instead. The weights (confidences)
can be calculated as in AdaBoost, using average loss with respect to a loss function.
We implemented this variant using linear loss. See Section 3.2 for the computation of
confidence and weighted median.

To produce similar but perturbed subsets from one training set, K-fold cross-
validation is an alternative to bootstrapping. The training set X is randomly partitioned
into K sets Xi of equal size, and each base model is trained on X − Xi. We called
this algorithm Cross-Validation Aggregating (CVA). Evaluation is by averaging outputs,
as in Bagging. As opposed to bootstrapping, cross-validation is guaranteed to use all
training examples exactly once in exactly K −1 subsets. For small K, this leads to more
efficient use of data than bootstrapping. However as K increases, we get increasingly
similar subsets, which should decrease the positive effect of combining.

3 The AdaBoost Approach

Since individual bootstrap samples are selected independently, the collective success of
the models they produce is through mere redundancy. The boosting approach uses the
base models in sequential collaboration, where each new model concentrates more on
the examples where the previous models had high error. Different ways of realizing this
dynamic focus lead to different algorithms. AdaBoost (Adaptive Boosting) [2,3] is an
efficient and popular implementation of the boosting principle, applied and analyzed
with much deeper interest for classification than regression. Since the latter is a more
general problem, the basic concept of AdaBoost can be generalized in more than one
way for regression.

3.1 AdaBoost.R

The originally proposed AdaBoost for regression AdaBoost.R is based on decomposing
regression into infinitely many classification tasks [2]. This construction does allow an
implementation, but it involves keeping track of a different updatable and integrable loss
function for each example. Furthermore, the base learner must be able to accommodate
such dynamic loss functions per example. This dynamic-loss approach was also used by
Ridgeway et al. [4], but their experiments using naive Bayes base learners yielded no
significant justification to afford a per-example redefinable loss, seriously constraining
the choice of base learners if not time complexity.

3.2 Distribution-Based Algorithms

Drucker’s AdaBoost. Drucker’s AdaBoost for regression [5] is an ad hoc adaption
of the classification AdaBoost. Despite the lack of a rigorous derivation, it uses scalar
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selection probabilities, unlike AdaBoost.R. It works much like classificationAdaBoost,
favoring examples with high error. The ensemble output is the weighted median of the
base model outputs, weighted by the models’ training confidences.

The weighted median can be computed by first sorting the outputs in order of mag-
nitude, and then summing their weights until the sum exceeds half the weight total. If
the weights were integers, this would be analogous to duplicating the outputs by their
weights and taking the regular median.

At each step i, the algorithm minimizes the error function (in rearranged notation)

Ji =
N∑

t=1

exp(−ci) exp
(
ciL

t
i

)

by minimizing per-example losses Lt
i. ci is a measure of confidence over all examples,

also used as the combination coefficient during evaluation. Drucker’s AdaBoost chooses
ci = ln

[
(1 − Li)/Li

]
using Li =

∑N
t=1 Lt

ip
t to minimize error, but this appears to be

an unjustified adoption of the analytical result for classification. In the experiments we
used linear loss (absolute difference) L = |y − r|/D in Drucker.AD and square loss
LS = |y − r|2/D2 in Drucker.S where D = supt |yt − rt|.

Zemel & Pitassi’s Algorithm. Zemel & Pitassi [6] provide an algorithm similar to
Drucker’s, but with alternative mathematical particulars. Here the error function is

Ji =
N∑

t=1

c
−1/2
i exp

(
ci|yt

i − rt|2)

where the loss function is squared error, and not scaled to [0, 1].
Although the multiplier is now c

−1/2
i , replacing Drucker’s exp(−ci), with0 < ci ≤ 1

they behave similarly except near zero. Notably Zemel & Pitassi acknowledge that here ci

cannot be analytically determined, and simple line search is used. Finally, this algorithm
uses weighted mean instead of weighted median to combine outputs.

We implemented this algorithm as Zemel-Pitassi.S and Zemel-Pitassi.AD, using
the original square loss and linear loss respectively. In Zemel-Pitassi.AD we replaced
weighted mean by weighted median to match the loss function.

3.3 Relabeling Algorithms

Another group of algorithms [7,8,9], although from different viewpoints, all aim to
minimize residual error. In these algorithms each new base model learns artificial labels
formed using the per-example training errors (residues) of the current combined model.
After training each model i the residues are updated by subtracting the prediction yt

i of
the new model weighted by its coefficient ci. Due to the subtractive training, combination
is additive, using a weighted sum.
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The LS BoostAlgorithm. The algorithm LS Boost is from Friedman’s gradient-based
boosting strategy [7], using square loss L = (y − r)2/2 where r is the actual training
label and y is the current cumulative output yi = c0 +

∑i−1
j=1 cjhj + cihi = yi−1 + cihi.

The new training labels r̂ should be set to the direction that minimizes the loss, which is
the negative gradient with respect to y evaluated at yi−1. Then r̂ = [−∂L/∂y]y=yi−1 =
r−yi−1 which is the current residual error. Substituting into the loss, we get the training
error

E =
N∑

t=1

[cih
t
i − r̂t]

where r̂t are the current residual labels. The combination coefficients ci are determined
by solving ∂E/∂ci = 0.

Duffy & Helmbold [8] give an algorithm SquareLev.R which is identical in effect.
SquareLev.C, a variant of SquareLev.R, is more interesting in that while also based
on residual error, it still uses probabilities. The base learner is fed not the residues r̂, but
their signs sign(r̂) ∈ {−1, +1}, while the distribution weight of each example is made
proportional to |r̂|, so each example is still “emphasized” in proportion to its residual
error.At the cost of handling probabilities, SquareLev.C allows using binary classifiers.

The LAD Boost Algorithm. The LAD Boost algorithm from [7] is derived from the
same gradient-based framework as LS Boost, but using linear loss (absolute deviation).
The gradient of linear loss leads to the sign of the residue, so the base models are trained
on {−1, +1} labels, which also allows using classifiers. Here the derivation of ci yields
another weighted median computation. See [7] for details.

4 Experiment Design

We tested the algorithms using J-leaf regression trees with constant leaf labels. The
learner subdivides the leaf having the greatest total squared deviation from the mean,
until a specified node count J is reached or all leaves have a single training element. J
is used to control base model complexity. Values of {2, 5, 10, 15, 20} were used for the
number of base trees to combine.

Bagging used a fixed 50% sample size ratio, while Best-Ratio Bagging compared
the ratios 10%, 20%, . . . , 90% of the remaining examples for sample size using 50% of
the examples for validation. All experiments were repeated ten times, using 5×2-fold
cross-validation to partition the datasets. The algorithms were compared by the 5×2-fold
cross-validated F test [10] at 95% confidence. We used the datasets in Table 1 for our
experiments. All of them have one-dimensional continuous output for regression.

syndata was synthetically generated for observing the algorithms visually. It has
unidimensional input, and on an output range of [−15, +15] it has Gaussian noise of zero
mean and unit variance. abalone, boston and calif1000 are from [11]. prostate
and birth are from [12]. votes and kin8 datasets are from the StatLib archive of
Carnegie Mellon University. For each dataset, we repeated the experiments using 5×2-
fold cross-validation. The error bars in the figures indicate one standard deviation above
and below the mean error of the ten runs.
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Fig. 1. 5-leaf syndata errors
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Fig. 2. 10-leaf syndata errors
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Fig. 3. 15-leaf syndata errors

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15
Bagging, 10 trees with 15 leaves
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5 Simulation Results

Figures 1 to 3 show the test errors of Bagging, LS Boost and Drucker.AD onsyndata
as the number of trees changes. The unaggregated base algorithm RegTree is also
included, plotted as constant. These figures illustrate typical behaviors, also observed
numerically on other datasets. Figures 4, 5 and 6 show example outputs on syndata
using 15-leaf regression trees as base models.

The Bagging methods used both small and large trees with consistent success, al-
though they took a large number of large trees to catch up with the relabeling AdaBoost
algorithms. CVA was slightly better than Bagging algorithms for very few base models,
and fell behind quickly thereafter as the cross-validated training sets became increasingly
similar. W-Bagging never significantly decreased test error beyond Bagging, sometimes
even increasing it. Considering that bootstrap samples are selected uniformly, it is not
surprising that “confidence” values derived from accidental differences are bound to
disrupt Bagging rather than enhance it. Compared to a fixed 50% ratio of sample size
with Bagging, BR-Bagging did not show significant improvement despite the nine-fold
execution time.

AdaBoost.R, despite its unwieldy time complexity, was not able to improve the
base model beyond the statistical significance threshold on any of the datasets.

Drucker’s and Zemel & Pitassi’s algorithms did not perform well using small trees
on large datasets. They even increased training error, indicating that this is not due to
overfitting, but the base models were too coarse to be useful to them.

LAD Boost and LS Boost started overfitting at much smaller trees than the base
algorithm alone, because their modification of labels reduces the complexity of data.
This is especially true of LAD Boost which greatly simplifies the problem for the base
learners by discretizing pseudo-targets to binary. The rapid overfitting can be observed
in Figure 6.

Over the tree sizes used and model counts up to ten, the best instances are reported in
Table 2 as average errors and standard deviations over ten runs. The results are compared
using the 5×2-fold cross-validated F -test with 95% confidence on each dataset. Some
illustrative pairs of algorithms are shown in Table 3, where the column “>” denotes on
how many datasets the left-hand algorithm was significantly superior.

6 Conclusion

Bagging proved to be very robust with respect to base model complexity. It was able
to reduce test error successfully whether the underlying base models were overfit or
underfit. Our variants of Bagging failed to offer any significant improvement over the
original Bagging algorithm, though we did thus verify the integrity of Bagging.

AdaBoost.R as it was originally proposed did not show any improvement over the
unaggregated base model, let alone Bagging, despite its special base model requirements
for dynamic loss and prohibitive time complexity.

The distribution-based AdaBoost algorithms needed sufficiently complex base mod-
els. Otherwise they failed to reduce even the training error. Drucker and Zemel-Pitassi
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Table 1. Properties of the datasets used

inputs size inputs size inputs size
syndata 1 1,000 prostate 7 376 kin8fh 8 8,192
boston 12 506 birth 5 488 kin8nm 8 8,192
calif1000 8 1,000 votes 6 3,107 kin8nh 8 8,192
abalone 10 4,177 kin8fm 8 8,192

Table 2. Base model and Bagging results

RegTree Bagging BR-Bagging W-Bagging CVA AdaBoost.R
avg ± std avg ± std avg ± std avg ± std avg ± std avg ± std

syndata .943± .049 .890±.043 .888± .034 .887±.035 .903± .044 .919± .084
boston .350± .023 .295±.016 .294± .026 .296±.019 .308± .028 .307± .028
calif1000 .506± .028 .445±.016 .444± .017 .436±.019 .452± .018 .464± .022
votes .493± .013 .444±.006 .445± .005 .446±.004 .458± .007
prostate .668± .072 .635±.042 .642± .035 .605±.044 .627± .053
birth .812± .055 .780±.033 .777± .029 .781±.031 .785± .030
abalone .545± .005 .521±.018 .513± .011 .483±.008 .523± .015
kin8fm .439± .003 .316±.006 .314± .008 .330±.007 .358± .009
kin8fh .553± .005 .457±.005 .456± .007 .464±.005 .488± .008
kin8nm .595± .012 .523±.004 .523± .003 .511±.007 .546± .006
kin8nh .657± .011 .601±.007 .600± .008 .597±.007 .615± .009

Drucker.AD Drucker.S Z&P.AD Z&P.S LAD Boost LS Boost
avg ± std avg ± std avg ± std avg ± std avg ± std avg ± std

syndata .917± .055 .921±.061 .910± .039 .900±.045 .978± .050 .934± .058
boston .276± .019 .297±.014 .280± .018 .286±.023 .346± .025 .335± .029
calif1000 .429± .015 .457±.016 .425± .020 .447±.019 .455± .021 .468± .016
votes .443± .006 .455±.005 .447± .004 .449±.006 .472± .012 .481± .014
prostate .650± .051 .678±.039 .650± .075 .631±.049 .600± .023 .678± .053
birth .791± .026 .792±.034 .790± .026 .790±.026 .793± .028 .783± .028
abalone .514± .015 .544±.029 .497± .011 .544±.039 .497± .005 .520± .008
kin8fm .288± .005 .279±.006 .294± .005 .295±.007 .316± .012 .296± .011
kin8fh .444± .006 .438±.004 .446± .004 .446±.005 .481± .005 .485± .004
kin8nm .502± .004 .523±.007 .510± .005 .523±.004 .531± .009 .528± .012
kin8nh .597± .011 .600±.012 .601± .009 .604±.012 .627± .011 .624± .010

Table 3. Significant superiority over 11 datasets

> = < > = <

Drucker.AD ZP.AD 1 10 0 Drucker.S RegTree 5 6 0
Drucker.S ZP.S 2 8 1 W-Bagging Bagging 0 9 2

Drucker.AD LAD Boost 4 7 0 BR-Bagging Bagging 0 11 0
Drucker.S LS Boost 2 9 0 LAD Boost RegTree 6 5 0
Bagging RegTree 7 4 0 LS Boost RegTree 5 6 0
Bagging CVA 3 8 0 LAD Boost Bagging 0 9 2

Drucker.AD RegTree 7 4 0 LS Boost Bagging 0 7 4
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were almost always equal in performance. In that case Drucker may be slightly more
preferable, considering the inconvenient line search in Zemel-Pitassi.

The relabeling AdaBoost algorithms, in contrast, called for very simple models that
would normally underfit. With complex base models their performance deteriorated
rapidly as they started overfitting the data.

In selecting an aggregation algorithm for a regression task, if the base models are
inherently simple or their complexity can be adjusted by some validation method, the
relabeling algorithms should be considered, since they can provide the best accuracy
using the fewest base models. If the models cannot be prevented from overfitting, one
of the distribution-based AdaBoost algorithms can be used. The choice of loss function
depends on the data at hand. If one algorithm must be selected to handle both simple
and complex base models, Bagging is a safe bet.
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