
Contributed article

Soft vector quantization and the EM algorithm1

Ethem Alpaydın*
Department of Computer Engineering, Bog˘aziçi University, Istanbul, Turkey

Received 27 April 1996; accepted 14 August 1997

Abstract

The relation between hardc-means (HCM), fuzzyc-means (FCM), fuzzy learning vector quantization (FLVQ), soft competition scheme
(SCS) of Yair et al. (1992) and probabilistic Gaussian mixtures (GM) have been pointed out recently by Bezdek and Pal (1995). We extend
this relation to their training, showing that learning rules by these models to estimate the cluster centers can be seen as approximations to the
expectation–maximization (EM) method as applied to Gaussian mixtures. HCM and unsupervised, LVQ use 1-of-c type competition. In
FCM and FLVQ, membership is the¹2/(m ¹ 1)th power of the distance. In SCS and GM, Gaussian function is used. If the Gaussian
membership function is used, the weighted within-groups sum of squared errors used as the fuzzy objective function corresponds to the
maximum likelihood estimate in Gaussian mixtures with equal priors and covariances. The fuzzy clustering method named fuzzyc-means
alternating optimization procedure (FCM-AO) proposed to optimize the former is then equivalent to batch EM and SCS’s update rule is a
variant of the online version of EM. The advantages of the probabilistic framework are: (i) we no longer have spurious spread parameters that
needs fine tuning asm in fuzzy vector quantization orb in SCS; instead we have a variance term that has a sound interpretation and that can be
estimated from the sample; (ii) EM guarantees that the likelihood does not decrease, thus it converges to the nearest local optimum; (iii) EM
also allows us to estimate the underlying distance norm and the cluster priors which we could not with the other approaches. We compare
Gaussian mixtures trained with EM with LVQ (HCM), SCS and FLVQ on the IRIS dataset and see that it is more accurate due to its being
able to take into account the covariance information. We finally note that vector quantization is generally an intermediate step before finding
a final output for which supervision may be possible. Thus, instead of an uncoupled approach where an unsupervised method is used first to
find the cluster parameters followed by supervised training of the mapping based on the memberships, we advocate a coupled approach where
the cluster parameters and mapping are trained supervised in a coupled way. The uncoupled approach ignores the error at the outputs which
may not be ideal.q 1998 Elsevier Science Ltd. All rights reserved.

Keywords: Vector quantization; Clustering; Competitive learning; Unsupervised learning; Fuzzy clustering; Mixture models; EM;
Maximum likelihood estimation

1. Introduction

Vector quantization methods assume that the input is
organized into a number of groups or is generated by one
of a number of sources (Duda and Hart, 1973). These are
also known as clusters, reference vectors or components.
These clusters partition the input space among them
where for any input we compute a value that denotes the

association of that input to any group. This is done by defin-
ing a cluster center for each cluster and measuring the dis-
tance between an input and the cluster center using an
appropriate metric. The association is then inversely propor-
tional to this distance.

Bezdek and Pal (1995) made a recent study analyzing
different methods for vector quantization. In the hard
approach, each input is associated only with the group
with the nearest center. An example isk-means clustering
(Duda and Hart, 1973) which is known as hardc-means
(HCM) in the fuzzy set literature and unsupervised learning
vector quantization (LVQ) (Kohonen, 1995).

In the soft approach, this association (or membership or
probability of being generated by) is a value between zero
and one with the frequent requirement that the memberships
sum to one. The soft variants are the fuzzy methods: fuzzy
c-means (FCM), fuzzy learning vector quantization

* Requests for reprints should be sent to Ethem Alpaydın, Department of
Computer Engineering, Bog˘aziçi University, TR-80815, Istanbul, Turkey;
Tel.: 0090 212 263 1540 x1862; Fax: 0090 212 287 2461; E-mail: alpay-
din@boun.edu.tr.

1 Acknowledgements: This work is supported by Tu¨bitak Grant EEEAG-
143 and Bog˘aziçi University Research Funds 95HA0108. Thanks to Mike
Jordan and Zoubin Ghahramani for stimulating discussions on Gaussian
mixtures and the EM algorithm. In particular, it was Mike Jordan who
pointed out the advantage of coupled learning over the uncoupled version.
Thanks also to the anonymous referees for constructive comments.

0893–6080/98/$19.00q 1998 Elsevier Science Ltd. All rights reserved.
PII: S0893-6080(97)00147-0

PERGAMON Neural Networks 11 (1998) 467–477

NN 1147
Neural

Networks

(FLVQ), the soft competition scheme (SCS) proposed by
Yair et al. (1992) and the probabilistic Gaussian mixtures
(GM).

Bezdek and Pal (1995) showed that these methods are
related and in particular, they showed that the memberships
computed by SCS are estimates of the posterior probabilities
computed by the probabilistic Gaussian mixtures. In
this article, we show that in terms of learning the cluster
centers, the soft approaches of FCM, FLVQ, SCS and
GM are related. The SCS learning rule for the cluster centers
is a variant of the online version of the expectation–
maximization (EM) method applied to Gaussian mixtures.
The fuzzy learning method Fuzzyc-Means Alternating
Optimization (FCM-AO) and FLVQ (Bezdek and Pal,
1995) are approximations to the batch EM if the Gaussian
membership function is used, assuming equal cluster priors
and covariances.

In Section 2 we discuss the hard vector quantization
method and in Section 3, the fuzzy vector quantization
methods FCM and FLVQ. In Section 4, the soft competition
scheme and in Section 5, probabilistic Gaussian mixtures
and the EM algorithm, are discussed. We compare LVQ,
SCS and FLVQ with Gaussian mixtures on the well-known
IRIS dataset in Section 6. In Section 7, we discuss the
supervised approach to train the cluster parameters and its
advantage over the unsupervised approach. Conclusions are
given in Section 8. Appendix A details the derivation of the
EM algorithm for Gaussian mixtures.

2. Hard vector quantization

We are given a samplex ¼ { xk}
n
k¼ 1 wherexk [R

d and
the aim of the vector quantization is to find cluster centers,
vj,j ¼ 1...c that best represent the density from which the
sample is independently and identically drawn. In hardc-
means and unsupervised LVQ, input is associated only with
the cluster having the nearest center:

bkj ¼
1 if kxk ¹ vjk¼ minlkxk ¹ vlk

0 otherwise

(
(1)

The cluster center,vj, is the mean of all inputs associated
with that cluster. In the batch algorithm hardc-means
(HCM), we have

vj ¼

∑
k

bkjxk∑
k

bkj

(2)

Once the cluster centers are updated,bkj values may change.
So we have an iterative procedure where Eqs. (1) and (2) are
alternated until the centers do not change. In the online, or
sequential version, learning vector quantization (LVQ)
(Kohonen, 1995), a small update is done at each step:

Dvj ¼ hbkj(xk ¹ vj) (3)

whereh is a learning factor which is gradually decreased
towards zero for convergence. Both of these approaches
minimize the squared error:

min
v

∑
k

∑
j

bkjkxk ¹ vjk
2 (4)

Note that this approach uses Euclidean distance as the
metric and thus assumes equal variances on all dimensions
and zero covariances.

3. Fuzzy vector quantization

In fuzzy clustering, the fuzzy membership of an input in a
cluster decreases continuously as distance increases. There
is a normalization that the memberships sum to one:

ukj ¼
kxk ¹ vjkA
ÿ �¹

2
m¹ 1

∑c

l ¼ 1
kxk ¹ vlkA
ÿ �¹

2
m¹ 1

(5)

Thus, not only the closest, but all clusters are taken into
account to represent the input position.A is a positive defi-
nite matrix that generalizes the Euclidean norm to the
Mahalanobis norm, i.e.,kxkA ; xTA¹1x, thus allowing
hyperellipsoidal clusters of arbitrary orientation, instead of
hyperspheric ones. The batch rule, named fuzzyc-means
alternating optimization (FCM-AO) algorithm, for learning
cluster centers is:

vj ¼

∑
k

(ukj)mxk∑
k

(ukj)m
(6)

Bezdek and Pal (1995) write that alternating Eqs. (5) and
(6), the weighted within-groups sum of squared errors
objective function is minimized:

min
v

∑
k

∑
j

(ukj)mkxk ¹ vjk
2
A (7)

No method is given to estimateA, the matrix defining the
underlying norm. Bezdek and Pal (1995) note that the most
problematical choice for the algorithm is the weighting
exponentm, which can take any value between (1,`); gen-
erally, a value in the range (1.1,5] is used. Whenm is large,
clusters have large spread and in the limiting case asmgoes
to infinity, all memberships are equal and all centers con-
verge to the overall mean. At the other extreme whenm→þ 1,
we have a hard competition between clusters and we get the
hardc-means rule, where for any pattern only one cluster is
one and all others are zero. In the descending fuzzy learning
vector quantization (↓ FLVQ), one starts with a large value
of m and decreases it gradually towards one. In Fig. 1,ukj

values are drawn for a one-dimensional problem for
different values ofm.

468 E. Alpaydın / Neural Networks 11 (1998) 467–477

An online version can also be derived where for each
patternxk, the centers are updated as follows:

Dvj ¼ h(ukj)m(xk ¹ vj) (8)

4. Soft competition scheme

In the Soft Competition Scheme (SCS) of Yair et al.
(1992), the probability of thejth prototype winning the
competition is given by a Gaussian which also decreases
with increasing distance:

pkj ¼
exp(¹ bkxk ¹ vjk

2)∑
l

exp(¹ bkxk ¹ vlk
2)

(9)

b is a parameter likem in fuzzy clustering which allows us
to play with the spread of the clusters. In SCS, like in
↓ LVQ, we start with a large spread when many cluster
centers are updated for a point and gradually decrease it
to allow for specialization. This is implemented by starting
with smallb and gradually increasing it. In Fig. 2,pkj values
are drawn for a one-dimensional problem for different
values ofb. The center update in SCS is done online as
follows:

Dvj ¼ hkjpkj(xk ¹ vj) (10)

hkj is an adaptive learning rate proportional to l/t; it is taken
to be roughly the reciprocal of the total number of times that
vj has been updated. It is reset to one whenever the iteration
counter is a perfect square. This divides the learning process
into frames of increasing length whereh, starting from one
decreases towards zero, to allow for convergence for the
current value ofb. Bezdek and Pal (1995) mention the dif-
ficulty of choosing good parameter values for SCS.

5. Gaussian mixtures and the EM algorithm

In a mixture model, the probability density function is
given by (Duda and Hart, 1973):

p(xlF) ¼
∑c

j ¼ 1
p(xlqj ,F)P(qj) (11)

whereq j are the components,P(q j) are their prior probabil-
ities, or mixing parameters, andp(xlq j,F) are the component
densities, known up to a vector of parametersF. Sometimes
F also includesP(q j). The log likelihood of the iid sample
x ¼ { xk} k is

L(Flx) ¼
∑

k

log p(xklF)

¼
∑

k

log
∑

j
p(xklqj ,F)P(qj) ð12Þ

Fig. 1. The fuzzy membershipsukj are drawn for a one-dimensional problem with three clusters at 1.0, 2.0, and 4.0. Smaller values ofm lead to harder
partitioning of the input space.

469E. Alpaydın / Neural Networks 11 (1998) 467–477

This does not have a straightforward solution. The Expecta-
tion–Maximization (EM) algorithm (Dempster et al., 1977;
Redner and Walker, 1984; Xu and Jordan, 1996) can be used
which involves two steps. Here we only give the results; the
derivation is deferred to Appendix A. In the E-step, we
compute the posteriors:

P(qj lxk,F) ¼
p(xklqj ,F)P(qj)∑
l

p(xklql ,F)P(ql)
; hkj (13)

If the component densities are taken to bed-variate
Gaussian,p(xlqj ,F),N d(mj ,Sj):

p(xlqj ,F) ¼
1

(2p)d=2lSj l
1=2exp ¹

1
2
(x ¹ mj)TS¹ 1

J (x ¹ mj)
� �

(14)

then we have (gj ; P(q j))

hkj ¼
gj lSj l

¹ 1=2 exp ¹ (1=2)(xk ¹ mj)TS¹ 1
j (xk ¹ mj)

� �∑
l

gl lSl l
¹ 1=2 exp ¹ (1=2)(xk ¹ ml)TS¹ 1

l (xk ¹ ml)
� �

(15)

In the M-step, we update the component parametersF:

mj ¼

∑
k

hkjxk∑
k

hkj

(16)

Sj ¼

∑
k

hkj(xk ¹ mj)(xk ¹ mj)
T

∑
k

hkj

(17)

gj ¼
1
n

∑
k

hkj

When used for vector quantization, meansm j correspond to
the reference vectors (or cluster centers or centroids)vj. hkj

is the posterior probability thatxk is generated by compo-
nent j and as such denotes the soft association, like FCM’s
ukj or SCS’spkj.

With small samples, covariance matrices cannot be esti-
mates with high accuracy; assuming diagonal or shared
covariance matrices, we pool data. This is a form of regu-
larization. In the case of a shared covariance matrix, the
number of parameters decreases fromc 3 d 3 (d þ 1)/2
to d 3 (d þ 1)/2 which can be estimated during the M-step
as

S ¼
∑

j
gjSj (18)

This uses the Mahalanobis distance, like the FCM Eq. (5)
with A ; S. One can further regularize by assuming diag-
onal covariance matrices and reduce the number of para-
meters tod. In the extreme case of this where all diagonals
are equal we have only one parameter and with equal priors,

Fig. 2. The probabilitiespkj computed by soft competition scheme (SCS) are drawn for a one-dimensional problem with three clusters at 1.0, 2.0, and 4.0.
Larger values ofb imply smaller variance and lead to harder partitioning of the input space.

470 E. Alpaydın / Neural Networks 11 (1998) 467–477

in the E-step we have

hkj ¼
exp ¹ (1=2j2)kxk ¹ mjk

2
h i

∑
l

exp ¹ (1=2j2)kxk ¹ mlk
2

h i (19)

which is SCS’spkj for b ; 1/2j2, as also noted by Bezdek
and Pal (1995). In the case of Gaussian Mixtures (GM), this
variance term can be estimated to maximize the likelihood
during the M-step as

j2 ¼
∑

j
gj

1
d

∑
k

hkjkxk ¹ mjk
2

∑
k

hkj

2664
3775 (20)

If hkj is hardened to the extreme values of zero/one by taking
a maximum,hkj reduces tobkj of hardc-means algorithm, as
noted by Duda and Hart (1973) (p. 201).

An online version to update the cluster centers can also be
defined:

Dmj ¼ hhkj
(xk ¹mj)

j2 (21)

which implements gradient-ascent for the maximum like-
lihood estimate:

max
m

∑
k

log
∑

j
gj exp ¹

1
2j2kxk ¹ mjk

2
� �

(22)

6. Numerical experiments

Bezdek and Pal (1995) compare hard LVQ and soft SCS
and ↓ FLVQ on the IRIS dataset. Inputs are four-dimen-
sional real vectors and there are three classes. The projec-
tion of the dataset on the first two principal directions is
given in Fig. 3. The aim is to use an unsupervised algorithm
to find three cluster centers and then check whether these
three centers converge to the class centers by classifying
patterns to the class of the nearest center.

Here we report results found by Bezdek and Pal using
hard LVQ, SCS, and↓ FLVQ and compare them with the
results we found using EM on Gaussian Mixtures. We have
two sets of runs. In the first set, we do not take into account
covariances and use Euclidean distance. In the second set,
we take into account covariances and use the Mahalanobis
distance. In each set, to form a base for comparison, we use
the given class labels (instead of estimating them through
the memberships) and compute the ideal sample means and
the confusion matrix. Such results are denoted as SM.

Because all of the former use Euclidean distance, in the
case of Gaussian mixtures too, in the first set of runs, we
start by assuming diagonal covariance matrices,S j ¼ j2I,
and estimatej2 from the sample (Eq. (20)). In all methods,
centers are initialized as in Table 1, as used by Bezdek and
Pal. The results are given in Table 2 where we see that the
result by GM is not significantly different from other
approaches.

Fig. 3. IRIS dataset projected on the two principal components. These two directions explain 98% of the variance.

471E. Alpaydın / Neural Networks 11 (1998) 467–477

As seen in Fig. 3, the dimensions are highly correlated
and variances are not equal so Euclidean distance is not
ideal and the covariance information should be taken into
account, extending Euclidean distance to Mahalanobis dis-
tance. One can have one covariance matrix shared by all
clusters or have one separate for each cluster. For these two
cases, we use supervised label information, estimate centers
and covariance matrices and see that the substitution error
decreases considerably (Table 3).

We then use EM to estimate the centers and covariances
in an unsupervised manner; we do not use the given labels
but estimate them as the posteriorshkj. We assume equal
priors. The centers are initialized as given in Table 1. In the
case of the shared covariance matrix, it is initialized as the
identity matrix and Eq. (18) is used in the M-step. In the
case where different clusters have arbitrary different
covariance matrices, they are again initialized as the identity
matrix and are updated during the M-step as given in
Eq. (17). Final means, covariance matrices, substitution
error and the confusion matrices are given in Table 4. Log
likelihood and errors are given as a function of EM itera-
tions in Fig. 4. Note that with an increasing number of
parameters likelihood increases, meaning a better fit to the
training data which does not necessarily imply better separa-
tion of classes. This is because likelihood is an unsupervised
measure whereas error is supervised and we optimize the
former.

To test the robustness of GM to initial values, we run the

three variants of Gaussian mixtures starting from ten ran-
domly chosen centers on the IRIS dataset. The three variants
are (i) diagonal shared covariance matrixS j ¼ S ¼ j2I, (ii)
shared full covariance matrixS j ¼ S, and (iii) separate
covariance matricesS j for different clusters. Results are
given in Table 5. In all three cases, starting from different
initial centers, final confusion matrices were always the
same implying that the initial state is not critical.

With only 50 samples per cluster, we cannot have an
accurate estimation of a separate covariance matrix that
has ten free parameters per cluster. For the case of a shared
covariance matrix, we pool all 150 samples to estimate the
shared ten parameters and this leads to better generalization.
Although as we see in Fig. 3, Class 1 has different spread
than Classes 2 and 3, we see in Table 3 that this assumption
of common covariance is not harmful for this particular
sample. In the case of a diagonal covariance matrix, we
pool all 150 samples to estimate one parameter but though
this has low variance, clearly it is very biased and is not
accurate.

7. Supervised training of cluster parameters

Vector quantization can be seen as a mapping from the
original input space to a new space whose dimensions are
the associations,hj. Using a Gaussian membership function,
we have:

hj ¼
exp ¹ (1=2j2)kx ¹ mjk

2
h i

∑
l

exp ¹ (1=2j2)kx ¹ mlk
2

h i (23)

In most applications, finding the associationshj is an inter-
mediate step before computing final output(s), e.g., for func-
tion approximation or classification. The output is generally

Table 1
Initial centers used in experiments

Indices Coordinates

v1 5.006 3.428 1.462 0.246
v2 5.936 2.770 4.260 1.326
v3 6.588 2.974 5.552 2.026

Table 2
Centroids and confusion matrices when Euclidean distance is used. Results for Sample Mean, hard LVQ, SCS, and↓ FLVQ are taken from Bezdek and Pal
(1995). Results using EM on Gaussian mixtures are added

Final centroids Confusion matrix

SM 5.006 3.418 1.464 0.244 50 0 0
5.936 2.770 4.260 1.325 0 46 4
6.588 2.974 5.552 2.026 0 7 43

LVQ 4.999 3.420 1.463 0.248 50 0 0
5.873 2.746 4.366 1.414 0 47 3
6.813 3.079 5.682 2.083 0 13 37

SCS 5.006 3.425 1.465 0.247 50 0 0
5.884 2.743 4.370 1.414 0 47 3
6.776 3.047 5.634 2.031 0 13 37

↓ FLVQ 5.000 3.420 1.474 0.252 50 0 0
5.884 2.748 4.371 1.411 0 47 3
6.821 3.064 5.697 2.063 0 14 36

GM j2 ¼ 0.134 5.006 3.418 1.464 0.244 50 0 0
5.886 2.744 4.381 1.424 0 47 3
6.828 3.065 5.697 2.056 0 14 36

472 E. Alpaydın / Neural Networks 11 (1998) 467–477

taken as a linear weighted sum of these associations:

Oi ¼
∑c

j ¼ 1
Wij hj (24)

To implement the required mapping, we need to find them j,
j andWij. We can use one of the techniques proposed before
to find them j in an unsupervised manner, use a heuristic to
find j, e.g., half of the average inter-center distance, and
then use a supervised method to find theWij. This approach
is known as radial-basis functions in the neural network
literature (Moody and Darken, 1989). In the fuzzy-logic
literature (Jou, 1993), this is a multi-input–multi-output

system based on the Gaussian membership function,
product-inference rule (the product of exponentials is
equal is equal to the exponential of a sum), a singleton
fuzzifier (centerm j and spread parameterj2) and a center
average defuzzifier.

A better idea seems to train also the cluster center and
spread in a supervised way, or finetune them in a supervised
way after they have been trained in an unsupervised way. In
function approximation, using the mean square error as the
error measure with linear output units:

min
m,j,W

∑
i

(Ri ¹ Oi)
2 (25)

Table 3
Centroids and confusion matrices when covariance information is used. As in a supervised case, we use labels and compute the ideal values from the sample
(denoted SM)

Final centroids Final covariances Confusion matrix

SM, S j ¼ S 5.006 3.418 1.464 0.244 0.265 0.093 0.167 0.039 50 0 0
5.936 2.770 4.260 1.326 0.093 0.116 0.055 0.033 0 48 2
6.588 2.974 5.552 2.026 0.167 0.055 0.185 0.043 0 1 49

0.039 0.033 0.043 0.042

SM, S1 5.006 3.418 1.464 0.244 0.124 0.100 0.016 0.011 50 0 0
0.100 0.145 0.012 0.011
0.016 0.012 0.030 0.006
0.011 0.011 0.006 0.012

S2 5.936 2.770 4.260 1.326 0.266 0.085 0.183 0.056 0 48 2
0.085 0.099 0.083 0.041
0.183 0.083 0.221 0.073
0.056 0.041 0.073 0.039

S3 6.588 2.974 5.552 2.026 0.404 0.094 0.303 0.049 0 1 49
0.094 0.104 0.071 0.048
0.303 0.071 0.305 0.049
0.049 0.048 0.049 0.075

Table 4
Centroids and confusion matrices when covariance information is used with EM on Gaussian mixtures. We do not use labels but estimate them during the E-
step and in the M-step, we update class information using these soft labels. Hard LVQ, SCS, and↓ FLVQ do not use covariance information and are not
included in this comparison

Final centroids Final covariances Confusion matrix

GM, S j ¼ S 5.006 3.418 1.464 0.244 0.263 0.090 0.169 0.039 50 0 0
5.942 2.761 4.260 1.320 0.090 0.112 0.051 0.031 0 48 2
6.575 2.981 5.540 2.026 0.169 0.051 0.186 0.042 0 1 49

0.039 0.031 0.042 0.040

GM, S1 5.006 3.418 1.464 0.244 0.122 0.098 0.016 0.010 50 0 0
0.098 0.142 0.011 0.011
0.016 0.011 0.030 0.006
0.010 0.011 0.006 0.011

S2 5.917 2.779 4.208 1.299 0.275 0.096 0.186 0.055 0 45 5
0.096 0.092 0.091 0.043
0.186 0.091 0.203 0.062
0.055 0.043 0.062 0.033

S3 6.548 2.950 5.486 1.989 0.387 0.092 0.302 0.060 0 0 50
0.092 0.111 0.084 0.056
0.302 0.084 0.324 0.072
0.060 0.056 0.072 0.084

473E. Alpaydın / Neural Networks 11 (1998) 467–477

whereRi is the required output for theith output unit. By
gradient-descent, we get the following update rules:

DWij ¼ h(Ri ¹ Oi)hj

Dmj ¼ h
∑

i
(Ri ¹ Oi)hj(Wij ¹ Oi)

" #
(x ¹ mj)

j2 (26)

Dj can also be computed in this way if required. The dif-
ference between Eqs. (21) and (26) is that in the former case
we only look at the input distribution, whereas in the latter

case we also take into account the supervised error at the
output and the contribution of that cluster to the output. This
latter case where the training of cluster centers,m j, and
cluster weights,Wij, is coupled is clearly better than the
uncoupled case which ignores the useful information of
error on the outputs. Thus, the coupled approach is generally
to be preferred. This has also been shown previously for the
case of local linear models (Alpaydın and Jordan, 1996).

Here we give equations to train a supervised mapping
using gradient-based learning. It is also possible to extend
the probabilistic model of Gaussian mixtures for supervised

Table 5
Comparison of results using Gaussian mixtures over the IRIS dataset. These are averages of ten independent runs with randomly initialized centers. In all three
cases, standard deviations of errors and confusion matrices were zero

Parameters Log likelihood Errors Confusion matrix

S j ¼ S ¼ j2I 1 ¹404.3 17.0 50.0 0.0 0.0
0.0 47.0 3.0
0.0 14.0 36.0

S j ¼ S 10 ¹256.3 3.0 50.0 0.0 0.0
0.0 48.0 2.0
0.0 1.0 49.0

S j 30 ¹181.5 5.0 50.0 0.0 0.0
0.0 45.0 5.0
0.0 0.0 50.0

Fig. 4. Log likelihood and errors vs. EM iterations for the three cases of: (1) shared diagonal covariance matrix,j2I, marked as ‘*’; (2) shared covariance
matrix, S, marked as ‘þ ’; (3) separate covariance matrices,S j, marked as ‘D’. Higher likelihood does not necessarily imply lower error. The former is an
unsupervised measure whereas the latter is supervised.S j overfits andj2I underfits the data.

474 E. Alpaydın / Neural Networks 11 (1998) 467–477

learning and use EM to estimate the parameters. The
mixture components then correspond to experts (Jordan
and Xu, 1995) or latent, or hidden, causes (Bishop et al.,
1997) which, acting in combination, give rise to the
apparent complexity of the observed dataset.

8. Conclusions

The structural information due to a data point is carried
by all of thec distances to the cluster centers. This distance
depends both on the center positionsand the spread of data
around this center. Using Euclidean distance assumes that
the data are spread symmetrically radially around the center.
The spread parametersm in FCM (and FLVQ) andb in SCS
cause a symmetric effect around a cluster center. Further-
more, these parameters cannot be estimated from the data
but should be set by the designer. When this assumption
does not hold, the covariance of the data should be estimated
and taken into account. Using Gaussian mixtures and the
EM algorithm allows this in that one can estimate the
centersand the covariances that maximize the likelihood
of the given sample.

As in any maximum likelihood scheme, having too many
free parameters with insufficient data may lead to overfit-
ting. One can then use a regularization approach and limit
the number of parameters. One way to do this in the case of
Gaussian mixtures is to use one covariance matrix shared by
all clusters. One can further regularize by assuming all
inputs to be uncorrelated, which implies a covariance matrix
with zero off-diagonals.

A similar approach is to assume a Bayesian prior for the
parameters to effectively reduce the variance due to the data
sample and then use EM to obtain a Maximum A Posteriori
(MAP) estimate. This is especially useful if good priors are
known and/or the data sample is small. Another approach to
decrease variance is to average the outputs of ensembles of
Gaussian mixture density estimators trained on bootstrap
replicates of the dataset (Ormoneit and Tresp, 1996).

The Gaussian mixture model can be extended and EM
can be used to generate a topographic map (Bishop et al.,
1997) or a supervised mapping (Jordan and Xu, 1995).

We also remark that vector quantization is generally an
intermediate step before finding a final output for which
supervision is possible. Thus, instead of an uncoupled
approach where we use an unsupervised method to find
the cluster parameters and use these clusters to learn the
mapping in a supervised manner, we advocate a coupled
approach where the cluster parameters are also trained (or
finetuned) in a supervised way, coupled to the learning of
the mappings. The uncoupled approach ignores the error at
the outputs which may lead to worse results.

Appendix A EM and Gaussian mixtures

Here we give a derivation of the EM algorithm as applied

to mixtures of Gaussians; for an alternative derivation, see
Duda and Hart (1973) (pp. 192–200). A comparison of the
EM algorithm and other algorithms for the learning of Gaus-
sian mixture models is given by Xu and Jordan (1996).

The Expectation–Maximization (EM) algorithm (Demp-
ster et al., 1977; Redner and Walker, 1984) is used in max-
imum likelihood estimation where the problem involves two
sets of random variables, of which one,X, is observable and
the other,Z, is hidden. The goal of the algorithm is to find
the parameter vectorF that maximizes the likelihood of the
observed values ofX, L(FlX). But in cases where this is not
feasible, we associate the extrahidden variables Z and
express the underlying model, using both to mazimize the
likelihood of the joint distribution ofX andZ, thecomplete
likelihood Lc(Flx, Z).

Since theZ values are not observed, we cannot work
directly with the complete data likelihoodLc, instead we
work with its expectation,Q , given the current parameter
valuesF t. This is the expectation (E) step of the algorithm.
Then in the maximization (M) step, we look for the new
parameter values,F tþ1, that maximize this. Thus:

E¹ step : Q (FlFt) ¼ E[Lc(Flx, Z)lx,Ft)]

M ¹ step : Ft þ 1 ¼ arg max
F

Q (FlFt)

Dempster et al. proved that an increase inQ implies an
increase in the incomplete likelihood:

L(Ft þ 1lx) $ L(Ftlx)

In the case of mixtures, the hidden variables are the sources
of observations, i.e., which observation belongs to which
cluster. If these had been given (for example as class labels
in a supervised setting), we would have known which para-
meters to adjust to fit that data point. The EM algorithm
works as follows. During the E-step we estimate these labels
given our current knowledge of classes and in the M-step,
we update our class knowledge given the ‘soft labels’ deter-
mined in the E-step. It is these soft labels that correspond to
the soft associations used in vector quantization.

We define a vector ofindicator variables zk ¼ { zk1,...,zkc}
wherezkj ¼ 1 if xk belongs to clusterq j, and zero otherwise.
z is a multinomial distribution fromc categories with prior
probabilitiesP(q j) ; gj. Then

P(zk) ¼
∏c

j ¼ 1
g

zkj

j (27)

The likelihood of an observationxk is equal to its probability
specified by the component that generated it:

p(xklzk) ¼
∏c

j ¼ 1
pj(xk)zkj (28)

pj(xk) is the probability thatxk is generated by component
qj , also denoted asp(xklq j). The joint density is

p(xk, zk) ¼ P(zk)p(xklzk)

475E. Alpaydın / Neural Networks 11 (1998) 467–477

and the complete data likelihood of the iid samplex is

Lc(Flx, Z) ¼ log
∏n

k¼ 1
p(xk, zklF)

¼
∑

k

log p(xk, zklF

¼
∑

k

log P(zklF) þ log p(xklzk,F)

¼
∑

k

∑
j

zkj[log gj þ log pj(xklF)] ð29Þ

E-step: We define

Q (FlFt) ; E[log P(X,Z)lx,Ft]

¼ E[Lc(Flx, Z)lx,Ft)]

¼
∑

k

∑
j

E[zkjlx,Ft][log gj þ log pj(xklFt)]

Note that

E[zkjlx,Ft] ¼ E[zkjlxk,F
t]

¼ P(zkj ¼ 1lxk,Ft)

¼
p(xklzkj ¼ 1,Ft)P(zkj ¼ 1lFt)

p(xklFt)

¼
pj(xklFt)gj∑
l

pl(xklFt)gl

¼
p(xklqj ,Ft)P(qj)∑
l

p(xklql ,Ft)P(ql)

¼ P(qj lxk,Ft) ; hkj ð30Þ

Thus the expected value of the hidden variable,E[zkj], is the
posterior probability thatxk is generated by componentq j.

M-step: We maximizeQ to get the next set of parameter
valuesF tþ1:

Ft þ 1 ¼ arg max
F

[Q (FlFt)]

Q (FlFt) ¼
∑

k

∑
j

hkj[log gj þ log pj(xklFt)]

¼
∑

k

∑
j

hkj log gj þ
∑

k

∑
j

hkj log pj(xklFt) ð31Þ

As is generally done, we can assumegj ¼ 1/c to be constant
and not estimate them. Note that the first term is indepen-
dent of the components and thus can be dropped while esti-
mating the parameters of the components. We solve for

=F

∑
k

∑
j

hkj log pj(xklF) ¼ 0 (32)

If we assume Gaussian components,pj(xklF),N (mj ,Sj), we
get:

mt þ 1
j ¼

∑
k

hkjxk∑
k

hkj

St þ 1
j ¼

∑
k

hkj(xk ¹ mt þ 1
j)(xk ¹ mt þ 1

j)T

∑
k

hkj

ð33Þ

When pj(xklF),N (mj ,S), the case of a shared covariance
matrix, Eq. (32) reduces to

min
m

∑
k

∑
j

hkj(xk ¹mj)TS¹ 1(xk ¹ mj) (34)

which is equivalent to Eq. (7) of fuzzy vector quantization
with hkj replacing (ukj)

m. When pj(xklF),N (mj ,j2I), the
case of a shared diagonal matrix, we have

min
m

∑
k

∑
j

hkjkxk ¹mjk
2 (35)

which is Eq. (4) of hard vector quantization withhkj repla-
cing bkj.

The model also allows estimating thegj which corre-
sponds to includinggj into the parameter vectorF. We
note that the second term of Eq. (31) is independent ofgj

and thus can be dropped. Then using the constraint that
S jgj ¼ 1 as the Lagrangian, we solve for:

=gj

∑
k

∑
j

hkj log gj ¹l
∑

j
gj ¹ 1

 !
¼ 0 (36)

and get

gj ¼
1
n

∑
k

hkj: (37)

References

Alpaydın E., & Jordan M.I. (1996). Local linear perceptrons for classifi-
cation.IEEE Trans. Neural Networks, 7, 788–792.

Bezdek J.C., & Pal N.R. (1995). Two soft relatives of learning vector
quantization.Neural Networks, 8, 729–743.

Bishop, C.M., Svense´n, M. & Williams, C.K.I. (1997). GTM: A principled
alternative to the self-organizing map. In M.C. Mozer, M.I. Jordan &
T. Petsche (Eds.),Advances in neural information processing systems9.
Cambridge, MA: MIT Press.

Dempster A.P., Laird N.M., & Rubin D.B. (1977). Maximum likelihood
from incomplete data via the EM algorithm.J. R. Stat. Soc. Ser. B, 39,
1–38.

Duda, R.O. & Hart, P.E. (1973).Pattern classification and scene analysis.
New York: Wiley.

Jordan M.I., & Xu L. (1995). Convergence results for the EM
approach to mixtures of experts architectures.Neural Networks, 8,
1409–1431.

476 E. Alpaydın / Neural Networks 11 (1998) 467–477

Jou, C.-C. (1993). Comparing learning performance of neural networks and
fuzzy systems. InProceedings of the IEEE International Conference on
Neural Networks(Vol. 2, pp. 1028–1033). IEEE Press, Piscataway, NJ.

Kohonen, T. (1995).Self-organizing maps. Berlin: Springer.
Moody J., & Darken C. (1989). Fast learning in networks of locally tuned

processing units.Neural Comput., 1, 281–294.
Ormoneit, D. & Tresp, V. (1996). Improved Gaussian mixture density

estimates using Bayesian penalty terms and network averaging.
In D.S. Touretzky, M.C. Mozer & M.E. Hasselmo (Eds.),Advances

in neural information processing systems8. Cambridge, MA: MIT
Press.

Redner R.A., & Walker H.F. (1984). Mixture densities, maximum like-
lihood and the EM algorithm.SIAM Rev., 26, 195–239.

Xu L., & Jordan M.I. (1996). On convergence properties of the EM
algorithm for Gaussian mixtures.Neural Comput., 8, 129–151.

Yair E., Zeger K., & Gersho A. (1992). Competitive learning and soft
competition for vector quantizer design.IEEE Trans. Signal Process.,
40, 294–309.

477E. Alpaydın / Neural Networks 11 (1998) 467–477

