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1 Introduction

W
HEN we have two random variables X and Y , if they are independent, knowing the value of one has

no effect on the other, but when they are dependent, knowing Y has an effect on the probability

distribution of X—we use P (X |Y ) instead of P (X). Previously we also talked about the covariance,

Cov(X,Y ), to measure the relationship between X and Y .

Now we discuss regression where the aim is to estimate the value of one random variable given the

value of one or more other random variables. We write

Y = f(X |Θ) + ε (1)

where f [·) is the function that takes X as its argument and is defined in terms of some parameters Θ.

We assume that Y is a function of X and ε is the error term that makes up for the effect of factors

other than X that affect Y . For example X can be height and Y weight of a person and we believe that

height affects weight, but there are also other factors, such as, age, gender, and so on. There may be two

different people with exactly the same height but with different weight because they may differ in terms

of those other factors. We assume that E[ε] = 0 and Var(ε) = σ2; that is, we assume that those other

factors do not add any bias and that their effect is constant for everywhere in the X space.

In regression, we are given a sample of paired observations X = {(xi, yi)}
n
i=1

, and assuming equa-

tion (1), we want to find Θ such that this model has the best approximation ability. To measure this, we

define the concept of the sum of squared error (SSE):

SSE(Θ|X ) =

n
∑

i=1

(yi − ŷi)
2 (2)

where

yi = f(xi|Θ) (3)

The difference yi− ŷi is called the residual and SSE is the sum of squared residuals. We want to find

Θ∗ such that SSE is minimized:

SSE(Θ∗|X ) = min
Θ

SSE(Θ|X ) (4)

For every instantiation of Θ, we get a particular f(·|Θ) and that leads to a particular SSE on the

sample X . We can envisage SSE as a function in the space whose dimensions are the elements of Θ and

we want to find its minimum. That particular Θ∗ is called the least squares estimator.

For certain f(·), the optimization of Θ is easy and can be done analytically. Let us see an example.

2 Simple Linear Regression

In linear regression, we assume a linear model:

f(xi|α, β) = α+ βxi (5)
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and we are interested in the (a, b) that minimizes

SSE(a, b|X ) =
∑

i

(yi − ŷi)
2 =

∑

i

[yi − (a+ bxi)]
2 (6)

where a and b are the least squares estimators to α and β. Each (a, b) pair defines a line and incurs a

certain SSE. To find the minimum of SSE in the (a, b) space, we take its partial derivatives with respect

to the two parameters, set them equal to zero, and solve the two equations in two unknowns:

∂SSE

∂a
=

∑

i

(yi − (a+ bxi)) = 0 ⇒
∑

i

yi = n · a+ b
∑

i

xi

∂SSE

∂b
=

∑

i

(yi − (a+ bxi))xi = 0 ⇒
∑

i

yixi = a
∑

i

xi + b
∑

i

(xi)
2

These are called the normal equations and some manipulation will show that

a = y − bx (7)

b =

∑

i
(xi − x)(yi − y)
∑

i
(xi − x)2

where y =
∑

i
yi/n and x =

∑

i
xi/n.

SSE is never zero and its minimum value depends on the scale of yi. To measure the quality of fit in

regression, the R2 statistic is used:

R2 = 1−

∑

i
(yi − ŷi)

2

∑

i
(yi − y)2

(8)

ŷi is the estimate using regression with xi as the input. y is what we would have used as estimate for

yi if we do not have X and do not use regression. So if regression is useful, the sum of squared error

in the numerator is much smaller than the sum of squared error in the denominator and R2 value will be

close to 1; if regression is not useful, if X gives no information, then the two sums of squares would be

comparable and R2 will be close to 0.

3 Sampling Distributions of Least Square Estimators

The regression parameters a and b estimated using equation (8) are a function of the particular sample

we use, as does any estimator. Given a different sample from the same population, they will be different,

and how different they will be is defined by their sampling distributions.

Let us say A denotes the random variable as estimator to α and one particular instantiation is denoted

by a. B and b are similarly defined for β. It is known that A ∼ N(α, σ2

A
) where

σ2

A =

∑

i
x2
i

n
∑

i
(xi − x)2

σ2

and B ∼ N(β, σ2

B
) where

σ2

B =
1

∑

i
(xi − x)2

σ2

which implies that the least squares estimators are unbiased. An unbiased estimator to σ2 is

s2 =
SSE

n− 2
(9)

and it can be shown that (n− 2)s2/σ2 ∼ χ2
n−2. Using these, one can derive that

A− α

s
√
∑

i
x2
i
/n

∑

i
(xi − x)2

∼ tn−2

B − β

s/
√
∑

i
(xi − x)2

∼ tn−2

These sampling distributions can be used to define confidence intervals or test hypotheses on α or β.
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4 Prediction

We are given a sample of n paired observations and we find the least squares estimators, then we are

given a new x0 and asked to estimate y0. The point estimate is ŷ0 = a + bx0. What about its interval

estimate?

We discuss above the sampling distributions of a and b, that is, for different samples of size n, we get

different values for a and b, different instantiations of A and B. Now for the new x0 value, y0 will be

different for different a and b and will itself have a sampling distribution.

Let us start by defining a confidence interval for E[Y0|X = x0], also denoted as µY |x0
, where

Y0 = A+Bx0 + ε. It is what we get if we fit many different lines to different samples, evaluate them all

at the same x0, and take their average. Y0 is normally distributed with

E[Y0|X = x0] = E[A+Bx0] = α+ βx0

We have Y = A + BX , and hence A = Y − BX . Then Y0 = A + Bx0 can be rewritten as

Y0 = Y +B(x0 −X) and therefore

Var(µY0
) =

σ2

n
+ (x0 −X)2σ2

B =
σ2

n
+

(x0 −X)2
∑

i
(xi − x)2

where Cov(Y ,B) = 0. This is the sampling distribution of E[Y0|X = x0], which can be used to define

confidence intervals or test hypotheses. Note that the variance (and hence the error term) is a function of

x; notably, variance is smaller at the center around x and higher at the two ends.

Now what about the distribution of Y0 itself? This case can be viewed as adding ε noise on top of

E[Y0]. Because E[ε] = 0, the point estimate is the same and hence the mean of the sampling distribution,

but we also add Var(ε) = σ2 to the variance:

Var(Ŷ0 − Y0) = 1 +
σ2

n
+

(x0 −X)2
∑

i
(xi − x)2

5 Generalization

The basic simple linear regression model of equation (5) can be generalized in a number of ways.

In multiple linear regression, the response is a function of more than one random variable, for exam-

ple, two:

f(xi|α, β, γ) = α+ βxi + γzi (10)

In this case, the sample contains observation triples {yi, xi, zi}
n
i=1

, but the approach is the same.

Again we write the SSE:

SSE(a, b, c|X ) =
∑

i

[yi − (a+ bxi + czi)]
2 (11)

where a, b, c are estimators to α, β, γ, take the derivative with respect to them and set them equal to zero,

and solve the three equations in three unknowns. In this case, our fit is a plane.

The same model is also applicable in polynomial regression:

f(xi|α, β, γ) = α+ βxi + γx2

i (12)

where exactly the same approach can be used. Actually if we define zi ≡ x2
i , equations (10) and (12) are

the same—The plane in the two-dimensional (X,Z) space maps to a quadratic in the X space.

Using higher-order terms is one way of implementing nonlinear regression, other nonlinear basis

functions can also be used, such as:

f(xi|α, β, γ) = α+ βxi + γ exp(xi) (13)

where again exactly the same method can be used. Note however that it will not work for

f(xi|α, β, γ) = α+ βxi + exp(γxi) (14)

because the model is no longer linear in its parameters. In such a case, more sophisticated optimization

algorithms are needed.
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