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1 Introduction

H
YPOTHESIS testing is different from estimation in that we are not really interested in estimating the

value of an unknown population parameter but rather, we are given a claim, conjecture, assertion, or

hypothesis about the value of the population parameter, and we are asked whether the sample is consistent

with it or not.

What we would like to test is written as a null hypothesis and we calculate the probability of a statistic

assuming that the null hypothesis holds. If this probability—called the p value—is very small, we reject

the null hypothesis in favor of the alternative hypothesis; otherwise we accept the null hypothesis. The

fact that we reject a hypothesis does not imply that it is wrong, it just shows that the sample does not

favor it, and we may be unlucky and could have drawn a very rare sample. Or, the claim may be wrong

but we may accept it. Both of these are unwanted and we want to make our accept/reject decisions such

that those two types of errors do not happen frequently.

The four possibilities are:

Truth

Decision H0 true H0 wrong

Accept Correct Type II error (β)

Reject Type I error (α) Power (1− β)

Type I error is the probability of rejecting a true hypothesis and type II error is the probability of

accepting a wrong hypothesis. We want both to be as small as possible. Power is the probability of

rejecting a wrong hypothesis and we want it to be large.

Let us see an example.

2 Testing the Mean of a Single Population

Let us say somebody makes the claim that the mean of a population is 5. The way we proceed is to

calculate the point estimator to the mean, namely the sample average, and reject the claim if it is far away

from 5. We know that X will never be exactly 5 but somewhere close. How close can X be to µ is given

by the sampling distribution of X . Actually the (1 − α)100% confidence interval tells us where X lies

with respect to µ in (1 − α)100% of the time. So we accept the claim that the mean is 5 if 5 is in the

(1−α)100% confidence interval, and we reject if it lies outside. If we decide this way, we know that the

probability of wrongly rejecting, that is, the type I error, is α.

Now let us say actually µ is 7, but X can still be close to 5. In such a case, the probability that 5

falls in the confidence interval (even though the sample is drawn from a population with µ = 7) is the

probability of Type II error; note that to be able to calculate the type II probability we need to know

what the real value is. We see that the type II error decreases if real µ goes further and further away

from 5. The probability that 5 lies outside of this interval is the probability of correctly rejecting a wrong

hypothesis, namely, the power of the test.

To summarize, for

H0 : µ = µ0 vs. H1 : µ 6= µ0
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for some particular value of µ0, we use the fact that (under the null hypothesis that µ = µ0)

P

(

−zα/2 <
X − µ0

σ/
√
n

< zα/2

)

= 1− α (1)

and we accept H0 if µ0 ∈
(

X − zα/2
σ
√

n
, X + zα/2

σ
√

n

)

, and reject otherwise.

Because the alternative hypothesis is H1 : µ 6= µ0, this is called a two-sided test; we reject H0 :
µ = µ0 if X is much smaller than µ0 or much larger. The decision rule above implies that we reject if

|(X − µ0)/(σ/
√
n)| > zα/2, or equivalently, if 2P (Z > (X − µ0)/(σ/

√
n)) < α. Actually, this last

probability, 2P (Z > (X − µ0)/(σ/
√
n)), is called the p value and is the probability of seeing a sample p value

whose sample average is X or larger when the population mean is µ0.

In hypothesis testing, either someone specifies α (as an upper bound for type I error) and we make

a accept/reject decision depending on respectively whether the p value is larger/smaller than α, or no α
is specified and we just report the p value. This latter case is more informative because the p value is an

indicator of how much the sample supports the claim—the smaller the p value is, the more proof we have

that the null hypothesis is wrong.

Sometimes, the test is one-sided. If the claim is something of the sort “better than, faster than, superior

to,” and so on, and in such a case, we reject only for differences in one direction, or the reject region is

only one tail of the distribution (still with an upper bound of α).

For example for H0 : µ = µ0 vs. H1 : µ > µ0, the p value is P (Z > (X − µ0)/(σ/
√
n)), and

we reject if this probability is smaller than α. For H0 : µ = µ0 vs. H1 : µ < µ0, the p value is

P (Z < (X − µ0)/(σ/
√
n)), and we reject if this probability is smaller than α. We need to be careful

which of the two one-sided tests we use: Whatever is claimed and hence will be interesting or different or

surprising should be in H1 and H0 corresponds to the status quo—it is the rejection that is informative.

3 Generalization to Other Tests

The framework we discussed above can be generalized and made applicable to different scenario, which

we list below. The development of tests for these are straightforward given the content of Lecture 9 on

confidence intervals, and omitted to avoid repetition of very similar material:

• For the case above, if σ is unknown, we use s instead and the t distribution.

• The same approach can be used to devise tests for two populations where a two-sided test compares

the equality of the two means and one-sided tests compares the two means. Similarly a paired

comparison test can also be devised.

• One can test for the proportion of a single population, or compare the proportions of two popula-

tions by using the central limit theorem and testing means.

• One can decide on the sample size n given bounds for α and β for a given real value for the

parameter. In Lecture 9, we discussed how to calculate n for a given α and error; here β for a

given real parameter value replaces the error.

• One can devise tests for variance of a single population or compare the variances of two popula-

tions.

4 The Goodness-of-Fit Test

In the tests we discussed above, we tested for the value of a population parameter; those are called

parametric in the sense that they make an assumption about the distribution (generally normal) and test

for its parameters only. Now we discuss a nonparametric test where we make no assumptions about the

distribution. This makes it applicable in a wider domain but keep in mind that a nonparametric test is

not as good as a parametric test; that is, if a parametric test is available for a certain task, use it rather

than the corresponding nonparametric test because the parametric test will almost always have smaller
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type I and II errors and higher power. But the catch is that there are cases where no known distribution

is appropriate and hence no parametric test can be devised. Below we discuss the goodness-of-fit test

which is a widely-used nonparametric test.

This test uses cells where for each cell, there is a condition that should be satisfied and contains

a subset of the observations from the sample that satisfy its condition. These conditions are mutually

exclusive and exhaustive. According to the null hypothesis, the cells are expected to contain a certain

percentage of the distribution and if we multiply these percentages by the sample size, for each cell,

we can calculate an expected count for each cell. The goodness-of-fit test uses the sum of (normalized)

differences between these observed and expected counts.

For k cells where Oi and Ei are the observed and expected counts in cell i, the statistic

k
∑

i=1

(Oi − Ei)
2

Ei
∼ χ2

k−1
(2)

and as usual, either we are given an α and we reject if this sum is greater than χ2

k−1,α, or we calculate

and report the p value.

• The goodness-of-fit test tests the whole distribution or some property of the whole distribution, so

in that sense, it can be used for a variety of aims, e.g., test for uniformity, homogeneity, indepen-

dence, and so on.

• The test uses discrete cells and so if the population is a continuous distribution, it should be dis-

cretized. Note that there is no requirement that the cells contain equal (or roughly equal) number

of observations—there is a normalizer in the denominator. But cells should not contain zero or

very few (less than five) observations; if this is the case, one can merge cells. Too much merging

may smooth too much and lose information though. So one should be careful in choosing k and

defining the cell conditions.

• Although the observed values are always integers (because they care counts), the expected values

can be real-valued.

• If the cells are organized in a two dimensional grid (e.g., as in a contingency table) rather than in

one dimension, the degrees of freedom of the distribution should be adjusted to reflect the structure.

For r rows and c columns, the degrees of freedom is (r − 1) · (c− 1).
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