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L
ET us say we have a population drawn from some unknown probability distribution f(x) with some

parameter θ. When we do not know θ, we can estimate it using a random sample. We discuss two

types of estimation, namely, point and interval estimation.

1 Point Estimation

In point estimation, we estimate a single value that we denote by θ̂—in statistics, the hat indicates that

the value is an estimate. We collect a sample X = {Xi}ni=1
, and a point estimator d(X ) is a function

that takes the sample as its argument and returns a value. For example, if µ is unknown, X is a point

estimator and on a sample, the sample average is one specific value.

For the same population parameter, there can be different point estimators; for example, for µ, one

point estimator is the sample average, another may be the sample median. When there are multiple

possible estimators or when we are proposing a new one, we need a way of quantifying its goodness.

Let us say θ is the unknown population parameter and d(X ) (we write d in short) is the estimator for

θ. The mean square error of d as estimator for θ is defined as mean

square

errorr(d, θ) = E[(d− θ)2] (1)

The estimate d can be larger or smaller than θ and we square the difference so that it ia always

nonnegative (square is easier to manipulate than the absolute value of the difference), and we want to

look at the average performance in general, and not on just one specific sample, so we take the expected

value over all possible samples of size n (but of course, all should be drawn from the same population

with the same θ).

Let us rewrite equation (1):

r(d, θ) = E[(d− θ)2]

= E[(d− E[d] + E[d]− θ)2]

= E[(d− E[d])2] + (E[d]− θ)2 + 2(E[d]− θ)E[d − E[d]]

Remember that θ is a constant; d is a random variable but E[d] is a constant, and so we have

E[E[d]] = E[d]. Hence E[d− E[d]] = 0 and the cross-term disappears, and we are left with bias and

variance

r(d, θ) = E[(d− E[d])2]
︸ ︷︷ ︸

variance of d

+ (E[d]− θ)2
︸ ︷︷ ︸

bias of d squared

(2)

The first term is the variance of d, that is, how much the different d calculated on different samples

vary around their expected value E[d]. Variance is a measure of uncertainty and we want to decrease it.

The second term is the bias of d, that is, how much the expected value of d differs from the parameter

it is estimating. If E[d] = θ, d is an unbiased estimator, that is, though on any sample, the calculated

d may be different from θ, we know that over all, it is correct. We also want the bias to be as small as

possible, and if possible we want our estimator to be unbiased.
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Let us see some examples: X is a point estimator for µ. We know (see Lecture 7) that E[X] = µ, so

X is an unbiased estimator for µ. We also know that Var(X) = σ2/n, so the mean square error is

r(X,µ) = σ2/n (3)

Let us consider another estimator for µ as X1, that is, the first instance in my sample (Remember that

the sample is unordered, so X1 is not the minimum, it is one random instance from the sample). In this

case E[X1] = µ, so this is also unbiased; but Var(X1) = σ2 and hence the mean square error is σ2. That

is why the sample average is a better estimator than a single instance, because it has smaller variance

(because it uses the whole sample and not just a single instance).

One point estimator for σ2 is the sample variance s2 defined as

s2 =

∑n
i=1

(Xi −X)2

n− 1

Let us see if it is unbiased. We start by

n∑

i=1

(Xi −X)2 =
∑

i

(Xi − µ+ µ−X)2

=
∑

i

(Xi − µ)2 − n(X − µ)2

Then

E[s2] = E

[∑n
i=1

(Xi −X)2

n− 1

]

=
1

n− 1

(
∑

i

E[(Xi − µ)2]− nE[(X − µ)2]

)

=
1

n− 1

(
nσ2 − n(σ2/n)

)
=

1

n− 1
(n− 1)σ2 = σ2

where we used the fact that E[(Xi − µ)2] = Var(Xi) = σ2 and E[(X − µ)2] = Var(X) = σ2/n. The

fact that E[s2] = σ2 shows that s2 is an unbiased estimator for σ2, and also explains why we divide

by n − 1 and not n, if we divided by n, it would be a biased estimator—actually it is an asymptotically

unbiased estimator because as n goes to infinity, (n− 1)/n converges to 1.

2 Interval Estimation

The point estimate returns a single value but we know that from the same population, if we draw another

sample, there will be a different point estimate value (as given by the sampling distribution of the point

estimating statistic—see Lecture 8). In interval estimation, we estimate an interval [θ̂L, θ̂U ] that includes

the unknown θ with a high probability as specified by a parameter α. The length of this interval defines

the uncertainty we have in estimating the unknown parameter.

2.1 Mean of a Single Population

Let us start with the case of a single population whose mean µ is unknown. To get the interval estimator,

we use the sampling distribution of the point estimator. For µ, a point estimator is X and assuming σ2 is

known, we have from Lecture 8 that
X − µ

σ/n
∼ Z

Given α, in defining the (1− α)100% confidence interval, we make use of the sampling distribution

and α:

P

(

−zα/2 <
X − µ

σ/
√
n

< zα/2

)

= 1− α (4)
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For example when α = 0.05, 95% of Z lies between −z0.025 = −1.96 and z0.025 = 1.96. Then we

leave the population parameter we are interested in alone and move all the things whose values we know

outside and get

P

(

X − zα/2
σ√
n
< µ < X + zα/2

σ√
n

)

= 1− α (5)

Hence,
(
X − zα/2(σ/

√
n), X + zα/2(σ/

√
n)
)

is the (1− α)100% confidence interval for µ.

Remember that X is the point estimator; the confidence interval can be viewed as indicating our

uncertainty regarding our point estimate. We know that our point estimate will always be wrong, but

how much it can be off is given by the confidence interval. The confidence interval states that if we draw

samples of size n from the same population and calculate intervals like that for all, in (1 − α)100% of

the time, the actual (unknown) µ will fall in the interval.

Because it is a measure of uncertainty, we want intervals to be as small as possible while having 1−α
as large as possible. We can view zα/2(σ/

√
n) as the error term and we see that this term increases with

σ (as the variance in the original population increases so does the variance of X) and decreases with
√
n

(as the sample size increases, the different samples become more alike and statistics calculated from them

get similar). Actually if we have a bound b as to how large the error term should be, we can calculate

how large n should be:

b ≤ zα/2
σ√
n
⇒ n ≥ ⌈

(
zα/2σ/b

)2⌉ (6)

Above we assume that σ is known which is not very likely; if we do not know µ, we do not know σ
either. When we do not know σ, we plug the sample standard deviation s in its stead and we know from

Lecture 8 that (X − µ)/(s/
√
n) is t distributed with n− 1 degrees of freedom. In such a case, we have

P

(

−tα/2,n−1 <
X − µ

s/
√
n

< tα/2,n−1

)

= 1− α

P

(

X − tn−1,α/2
s√
n
< µ < X + tn−1,α/2

s√
n

)

= 1− α (7)

Let us now consider a different setting. We draw s sample of size n from a population whose mean

is unknown (assume σ is known) and then using this sample, we would like to make a prediction about

the next, n+1st observation X0. The point estimator would be X , that is, the sample average over the n
observations. The confidence interval for X0 is called the prediction interval. We define a new random

variable X ′ = X0 −X where E[X ′] = µ − µ = 0 and Var(X ′) = Var(X0) + Var(X) = σ2 + σ2/n
(X0 and X are independent). Hence

(X0 −X)− 0
√

σ2 + σ2/n
∼ Z

which we use to define the (1− α)100% confidence interval for the next observation X0: prediction

interval

P
(

X − zα/2σ
√

1 + 1/n < X0 < X + zα/2σ
√

1 + 1/n
)

= 1− α (8)

If we do not know, we use s instead of σ, and tn−1 instead of Z . Prediction interval can be used

for outlier detection. An outlier is an observation that is very much different from the other observations outlier de-

tectionand generally is a result of faults or errors; we would like to detect such outliers and discard them as

otherwise they can corrupt the statistics we calculate over the sample. Given the n previous observations

(for large enough n) if the n + 1st do not lie in the prediction interval, we can consider it as outlier and

discard.

2.2 Difference of Means of Two Populations

Let us say we have two populations with unknown means µ1 and µ2 and we want to compare them. The

variances may be known or unknown as we will see shortly. In comparing two means, we look at their

difference µ1 − µ2, which is what we want to estimate.

We collect two independent random samples of sizes n1 and n2 using which we calculate X1 and

X2 respectively, and the point estimator to µ1 − µ2 is X1 −X2. To get the interval estimator, we need

the sampling distribution of the point estimator.
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We know that X1 ∼ N(µ1, σ
2

1
/n1) and X2 ∼ N(µ2, σ

2

2
/n2), then E[X1 − X2] = µ1 − µ2 and

Var(X1 −X2) = σ2

1
/n1 + σ2/n2 and therefore

(X1 −X2)− (µ1 − µ2)
√

σ2

1
/n1 + σ2/n2

∼ Z

So the (1− α)100% confidence interval for µ1 − µ2 is

P

(

X1 −X2 − zα/2

√

σ2

1
/n1 + σ2/n2 < µ1 − µ2 < X1 −X2 + zα/2

√

σ2

1
/n1 + σ2/n2

)

= 1− α

(9)

This assumes the variances are known; if they are not, they are estimated and plugged in and we use

the t distribution instead of Z .

For example, let us say we draw two random samples from two populations whose means are equal,

that is, µ1 = µ2. In such a case, we will not have X1−X2 = 0, but we expect the interval (X1−X2)±
zα/2

√

σ2

1
/n1 + σ2/n2 to contain zero.

2.3 Paired Difference of Means of Two Populations

Let us say we want to compare the success of students in two courses Phys101 and Math101. We can

do this as above, by first randomly choosing n1 students and recording their grades for Phys101 and

then randomly choosing another n2 students and recording their Math101 grades, and then looking at the

difference between the two average grades.

However we know that the grade of student in a course is not only influenced by the course but by all

sorts of factors that have an effect on the student or on the environment, so in checking for the difference

between the courses, if possible, we would like to set equal all other factors that may have an effect. If

the Phys101 grades are by a different set of students, any difference we detect may not be because of the

difference of the courses but may be because of the students. So then a better strategy would be to choose

n students that take both courses and for each student, look at the difference at the observation level and

then check for the average of these differences, rather than averaging samples separately and looking at

the difference of the averages. This is called pairing.

We collect i = 1, . . . , n observations from two populations and in each observation, we use di =
X1i −X2i. A (1− α)100% confidence interval for µd = µ1 − µ2 is

P
(
d− tn−1,α/2sd/

√
n < µd < d+ tn−1,α/2sd/

√
n
)
= 1− α (10)

where d and sd are the average and standard deviation of di.
Let us consider di. If X1i and X2i are independent, then Var(di) = Var(X1i) + Var(X2i), but

in pairing, because they come from the same source (e.g., student), they are dependent, and actually

they are positively correlated: If a student is smart or lives in conditions that are suitable for studying,

his/her grades will be high for both courses and if not, his/her grades will be low for both courses, that is,

Cov(X1i, X2i) > 0. Hence, Var(di) = Var(X1i)+Var(X2i)−2Cov(X1i, X2i) < Var(X1i)+Var(X2i).
This is the advantage of pairing.

Note that pairing is not always possible and should be used with care; we need to make sure that

Cov(X1i, X2i) > 0 holds. In particular, note that from two samples of total size of n1+n2 observations,

we get a sample of size n, which implies a decrease in sample size and hence in the degrees of freedom.

2.4 Proportions as Means

Remember that even if Xi are not normal, unless n is very small (n ≥ 30), we can still write (X −
µ)/(σ/n) ∼ Z due to the central limit theorem. We know from earlier lectures that this is for example

true for the binomial distribution which is the sum of 0/1 Bernoullis.

Let us say p0 is the unknown probability of “success” for Bernoulli and we want to estimate it, for

example, it is the probability of heads for tossing a particular coin. We toss the coin n times and see

X heads. The point estimator for p0 is p̂0 = X/n. To get the interval estimator, we need the sampling

distribution of p̂0.
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X/n = X1/n+X2/n+ · · ·+Xn/n where Xi ∈ {0, 1} (E[Xi] = p0 and Var(Xi) = p0(1−p0)) and

from the central limit theorem, X/n is approximately normal. E[p̂0] = np0/n = p0 (p̂o is an unbiased

estimator) and Var(p̂0) = np0(1 − p0)/n
2 = p0(1 − p0)/n. Therefore p̂0 ∼ N(p0, p0(1 − p0)/n) and

p̂0 − p0
√

p0(1− p0)/n
∼ Z (11)

and we can write a (1− α)100% confidence interval for p0 as

P
(

p̂0 − zα/2
√

p̂0(1− p̂0)/n < p0 < p̂0 + zα/2
√

p̂0(1− p̂0)/n
)

= 1− α (12)

Note how we used p̂0 instead of p0 in the variance term—this is not ideal but inevitable, because the

unknown parameter of Bernoulli defines both the mean and the variance.

Similarly one can derive the point and interval estimators for the difference of two proportions.

2.5 Variance of a Single Population

Assume we have a normal population whose variance σ2 is unknown. We collect a sample of size n
and the point estimator is the sample variance s2. To get the confidence interval, we need the sampling

distribution of the point estimator which is (n−1)s2/σ2 ∼ χ2

n−1
, which we use to define a (1−α)100%

confidence interval for σ2:

P

(

χ2

n−1,1−α/2 <
(n− 1)s2

σ2
< χ2

n−1,α/2

)

= 1− α

P

(

(n− 1)

χ2

n−1,α/2

s2 < σ2 <
(n− 1)

χ2

n−1,1−α/2

s2

)

= 1− α (13)

Note that unlike for the case of means (which uses symmetric Z or t) where the interval is calculated

by adding two error terms (one less than, one greater than 0) to the point estimate, here with the χ2

distribution, the interval is calculated by multiplying the point estimate by two factors (one smaller than,

one larger than 1).

2.6 Ratio of Variances of Two Populations

When we have two populations and want to compare their variances, we look at their ratios (rather than

differences as we do with the means). We collect two independent samples of sizes n1 and n2 and the

point estimator for σ2

1
/σ2

2
is s2

1
/s2

2
. To get the interval estimate, we need the sampling distribution, and

we know from Lecture 8 that
σ2

2
s2
1

σ2

1
s2
2

∼ Fn1−1,n2−1

which we use to define a (1 − α)100% confidence interval for σ2

1
/σ2

2
:

P

(

Fn1−1,n2−1,1−α/2 <
σ2

2
s2
1

σ2

1
s2
2

< Fn1−1,n2−1,α/2

)

= 1− α

P

(
1

Fn1−1,n2−1,α/2

s2
1

s2
2

<
σ2

1

σ2

2

< Fn1−1,n2−1,α/2
s2
1

s2
2

)

= 1− α (14)

where we used the fact that Fn1−1,n2−1,1−α/2 = 1/Fn1−1,n2−1,α/2. Note that as with the single pop-

ulation case, the two bounds of the interval is found by multiplying the point estimate with two factors.

For example, if we collect two samples from two populations where the first population has twice the

variance of the second one, s2
1
/s2

2
we calculate may not be equal to two, but with probability 1 − α, the

confidence interval above will contain two.
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