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1 Population vs. Sample

Given a random experiment, the population consists of the whole set of observations. Populations may

be very large and even infinite. Sampling is the process of randomly choosing an observation from

the population; a sample is the set of such instances and is generally a small subset of the population.

Any value calculated from the sample is a statistic and in statistical inference, we would like to extract

information about the population from the sample.

For example, let us say we are carrying out a healthy weight study of college students in Turkey. In

such a case, our population is the set of all college students in Turkey, but because we cannot possibly

observe and carry measurements on this whole population, we choose a random sample. We calculate

statistics on this sample, for example, we can calculate the body mass index (BMI) values1 on this sample

and infer about the BMI values in the whole population from this sample. For example, the average we

calculate over the sample gives us information about the mean of the population, and the range of values

in the sample gives us information about the variance of the population distribution.

Each observation in the sample is the result of a random selection and as such is represented by a ran-

dom variableX having the (unknown) population distribution f(x). The sample X = {X1, X2, . . . , Xn}
therefore is a set of random variables and any statistic calculated from the sample, for example, their av-

erage, is also a random variable. It is very important that the sample be unbiased and reflects as much

as possible the full characteristics of the population. The sample should be a random sample where the

observations are independent and they are all drawn from the same underlying population; hence we

write the joint probability of the sample as

f(x1, x2, . . . , xn) = f(x1) · f(x2) · · · f(xn) (1)

As another example, consider testing. For quality control, a manufacturer cannot possibly test all

the items coming out of the production line, because testing is costly and sometimes testing destroys the

item. Instead, a small random sample is taken and tested, and the aim is to infer about the quality of the

whole population from this small sample.

2 Some Example Statistics

There are certain statistics that we calculate from the sample and they give us a lot of information about

the underlying population.

The sample average is defined as

X =

∑n
i=1 Xi

n
(2)

which is sometimes denoted as m.

The sample variance is defined as

s2 =

∑n
i=1(Xi −X)2

n− 1
(3)

1Body Mass Index is weight in kq/(height in m)2, and someone with BMI over 25 is considered overweight; see

http://www.nhlbi.nih.gov/health/educational/lose wt/BMI/bmi-m.htm.
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and its square root is the sample standard deviation. We will later discuss why we divide by n − 1, and

not n.

Generally, when we collect data, for example, after a set of experiments, we summarize the sample

and report its sample average and standard deviation, i.e., as m ± s. But this is meaningful only if the

sample has a single group symmetric around the average, for example, if it is approximately normal.

Otherwise, just these two numbers are not enough and we need to display the whole sample, for example

by plotting its histogram.

A sample may contain noisy observations. An outlier is a value that is very much different from other

observations, and may arise as a result of errors in transmission or recording, for example, typing errors,

faulty sensors, and so on. Outliers may have a harmful effect on the statistics and the idea in robust

statistics is to use statistics minimally affected by noise. For example, as a measure of central tendency,

the sample median is more robust than the sample average.

The sample median is the value halfway when sorted. Let us say we sort the Xi values so that X(1)

is the smallest, i.e., X(1) ≡ minni=1 Xi, and X(n) is the largest: X(n) ≡ maxni=1 Xi—this is called order

statistics. Then the sample median is

Xmedian =

{

X((n+1)/2) if n is odd

(X(n/2) +X(n/2+1))/2 if n is even
(4)

For example, given the sample {2, 1, 3}, both the average and median is 2, but if the sample is

{2, 1, 30}, the median is still 2 but the average is 11. We do not want single instances to have such a large

effect on our inferences. Note that the sample variance is not robust to outliers either.

If we want to report the range of possible values, it is not a good idea to report it as the range from the

minimum to the maximum, again due to possible outliers in the data. A quantile q(f) is defined as the

value such that the fraction f of the observations in the sample is less than or equal to q(f). For example,

sample median is q(0.5). q(0.25) and q(0.75) are the lower and upper quartiles and contains half of the

sample between them and such, they may be used instead of m± s as a robust range in which the central

bulk of the sample lies. Similarly it is better to use q(0.05) instead of the minimum, and q(0.95) instead

of the maximum. The box-and-whisker plot uses these quantiles.

3 Sampling Distribution

It is important to always keep in mind that from the same population, one can get different random

samples. For example, from the population of college students in Turkey, in two different surveys, one

can choose two different (but both random) samples. Because the samples are different, the statistics

we calculate will also be different. For example we may see a different sample average in each sample.

But because they all have the same underlying population distribution, we expect them to be close (and

actually close to µ, the population mean). These different sample averages follow, what we call, a

sampling distribution.

3.1 Sample Average from a Single Population

Let us see how can calculate the sampling distribution for X . Assume Xi are normal with mean µ and

variance σ2. We see in equation (2) that the sample average is a linear combination of Xi each of which

is normal and we know that linear combinations of normals is also normal; hence X is also normal. Let

us derive its expected value and variance:

E[X] = E

[∑

iXi

n

]

=

∑

iE[Xi]

n
=

nµ

n
= µ (5)

Var(X) = Var

(∑

i Xi

n

)

=

∑

i Var(Xi)

n2
=

nσ2

n2
=

σ2

n
(6)

So X has the same mean with Xi, but its variance is divided by n. This makes sense: As n gets

larger, the different samples of size n over which we calculate the different X will be more and more

similar, and hence the calculated X will be more and more close to each other, and also to µ.
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A very important point is that, even if the underlying population (from which Xi are drawn) is not

normal, because of the central limit theorem, X will be approximately normal. Note that equations (5)

and (6) always hold regardless of the distribution of Xi (as long as they are independent and identi-

cally distributed (iid)). Hence in both cases (and therefore without actually caring for the underlying

distribution), we can write X ∼ N(µ, σ2/n) as the sampling distribution, or equivalently

X − µ

σ/
√
n

∼ Z (7)

Given such a sampling distribution, we can use it for various purposes: For example, given µ and

σ2, we can calculate the probability that X is in a certain given range, using this sampling distribution

by plugging the values in equation (7) and reading the probabilities from the table/function for the Z
distribution. We define zα such that P (Z > zα) = α. Remember that Z is symmetric around its mean

(zero) and therefore, z1−α = −zα; for example, z0.05 = 1.645 and z0.95 = −1.645.

Or, more interestingly, if we have a sample of size n, we can calculate X and if we know σ2, we can

calculate an interval in which the unknown µ is highly likely to lie—this is called a confidence interval.

Or let us say somebody makes a claim about the value of µ; we take a sample of size n, calculate X and

if we know σ2, we can calculate the confidence interval for µ, and then we reject the claim if the claimed

value for µ lies outside of this interval—this is called hypothesis testing. We will discuss these in more

detail in later lectures.

3.2 Difference of Sample Averages from Two Populations

Let us say we have two populations with means µ1, µ2 and variances σ2
1 , σ

2
2 respectively. From these

we draw two samples independently of sizes n1, n2 and we calculate the sample averages X1, X2. For

example, let us say we want to compare the Math 101 grades of CmpE and EE students and µ1 − µ2 is

the difference between the grades—for example, we can say that the performances of students from the

two departments are comparable if µ1 − µ2 is close to zero. So we sample n1 CmpE students and n2 EE

students, calculate X1, X2 and then look at X1 −X2. What can we say about the sampling distribution

of X1 −X2?

From the previous section, we know that X1 ∼ N(µ1, σ
2
1/n1) and X2 ∼ N(µ2, σ

2
2/n2). Therefore,

we see that X1 −X2 ∼ N(µ1 − µ2, σ
2
1/n1 + σ2

2/n2), or equivalently

(X1 −X2)− (µ1 − µ2)
√

σ2
1/n1 + σ2

2/n2

∼ Z (8)

3.3 Sample Variance from a Single Population

Assuming Xi ∼ N(µ, σ2), let us derive the sampling distribution of s2 (defined in equation (6)):

n
∑

i=1

(Xi − µ)2 =
∑

i

(Xi −X +X − µ)2

=
∑

i

(Xi −X)2 + n(X − µ)2

Let us divide both sides by σ2:
∑

i(Xi − µ)2

σ2
=

∑

i(Xi −X)2

σ2
+

n(X − µ)2

σ2

∑

i

(

Xi − µ

σ

)2

=
(n− 1)s2

σ2
+

(

X − µ

σ/
√
n

)2

On the left, each (Xi − µ)/σ is Z , its square is chi-squared with one degree of freedom, so the left

hand side is chi-squared with n degrees of freedom. On the right, the second term is similarly is chi-

squared with one degree of freedom (equation (7)). From Cochran’s theorem, the degrees of freedom add

up and we say that
(n− 1)s2

σ2
∼ χ2

n−1 (9)
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The domain of the chi-squared distribution is nonnegative (remember these are variances). For large

degrees of freedom, the chi-squared converges to the normal (the sum of chi-squared are chi-squared

where we sum also the degrees of freedom) but for small degrees of freedom, it is skewed and not

symmetric around its mean.

We see that
∑

i(Xi−µ)2/σ2 is χ2
n, but

∑

i(Xi−X)2/σ2 is χ2
n−1; when we plug X instead of µ, we

lose one degree of freedom—In the first case, you can pick n numbers however you like, in the second

case, you again pick n numbers but their average is fixed, so you lose one degree of freedom.

3.4 Sample Average from a Single Population with Unknown Variance

You may have noticed that equation (7) uses σ2, but in many applications, when we do not know µ, we do

not know σ2 either. In such a case, we can use the sample standard deviation s instead of the population

standard deviation σ in deriving the sampling distribution for X . In such a case, the statistic is no longer

standard normal, but is from another distribution called student’s t or in short t distribution.

If Z is standard normal, X is chi-squared with ν degrees of freedom, and the two are independent,

Z
√

X/ν
∼ tν (10)

where ν is the degrees of freedom of the t distribution, which you can consider as a parameter of the

distribution.

We know that (X − µ)/(σ/
√
n) is Z and (n− 1)s2/σ2 is χ2

n−1, hence

(X − µ)/(σ/
√
n)

√

((n− 1)s2/σ2)/(n− 1)
=

X − µ

s/
√
n

∼ tn−1 (11)

The t distribution looks very much like the Z; it is centered at zero and decreases on both sides

symmetrically as we move away from zero. t has longer tails indicating more spread but this spread

(uncertainty) decreases as n increases—for n ≥ 30, we can use Z instead of t.
We define tα such that P (T > tα) = α. Just like Z , t is symmetric so t1−α = −tα.

3.5 Proportion of Two Sample Variances from Two Populations

Let us say we have two populations and we want to compare their variances. Instead of looking at their

difference as we do with the means, it is easier to look at their proportion. We get two samples from the

two populations of sizes n1, n2 and calculate the two sample variances s21, s
2
2.

If U and V are two independent chi-squared random variables with degrees of freedom ν1, ν2 respec-

tively, then (U/ν1)/(V/(ν2)) is F distributed with n1 and n2 degrees of freedom—the F distribution

has two parameters.

In our case, we know that (n1 − 1)s21/σ
2
1 ∼ χ2

n1−1 and (n2 − 1)s22/σ
2
2 ∼ χ2

n2−1, so

((n1 − 1)s21/σ
2
1)/(n1 − 1)

((n2 − 1)s22/σ
2
2)/(n2 − 1)

=
s21σ

2
2

s22σ
2
1

∼ Fn1−1,n2−1 (12)

The domain of F is also nonnegative, and an interesting aside is that F1−α = 1/Fα.
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