
CmpE 343 Lecture Notes

7: Simulating Random Experiments on a Computer

Ethem Alpaydın

December 4, 2014

1 Introduction

We now discuss how to simulate random experiments in software on a computer. A computer is a

deterministic machine so keep in mind that any randomness that comes out of a computer program is

always pseudo-random. We consider a set of simple random experiments and see how they can be

programmed. These should be taken as simplified examples; more sophisticated methods exist for most

of those.

2 Generating Psedo-Random Numbers

Every programming environment has a basic random number generator function that returns a pseudo-

random integer between 0 and maxint where maxint is the maximum integer that can be stored on

that system, for example if an integer uses four bytes, maxint is 232 − 1.

The most widely and wildly used method for generating pseudo-random numbers is by a linear

congruential generator where we have calculate the next random number from the previous number

through a recurrence relation:

Xn+1 = (aXn + c) mod m (1)

X0 is called the seed and for the same seed, the generator always returns the same sequence of

random numbers. This may be a useful property when for example debugging the software that calls the

random number generator, but in practice for things to look more random, we use a different seed every

time—we can for example call a system function that returns the current time and use it as the seed.

a and c are integer constants that are chosen so that the period of the generator is as large as possible

(maximum period is m). m is taken as a power of two so that the modulo operator can be implemented

easily, for example if m is 232, we take only the last four bytes of the result (after doing the multiplication

and addition in higher precision, for example using 64 bits)1.

If we generate a random integer in this way and then divide it by maxint, we get a floating point

random number uniformly distributed between 0.0 and 1.0; let us call the function that does that rand().

Below, we use rand() to generate random variables from other distributions.

3 Uniform Experiment

Let us say we want to generate a uniform random number in the interval [A,B]; we can easily do this as

u=rand();

x=(B-A)*u+A;

Let us see how we can simulate tossing a fair coin. There are two outcomes, heads and tails, and if

the coin is fair, their probability should be equal. So what we should do is divide the range of the uniform

rand() into two equal-sized parts. For example, we say heads if rand[] returns a value between 0.0

and 0.5, and we say tails if rand() returns a value between 0.5 and 1.0:

1For conditions that a, c and m should satisfy and examples of parameters used in some implementations in the past, see

http://en.wikipedia.org/wiki/Linear congruential generator.

1



u=rand();

if (u<0.5) printf("Heads\n"); else printf("Tails\n");

There is nothing special about this; we can also say heads if u>0.5 and tails otherwise; or we can

say heads if (u>0.1) && (u<0.6). What is important is that the range of acceptance of heads (or

the proportion of the range of acceptance of heads to the total range returned by rand() should be equal

to the probability of heads.

Let us see now how we can simulate tossing a fair die. There are six outcomes all having the same

probability so we should divide the range of rand() into six equal-sized intervals. For example:

u=rand();

if (u<1/6) printf("One\n");

else if (u<2/6) printf("Two\n");

else if (u<3/6) printf("Three\n");

else if (u<4/6) printf("Four\n");

else if (u<5/6) printf("Five\n");

else printf("Six\n");

4 Bernoulli and Multinoulli Experiments

Remember that in a Bernoulli experiment there are two outcomes of “success” and “failure” and the

probability of success is p0 and the probability of failure is 1 − p0. For example, a certain drug is

effective with probability 0.8, or a coin is biased and the probability of heads is 0.6. We use the same

approach where we divide the range of rand() into two parts, of length p0 and 1− p0:

% p0 is the parameter: the success probability

u=rand();

if (u<p0) printf("Success\n"); else printf("Failure\n");

Let us see how we can simulate draws with replacement. Assume we have a bag with two red balls

and four blue balls and we draw three balls with replacement. We have a loop that draws one ball at a

time:

no_red=2; no_blue=4;

tot=no_red+no_blue;

no_draws=3;

for (i=0;i<no_draws;i++)

u=rand();

if (u<no_red/tot) printf("Red\n"); else printf("Blue\n");

}

Note that here, because we draw with replacement, the number of red or blue balls, or the total in the

bag do not change.

What happens if the bag contains red, blue, and green balls, and again we draw three balls with

replacement?

no_red=2; no_blue=4; no_green=4;

tot=no_red+no_blue+no_green;

no_draws=3;

for (i=0;i<no_draws;i++) {

u=rand();

if (u<no_red/tot) printf("Red\n");

else if (u<(no_red+no_blue)/tot) printf("Blue\n");

else printf("Green\n");

}

This is a multinoulli draw: We choose red if u is between 0 and 2/10, blue if u is between 2/10 and

6/10 (of length 4/10), and green if u is between 6/10 and 1 (of length 4/10).

2



5 Binomial and Multinomial Experiments

Remember that in a binomial experiment, we repeat n times the same Bernoulli experiment with success

probability p0 and count the number of successes. For example, let us say we have a coin whose prob-

ability of heads is 0.6, we toss it 100 times and we are interested in the number of times heads come

up:

n=100; p0=0.6;

no_suc=0;

for (i=0;i<n;i++) {

u=rand();

if (u<p0) no_suc++;

}

printf("%d successes\n",no_suc);

Now let us see a multinomial example. We have a bag of red, blue, and green balls and we draw three

balls with replacement (so that it is always the same multinoulli at each draw) and we count the number

of reds, blues, and greens seen.

no_red=2; no_blue=4; no_green=4;

tot=no_red+no_blue+no_green;

no_draws=3; red_draw=blue_draw=green_draw=0;

for (i=0;i<no_draws;i++) {

u=rand();

if (u<no_red/tot) red_draw++;

else if (u<(no_red+no_blue)/tot) blue_draw++;

else green_draw++;

}

printf("%d red, %d blue, %d green draws\n",

red_draw,blue_draw,green_draw);

As an aside, let us see how we can simulate draws without replacement. This implies that after each

draw, the number of balls will decrease by one, so it is not the same Bernoulli (two outcomes, red and

blue) repeated independently. What we should do is that after each draw, we need to update the number

of balls and so the probabilities change:

no_red=2; no_blue=4;

no_draws=2;

for (i=0;i<no_draws;i++)

tot=no_red+no_blue;

u=rand();

if (u<no_red/tot) {

printf("Red\n"); no_red--;

}

else {

printf("Blue\n"); no_blue--;

}

}

6 Gaussian Experiment

Let us now see how we can draw from a Gaussian distribution with mean µ and variance σ2. There are

more accurate and faster ways of doing this but what we will discuss is one that again uses rand().

Remember from the central limit theorem that if we draw independent instances from any distribution,

their sum is approximately Gaussian distributed. It is also true if we draw from a uniform distribution

too. rand() returns a uniform distributed random variable with mean (1 + 0)/2 = 1/2 and variance

(1 − 0)2/12 = 1/12. So if we call rand() twelve times and sum them up, the sum is approximately

3



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Estimating π with Monte Carlo sampling.

normal with mean 12(1/2) = 6 and variance 12(1/12) = 1. Therefore, if we call rand() twelve times

and sum them up, and then subtract six, we get a standard unit normal Z . Then if we want to get arbitrary

N(µ, σ2), we use the formula X = σZ + µ. Below is the code:

% draws from Gaussian with mean mu variance sigmaˆ2

double nrmrand(mu,sigma)

double mu, sigma;

{

double sum, z, x, rand();

int i;

for (sum=0.0,i=0;i<12;i++)

sum+=rand();

z=sum-6;

x=sigma*Z+mu;

return (x);

}

7 Monte Carlo Experiments

We can use random sampling to obtain approximate solutions to some problems; because of the random-

ness involved, these methods are named after the city where luck plays a large role in its visitors’ lives.

The following is one simple example.

Let us see how we can estimate π using random sampling. Let us consider the square with sides of

length 1, and let us call these sides x and y. If we sample x and y using rand(), (x, y) will be a random

point uniformly distributed somewhere in this square. Now let us consider the circle whose center is at

(0, 0) and radius is 1. For any (x, y), if x2 + y2 < 1, then (x, y) lies inside the circle. We are considering

the upper right quadrant of the circle, which has an area of π/4. So if we keep repeating random uniform

sampling of (x, y) inside the square, we should expect π/4 of them to fall inside the circle. So if we keep

a count, the proportion should converge to π/4 which we can turn around to estimate π:

% estimate \pi using Monte Carlo sampling

for (cnt=i=0;i<N;i++) {

x=rand(); y=rand();

if (x*x+y*y<1) cnt++;

}

printf("Estimate for pi is %8.6f\n",4*(cnt/N));

We will have a good estimate for π if rand() is a good generator and N is large (see Figure 1).

4


