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1 Introduction

Frequently, certain distributions arise in different applications, and they are given names and parameter-

ized. We start by discussing distributions where the random variable is discrete.

2 Uniform Distribution

The random variable X takes one of K ≥ 2 different values, X ∈ {x1, x2, . . . , xK}, and in the uniform

distribution all K values are equally likely, so

P{X = xi} = f(xi) =
1

K
, ∀i = 1, . . . ,K (1)

For example a coin has two faces and if it is a fair coin, both faces are equally likely and have a

probability of 1/2. A die has six faces and if it is a fair die, all faces are equally likely and have a

probability of 1/6.

Let us calculate the expected value and variance of a uniform random variable:

E[X ] =

K
∑

i=1

xif(xi) =

K
∑

i=1

xi

K
=

∑K

i=1
xi

K
= x (2)

Var(X) =

K
∑

i=1

(xi − E[X ])2f(xi) =

∑K

i=1
(xi − x)2

K

where x ≡
∑K

i=1
xi/K is the average value for X .

3 Bernoulli Distribution

When we toss a coin there are two outcomes and if the coin is fair, the two probabilities are equal.

Consider the general case where the probability of heads is p0 and hence the probability of tails is 1−p0.

This is the Bernoulli distribution where there are two outcomes X ∈ {0, 1}, and

P{X = 1} = f(1) = p0 and P{X = 0} = f(0) = 1− p0 (3)

When p0 = 1/2 we get the uniform distribution but with Bernoulli, the parameter p0 can take any

value between 0 and 1. The two outcomes of 0 and 1 are generally named “failure” and “success” but

Bernoulli distribution can denote any experiment with two outcomes, for example, a patient may live or

die, it may rain tomorrow or not, a product may be defective or not, an email may be spam or not, and so

on.

The two cases of equation (3) can be written as

P{X = x} = f(x; p0) = px0(1− p0)
1−x, x ∈ {0, 1} (4)
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f(x; p0) denotes that the probability that the random variable takes the value x, and what follows the

semicolon is the parameter of the distribution (which should be set to a particular value for us to be able

to calculate the probability).

Let us calculate the expected value and variance of a Bernoulli random variable:

E[X ] = 0 · f(0) + 1 · f(1) = p0 (5)

Var(X) = (0− p0)
2f(0) + (1− p0)

2f(1) = (0 − p0)
2 · (1− p0) + (1− p0)

2p0 = p0(1− p0)

4 Multinoulli Distribution

Let us generalize to Bernoulli from two outcomes to arbitrary K , and we get the Multinoulli distribution.

There are K distinct states X ∈ {x1, x2, . . . , xK} with probabilities p1, p2, . . . , pK} satisfying pi ≥

0, ∀i and
∑K

i=1
pi = 1. The probability distribution is defined as

P{X1 = x1, X2 = x2, . . . , XK = xK} = f(x1, x2, . . . , xK ; p1, p2, . . . , pK) =

K
∏

i=1

pxi

i (6)

When pi = 1/K we get the uniform distribution, which is a special case. It is used to represent

random experiments with K ≥ 3 outcomes, for example, a patient may suffer from one of K different

diseases, a customer may buy one of K different products, and so on.

5 Binomial Distribution

Let us say we have a coin (not necessarily fair) and we toss it ten times and we are interested in the

number of heads. We have n independent repetitions of the same Bernoulli experiment with outcomes of

0 (“failure”) and 1 (“success”) with probabilities 1− p0 and p0 respectively and we are interested in the

total number of “successes.” The probability distribution of such a Binomial random variable is written

as

P{X = x} = f(x;n, p) =

(

n

x

)

px0(1− p0)
n−x, x = 0, 1, . . . , n (7)

Each experiment is a success with p0, so the probability that there are x successes is px
0

; similarly

the probability that there are n − x failures is (1 − p0)
n−x, and hence the probability that there are

both is px0(1 − p0)
n−x. But this is one possible case of x successes and n − x failures, for example,

when the first x experiments are all successes and all the remaining experiments are failures. But there

are many possible such cases, for example, the first can be a success, and the next failure and then two

successes and so on. Actually there are
(

n
x

)

different ways of having x successes and n − x failures,

so we sum over all them. For example there are
(

3

1

)

ways of seeing one heads in three tosses, namely

{HTT, THT, TTH}.

Let us calculate the expected value and variance of a Binomial random variable and in doing that, we

see that we can write the Binomial random variable X as the sum of n independent 0/1 Bernoulli random

variables (each for example representing the outcome of one coin toss):

P{X = x} =

n
∑

j=0

Ij (8)

and hence

E[X ] = E





n
∑

j=0

Ij



 =

n
∑

j=0

E[Ij ] = np0 (9)

Var(X) = Var





n
∑

j=0

Ij



 =

n
∑

j=0

Var(Ij) = np0(1 − p0)

Note that in calculating the variance we used the fact that Ij are independent.
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6 Multinomial Distribution

Just like the Binomial distribution is the number of occurrences of Bernoulli events, the Multinomial

is the number of occurrences of Multinoulli events. Bernoulli has two outcomes and hence Binomial

keeps track of two counts, Multinoulli has K ≥ 3 outcomes each with probability pi, i = 1, . . . ,K
and hence the Multinomial keeps track of K counts, namely, X1, X2, . . . , XK where Xi is the number

of occurrence of outcome i in n independent repetitions. Generalizing equation [7) from 2 to K , the

probability distribution of the Multinomial random variables X1, X2, . . . , XK is written as

P{X1 = x1, X2 = x2, . . . , XK = xK} = f(x1, x2, . . . , xK ;n, p1, p2, . . . , pK) =
n!

x1!x2! · · ·xK !

K
∏

i=1

pxi

i

(10)

7 Hypergeometric Distribution

The Binomial distribution assumes that repetitions are independent, and so that it is always the same

Bernoulli event that is repeated independently. If the repetitions are not independent, Binomial distribu-

tion cannot be used because it is not the same Bernoulli event that is repeated. If we are tossing a coin

or rolling a die, the repeated events are independent and we can use the Binomial or the Multinomial

because the outcome of the previous experiment has no effect on the coin or the die and hence does not

affect the probabilities. But if for example we are drawing balls from a bag or drawing cards from a deck,

if we do it with replacement, that is, if we return the ball to the bag or the card to the deck then successive

events are independent and we can use the Bernoulli or the Multinoulli for each event, but if we do it

without replacement because the composition of the bag or the deck changes after each event, it is not

the same event that is repeated, and the probabilities change depending on the outcome of the previous

event—we need to start using conditional probabilities.

For example, let us say we have a bag that contains four balls of which two are red and two are

black. Let us say we draw two balls at random and want to calculate the probability that of the two, one

is red. For there to be one red ball, the other should be black and the red ball can be seen in the first

draw (‘R1B2’) or the second draw (‘B1R2’) ; we need to calculate the probability of each and sum them:

P (X = 1) = P (‘R1B
′

2
) + P (‘B1R

′

2
).

Drawing with replacement: The probability of drawing a red ball is 2/4 = 1/2 and it does not change

after the first draw. The probability of drawing a black ball is also 1/2. So P (‘R1B
′

2) = 1/2 · 1/2 (the

two draws are independent) and P (‘BR′) = 1/2 ·1/2, and so P (X = 1) = P (‘RB′)+P (‘BR′) = 1/2.
Or we can say that each draw is Bernoulli where the probability of red ball is 1/2 and so the probability

that we see one red in two repetitions is

P (X = 1) =

(

2

1

)

(1/2)1(1/2)1 = 1/2

Drawing without replacement: In this case, the probabilities in the second draw depend on the first

draw. The number of balls that remain in the bag is one less and also either the number of reds or blacks

change—the two draws are dependent and we need to use conditional probabilities.

P (‘R1B
′

2
) = P (R1)P (B2|R1) = (2/4) · (2/3) = 1/3

Similarly P (‘B1R2) = 1/3 and P (X = 1) = 2/3. Or we can calculate this as

P (X = 1) =

(

2

1

)(

2

1

)

(

4

2

) = 2/3

You can show that P (X = 0) = P (X = 2) = 1/6 and that
∑2

x=0
P (X = x) = 1.

This last formula is the Hypergeometric distribution. Let us say we have a set of N objects where k
of them are of one kind (and N − k are of the second kind)and we draw n instances at random without
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replacement, the probability that x of these n are of the first kind (and n − x are of the second kind) is

given by

f(x;N,n, k) =

(

k

x

)(

N − k

n− x

)/(

N

n

)

(11)

Hypergeometric distribution is used frequently in settings for testing and quality control where we

choose a small subset from a large batch of products and try to estimate the quality of the large batch

from the proportion of defectives in the small subset. In such a case, it does not make sense to return a

tested item back into the subset, and most of the time we cannot—testing may make the item unusable.

This is called acceptance testing.

The expected value and variance of a Hypergeometric distributed random variable X is

E[X ] = n
k

N
(12)

Var(X) =

(

N − n

N − 1

)

n
k

N

(

1−
k

N

)

Let us compare these with those of Binomial given in equation (??). We see that k/N corresponds to

p0 of the Binomial; we also see that (N − n)/(N − 1) gets closer to 1 as n is small with respect to N ,

and the formulas for variance become the same too. This make sense if we are drawing a small subset

from a very large set, whether we do it with replacement or not does not make much difference.

8 Multivariate Hypergeometric Distribution

Just as the Multinoulli is the generalization of Bernoulli, and the Multinomial is the generalization of

Binomial to Multinomial from two to K ≥ 3, Multivariate Hypergeometric is the generalization of the

Hypergeometric distribution. We have N items where N1 are of the first kind, N2 of the second kind,

until NK of the Kth kind. We draw n items at random without replacement. The probability that in these

n, we see x1 of the first kind, and so on () is

P{X1 = x1, X2 = x2, . . . , XK = xK} =

f(x1, x2, . . . , xK ;N,n,N1, N2, . . . , NK) =

(

N1

x1

)(

N2

x2

)

· · ·

(

NK

xK

)/(

N

n

)

(13)

where
∑N

i=1
Ni = N and

∑N

i=1
xi = n.

9 Negative Binomial and Geometric Distributions

In the Bionomial distribution, we repeat the Bernoulli experiment n times and we are interested in the

probability of seeing X successes. In the Negative Binomial, we fix the number of successes as k and we

are interested in the probability that it takes X repetitions to see that many successes.

Let us think as follows: We are interested in the probability that it takes X repetitions to see k
successes. So the kth success should occur in the X th repetition, which means that we need to see

k − 1 successes in the preceding X − 1 repetitions, the probability of which can be calculated using the

Binomial distribution. Following this independently, we see another success, with probability p0. Hence

we have

P{X = x} = f(x; k, p0) =

(

x− 1

k − 1

)

pk−1

0
(1 − p0)

x−k · p

=

(

x− 1

k − 1

)

pk
0
(1 − p0)

x−k, x = 1, 2, 3, . . . (14)

Geometric distribution is a special case where we are interested in the probability that we see the first

success in the X th repetition. The previous (independent) X − 1 repetitions should all be failures and

then we see a success:

P{X = x} = f(x; p0) = (1− p0)
x−1p0, x = 1, 2, 3, . . . (15)
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The expected value and variance of a Geometric random variable X is given as

E[X ] =
1

p0
(16)

Var(X) =
1− p0
p2
0

(17)

So for example if the probability of a spam email is 0.01, we will see on the average one after 100

emails. We use Binomial or the Negative Binomial depending on whether we fix the number of repetitions

and count the successes, or fix the successses and count the repetitions.
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