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1 Introduction

A probability distribution is a complex object; in the discrete case, it is a table of values and their proba-

bilities, and in the continuous case, it is a function. There are certain values that can be calculated from

a distribution relatively easily and they give us a lot of information about the distribution. The mean

and variance are such measures. Similarly in the case of a joint distribution, we have covariance and

correlation which summarize the relationship between two random variables.

2 Expected Value

The expected value or mean is the average of the values of the random variable weighted by their proba-

bilities. In the discrete case, we have

E[X ] =
∑

x

xP{X = x} =
∑

x

xf(x) (1)

where f(x) is the probability mass function. In the continuous case, we have

E[X ] =

∫

xf(x)dx (2)

If we repeat the experiment N times, sum the observed value of X in each, and divide by N , this

average converges to the expected value as N increases. For example, let us say we toss a fair coin three

times and X is the number of heads, the expected value is

E[X ] = 0
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It is also denoted by µX , where we omit the subscript if there is a single random variable.

Expected value is useful because although we do not know what the outcome will be for a single

experiment, the expected value tells us the expected behavior if the experiment is to be repeated many

times. Expected value calculations are done in all applications where there is randomness. For example

in buying a lottery ticket, let us say the win is w and the probability of getting the lucky number is p and

that the lottery ticket costs c. Then

Expected earning = p ∗ (w − c)− (1− p) ∗ c

It makes sense to buy a ticket for such a lottery if this expected gain is greater than 0—generally the

expected earning is less than 0 and that is why gamblers may earn or lose but gambling houses always earn

money. You can do a similar calculation about whether it makes sense or not to buy insurance. Though

such expected value calculations are generally useful in making decisions, for example, in choosing

between actions—whether to buy a ticket or not—, it is known that people do not always make rational
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decisions1; there may also be ethical constraints in that the result of certain actions cannot (and should

not) be measured in monetary terms2.

Consider a function g(X) of the random variable X with probability distribution f(x). Because it is

a function of a random variable, it is also a random variable, let us say, Y ≡ g(X). Then

E[Y ] = E[g(X)] =
∑

x

g(x)f(x) (3)

As usual, we replace the discrete sum by integration if X is continuous.

3 Variance

The expected value gives us the “center of gravity” of the random variable; variance which we define

now gives us the “spread” of X around that center.

Var(X) = E[(X − µ)2] (4)

also denoted by σ2
X . An observation for X can be different from the mean and it can be smaller or greater;

we define a “distance” from the mean (X − µ)2 and the variance is the expected distance averaged over

all possible values of X weighted by their probabilities of their occurrence. Using Equation (3) with

g(X) = (X − µ)2, we get

Var(X) =
∑

x

(x− µ)2f(x) (5)

where again we replace the discrete sum by integration if X is continuous. The positive square root of

the variance is the standard deviation and is denoted by σ. The standard deviation is more interpretable

because it is in the same scale with X . In scientific literature, frequently we see results reported as, for

example, 5.2±0.8; when we see this we understand that 5.2 is the mean and 0.8 is the standard deviation.

It can be shown (quite easily by just expanding Equation (5) that

Var(X) = E[X2]− (E[X ])2 (6)

E[Xk], for integer k ≥ 1 is called the kth moment of X , and hence we see that mean is the first

moment and that variance is the second moment minus the square of the first moment.

Let us say we want to calculate the variance of some function g(X):

Var(g(X)) = E[(g(X)− E[g(X)])2] =
∑

x

(g(x) − E[g(X)])2f(x) (7)

Note that E[g(X)] is not a random variable but a constant which we calculate and plug in the formula.

Or using equation (6), we can calculate the variance as

Var(g(X)) = E[(g(X)2]− (E[g(X)])2 =
∑

x

g(x)2f(x)−

(

∑

x

g(x)f(x)

)2

4 Two (or More) Random Variables

If we have two random variables X and Y with joint probability distribution f(x, y), the expected value

of the random variable Z ≡ g(X,Y ) is written as

E[g(X,Y )] =
∑

x

∑

y

g(x, y)f(x, y) (8)

1Kahneman, Daniel, and Amos Tversky. (1979). ”Prospect Theory: An Analysis of Decision Under Risk”. Econometrica

XLVII: 263-291.
2Sandel, Micheal J. (2012). What Money Can’t Buy: The Moral Limits of Markets, Barnes and Noble.
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We can calculate the variance of X or Y over the marginal distributions, and we also have the measure

of covariance defined as

Cov(X,Y ) = E[(X − E[X ])(Y − E[Y ])] (9)

Covariance takes a value depending on the arbitrary scales of X and Y ; correlation is its normalized

version and is always between −1 and +1:

Corr(X,Y ) =
cov(X,Y )

√

Var(X)
√

Var(Y )
(10)

If when X is larger than its mean Y is also larger than its mean, and when X is smaller than its mean

Y is also smaller than its mean, the product in Equation (9) is positive and so is the covariance. For

example, people who are taller than the average height are generally also heavier than the average weight

and people who are shorter than the average height are also generally lighter than the average weight;

there is positive covariance between height and weight, or we say they are positively correlated. People

who are older tend to run slower and people who are younger tend to run faster (valid when age is over

25); in such a case, age and speed are negatively correlated. If the two are independent, covariance and

correlation are around 0.

It can be shown that

Cov(X,Y ) = E[XY ]− E[X ]E[Y ]

If X and Y are independent, E[XY ] = E[X ]E[Y ].
The following hold (X,Y are random variables and a, b are constants):

E[aX + b] = aE[X ] + b

Var(aX + b) = a2Var(X)

E[aX + bY ] = aE[X ] + bE[Y ]

Var(aX + bY ) = a2Var(X) + b2Var(Y ) + 2abCov(X,Y )

5 Chebyshev’s Inequality

Chebyshev is a Russian mathematician who lived in late 19th century. The inequality we discuss now is

named after him and is very useful in that it defines a bound that holds for any probability distribution.

The probability that any random variable X takes a value within k standard deviations to the mean is

at least 1− 1/k2, or

P (µ− kσ < X < µ+ kσ) ≥ 1−
1

k2
(11)

Let us prove it. We start with the definition of the variance:

σ2 = E[(X − µ)2]

=

∫

∞

−∞

(x− µ)2f(x)dx

=

∫ µ−kσ

−∞

(x − µ)2f(x)dx +

∫ µ+kσ

µ−kσ

(x− µ)2f(x)dx +

∫

∞

µ+kσ

(x− µ)2f(x)dx

We divide (−∞,∞) into three regions (−∞, µ − kσ), (µ − kσ, µ + kσ), and (µ + kσ,∞). The

second term in always 0 or greater, it can never be negative, so we can write:

σ2 ≥

∫ µ−kσ

−∞

(x− µ)2f(x)dx +

∫

∞

µ+kσ

(x− µ)2f(x)dx

Now in the first regionX < µ−kσ and in the second,X > µ+kσ, so for both, we have |X−µ| > kσ,

or (X − µ)2 > k2σ2. Hence we get an even smaller sum on the right:

σ2 ≥

∫ µ−kσ

−∞

k2σ2f(x)dx+

∫

∞

µ+kσ

k2σ2f(x)dx
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= k2σ2

(

∫ µ−kσ

−∞

f(x)dx +

∫

∞

µ+kσ

f(x)dx

)

= k2σ2

(

1−

∫ µ+kσ

µ−kσ

f(x)dx

)

1 ≥ k2

(

1−

∫ µ+kσ

µ−kσ

f(x)dx

)

1−
1

k2
≤

∫ µ+kσ

µ−kσ

f(x)dx

and so we prove that

P (µ− kσ < X < µ+ kσ) ≥ 1−
1

k2
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