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ABSTRACT

We investigate a hybrid method which improves the quality
of state inference and parameter estimation in blind decon-
volution of a sparse source modeled by a Bernoulli-Gaussian
process. In this problem, when both the signal and the fil-
ter are jointly estimated, the true posterior is typically highly
multimodal. Therefore, when not properly initialized, stan-
dard stochastic inference methods, (MCEM, SEM or SAEM),
tend to get stuck and suffer from poor convergence. In our ap-
proach, we first relax the Bernoulli-Gaussian prior model by
a Student-t model. Our simulations suggest that deterministic
inference in the relaxed model is not only efficient, but also
provides a very good initialization for the Bernoulli-Gaussian
model. We provide simulation studies that compare the re-
sults obtained with and without our initialization method for
several combinations of state inference and parameter estima-
tion methods used for the Bernoulli-Gaussian model.

Index Terms— Sparsity, Bernoulli-Gaussian, Student-t,
Expectation-Maximization (EM), Markov Chain Monte Carlo
(MCMC)

1. INTRODUCTION

In blind deconvolution, we usually encounter problems where
a latent input signal x is passed through a linear time-
invariant (LTI) system with unknown impulse response g,
and the resulting signal is corrupted by additive Gaussian
noise v, giving the observed signal y. In general, this prob-
lem is ill-posed unless further assumptions about the signal
and filter are made. A reasonable assumption that holds
for many practical problems is that the latent input signal is
sparse, where it is zero -or very close to zero- almost ev-
erywhere but has a few non-zero values, often referred to as
spikes [1]. In such cases (seismology, audio processing), it is
usually important to find the locations of these spikes, as well
as x itself, and g.

There are several methods for solving this problem. The
approaches differ in the way how they model the unknown
variables, or the statistical inference/optimization methods
they use. The most common approach for modeling a sparse
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x is to assume that it is a Bernoulli-Gaussian process [2, 3, 1],
where one Gaussian has a very small variance and the other’s
is far from zero. Bernoulli-Gaussian model is easy to handle,
since it leads to well known statistical inference/optimization
methods, as well as provides an intuitive semantic interpre-
tation by indicating the locations of spikes [2]. However,
experience suggests that its performance is highly dependent
on initial values of estimated parameters, which is a serious
problem when we do not have any prior information about
the system parameters.

Modeling samples of a sparse signal with a Student-t
distribution [4] is another approach. This can be achieved
by assigning each sample of x a Gaussian random vari-
able whose variance is an inverse-Gamma random variable.
This prior assumption is used in source separation and blind
deconvolution problems [5, 6]. In contrast to the Bernoulli-
Gaussian case, the inference problems tend to be easier, since
inverse-gamma assumption leads to more smooth distribu-
tions/objective functions.

In this paper, we aim to provide empirical evidence that
the Student-t model can be used to provide suitable initial val-
ues for the unknown parameters for the Bernoulli-Gaussian
model. We are motivated by the fact that the two models are
qualitatively very similar but have significantly different be-
haviors for inference.

2. MODEL AND PROBLEM STATEMENT

We consider the following filtering process

yk =
L−1∑

i=0

gixk−i + σvvk, k = 0, 1, ..., n (1)

where yk’s are the noisy observations. Here, the system im-
pulse response is represented by a 1× L vector of filter coef-
ficients, g ≡ g0:L−1, and σvvk is the observation noise with
{vk} being i.i.d Gaussian with zero mean and unity variance,
that is, vk ∼ N(0, 1). We assume that the samples of the
input signal x are independently Gaussian, such as xk =
σw,kwk, where wk ∼ N(0, 1), and the standard deviations
σw,k are random variables. Hence, conditionally xk|σw,k ∼
N(0, σ2

w,k). As the variance is varying with time, the result-
ing process is non-stationary.



The key point here is the choice of the prior distribution
of σw,k, so that x is a sparse process. In the sequel, we will
introduce two simple choices, that are qualitatively similar but
have significantly different behaviors for inference.

Model 1: σw,k = σqk
, where qk is Bernoulli. It is a com-

mon approach in the literature to condition σw,k on an in-
dicator (Bernoulli random variable) qk ∈ {0, 1} along with
success probability λ = p(qk = 1), such that σw,k = σqk

[2, 3]. Taking σ1 À σ0 and assigning a small value for λ, one
can obtain a sparse and impulsive trace. Here, the indicators
qk can be used to indicate the locations of spikes. In many
applications, such as seismology [2], typically correct esti-
mation of the spike locations is the primary concern, and this
parametrization provides an intuitive semantic interpretation.

Model 2: σ2
w,k is inverse-Gamma. An alternative to the

first approach is to assign an inverse-Gamma distribution for
the variables σ2

w,k. That is, σ2
w,k ∼ IG(α, β). The reason for

choosing an inverse-Gamma distribution for σ2
w,k is analytical

convenience leading to a relatively easier objective function
than Model 1 and efficient inference algorithms [5].

Having introduced the models, our problem can be de-
fined: Given the observation data y, we wish to estimate the
latent signal x and the locations of spikes in x, as well as the
filter coefficients g, and possibly the model parameters Θ. For
Model 1, the parameters are denoted by Θ1 = {σ2

v , σ0, σ1, λ}
and for Model 2, Θ2 = {σ2

v , α, β}.

3. STATE INFERENCE AND PARAMETER
ESTIMATION

3.1. Model 1

It can easily be seen that, Model 1 is equivalent to a condition-
ally Gaussian linear state-space model (CGLSSM) [7], with
indicators qk. So we can write

xk+1 = Hxk + Uqk+1wk+1 (2)
yk = gxk + σvvk (3)

where
xk =

[
xk xk−1 . . . xk−L+1

]>
(4)

and H is the one-tap delay matrix of size L × L, and Uqk
=[

σqk
0 . . . 0

]>
.

3.1.1. State inference

The joint posterior distribution of x and q ≡ q0:n is

p(x,q|y,g,Θ) = p(q|y,g,Θ)p(x|q,y,g,Θ). (5)

The factors on the right hand side of (5) can be evaluated sep-
arately: The first factor can be written as

p(q|y,g,Θ) ∝ p(y|q,g,Θ)p(q) (6)

where the conditional density p(y|q,g,Θ), which is the like-
lihood of the data, can easily be found by running the Kalman
filter [7].

Evaluation of the second factor in (5) is straightforward,
too. Given the indicators q and y, each xk is Gaussian with
mean x̂k|n and covariance Σ̂k|n, and can be evaluated by us-
ing one of the smoothing algorithms for Gaussian linear state-
space systems [7].

However, the main difficulty is due to the fact that there
are 2(n+1) distinct configurations of q. Hence, we can not
practically evaluate (5) for every configuration of q, un-
less n is very small. Therefore the exact joint posterior
p(x,q|y,g, Θ) is intractable. To overcome this problem, we
use two different Markov Chain Monte Carlo (MCMC) sam-
pling methods [8] to draw samples from the joint posterior
distribution.

1. Sample indicators, perform exact inference for x: In
this type of MCMC sampling, we first estimate the best se-
quence of indicators q̂ using Gibbs sampling, then use this
indicator sequence for exact inference of x. The Gibbs sam-
pler for indicators uses the useful property of CGLSSM’s that,
when the filtering, and smoothing moments as well as the in-
novation and innovation covariance at time k for qk = c are
available, the likelihood of observations can be calculated up
to a proportionality which does not depend on the value c. In
this way, at iteration i and time k, we can sample q

(i)
k from

the marginal distribution p(qk|q(i)
0:k−1,q

(i−1)
k+1:n,y) [7].

2. Sample both qk and xk jointly: In the second MCMC
sampling method, we use the fact that, given all the state val-
ues other than xk, denoted by, x−k one can obtain and sample
from the posterior distribution of (xk, qk) [9]. Notice that

p(xk, qk|x−k,y,g, Θ)
= p(qk|x−k,y,g, Θ)p(xk|qk,x−k,y,g, Θ) (7)

where the factors in (7) can easily be evaluated.
So, the Gibbs sampling algorithm for joint simulation of

qk and xk for N iterations is as follows [2]:
For i = 1, ..., N : for k = −L + 1, ..., n:

• Sample q
(i)
k from the distribution p(qk|x(i−1)

−k ,y,g, Θ).

• Sample x
(i)
k from u ∼ p(xk|q(i)

k ,x−k,y,g, Θ)).

The first algorithm is computationally more demanding
as a subset of variables is integrated out analytically. In the
literature, it is advised that analytical computation should be
favored as the associated Markov Chain tends to have superior
mixing properties making it worth to do the extra computation
[10]. We provide simulation results to test this claim in the
context of sparse deconvolution.

3.1.2. Parameter Estimation

For parameter estimation, a common approach is to use Ex-
pectation Maximization (EM) algorithm [7]. In our case, we



find the ML estimates for g and Θ in the maximization step.
In EM algorithm, this corresponds to computing the quantity

Q(i) = E
[
log p(y,x,q|g; Θ)|y,g(i−1); Θ(i−1)

]
(8)

at the expectation stage of the ith iteration. The maximum
likelihood (ML) estimates for g and Θ are the ones those max-
imize (8)

(g(i), Θ(i)) = arg max
g,Θ

Q(i). (9)

We decompose the factor in the logarithm as

p(y,x,q|g; Θ) = p(q)p(x|q)p(y|x,q,g; Θ). (10)

Taking the expectation of the logarithm of (10), we obtain the
ML solutions for ĝ(i), σ̂2(i)

v , σ̂2(i)
q , and λ̂(i) [2]. However, this

requires sufficient statistics obtained by taking expectations
under the posterior distribution p(x,q|y,g(i−1), Θ(i−1)),
which is intractable. Therefore, we apply Monte-Carlo (MC)
methods [7] which are based on averaging over simulations
to approximate the values of concern.

When sufficient statistics are estimated using Monte
Carlo, several EM techniques can be used to optimize over
the parameters. Below, we will mention Monte Carlo EM
(MCEM), Stochastic EM (SEM), and Stochastic Approxi-
mation EM (SAEM). The general expression of SEM and
MCEM algorithms is as follows [7]:

Given an initial parameter set (g(0),Θ(0)), do, for i =
1,2,...

• Simulation: Draw mi samples for (x,q),
(x̂i,1, q̂i,1), ..., (x̂i,mi , q̂i,mi) from
p(x,q|y,g(i−1), Θ(i−1)).

• Maximization: Compute g(i) and Θ(i) that maximizes
the function Q̂(i), where

Q̂(i) = (1− νi)Q̂(i−1) (11)

+ νi{ 1
mi

mi∑

j=1

log p(y, x̂i,j , q̂i,j |g(i−1); Θ(i−1))}.

In (11), if {νi}i≥1 > 0 and ν1 6= 1, we have the SAEM
algorithm. If ν1 = 1 and mi increases with time , then the
algorithm is called MCEM. If ν1 = 1 and mi is constant, we
have the SEM algorithm.

3.2. Model 2

Recall that, in Model 2, it is assumed that the variance of
xk, σ2

w,k is an inverse-Gamma random variable with σ2
w,k ∼

IG(α, β). It is important to note that given the parameters g,
σ2

v , and σ2
w,k for k = 0, ..., n, we can make exact inference

for x. Moreover, given x, we can find the maximum a pos-
teriori (MAP) estimate of the variances σ2

w,k. If we denote
Θ = (σ2

v , α, β), the EM steps for the current model are

• E-step: Find the posterior distribution

p(x̂i|y,g(i−1), Θ(i−1), {σ2(i−1)
w,k })

• M-step: Calculate the parameters (g(i), Θ(i)), and
{σ2(i)

w,k} that maximize the EM quantity Q(i)

(g(i), Θ(i), {σ2(i)
w,k}) = arg max

g,Θ
Q(i) (12)

where

Q(i) = E
[
log p(y,x, {σ2

w,k}|g, Θ)|y,g(i−1),Θ(i−1)
]
.

(13)
Similar to what we have done for the previous model, we

can decompose the term in the expectation in (13) such as

p(y,x,{σ2
w,k}|g, Θ) = p(y|x,g, Θ)p(x|{σ2

w,k})p({σ2
w,k})

where each factor can be written in a straightforward manner.
It can be seen that the solutions for g and σ2

v are the same
as the ones in Model 1. It can also be derived that updates
for {σ2

w,k} can be performed separately for k = 0, ..., n, to
obtain [5]

σ̂
2(i)
w,k = (E

[
x2

k

]
+ 2β)/(2α + 3). (14)

There is no analytical ML solution for the inverse-Gamma
parameters α and β, given the estimated variances {σ2

w,k}.
However, since the likelihood surface is well-behaved, nu-
merical methods for finding the maximum works sufficiently
well.

4. RESULTS AND CONCLUSIONS

We investigate the performance of each state inference tech-
nique in section 3.1.1 combined with each of the methods for
parameter estimation in section 3.1.2, using the results ob-
tained by averaging over 20 simulations. For each simulation,
we generated synthetic sparse input signals of length 200 un-
der the assumptions of Model 1. We take λ = 0.03, σv =
0.1, σ1 = 0.01, and σ2 = 1. The length of g is taken L = 10,
and g is generated randomly from N(0, 4I). For each sim-
ulation, we treat data as generated under the assumptions of
Model 2 and apply the EM algorithm in section 3.2. Resulting
estimates for g is used as the initial estimates for the methods
used in Model 1. We compared the results when this initial-
ization approach is used with the ones when ĝ is initialized
randomly. Table 1 shows for each case the mean squared er-
ror (MSE) values for estimates of x and g, and detection rate
of spikes as well as the average number of false alarms for
spikes. It is important to note that, there is a scale invariance
between x and g by the nature of our model formulations.
Therefore for an estimate of x, x̂, we calculate MSE for kx̂
and ĝ/k where k =

∑n−1
i=0 xix̂i/

∑n−1
i=0 x̂2

i . Figure 1 shows



Table 1. Performances of the methods with and without the
assistance of the proposed initialization method. M1,M2: first
and second MCMC methods in 3.1.1, MSEx/MSEg: MSE of
estimates for x/g, RI/PI: random/proposed initialization of
g, D/F:detection rate/average number of false detections for
spikes

Par.est. St.inf ĝ(0) MSEg MSEx D F
PI 0.2732 0.0053 0.76 2.40

M1 RI 3.4699 0.0259 0.69 23.8
MCEM PI 0.2706 0.0053 0.78 2.30

M2 RI 22.376 0.0261 0.69 23.5
PI 0.2250 0.0052 0.78 2.40

M1 RI 0.3722 0.0273 0.68 24.0
SEM PI 0.2347 0.0052 0.78 2.20

M2 RI 3.7820 0.0272 0.63 24.2
PI 0.2314 0.0052 0.78 2.4

M1 RI 6.8040 0.0267 0.70 27.4
SAEM PI 0.2368 0.0053 0.80 2.25

M2 RI 24.561 0.0277 0.60 26.0

for one simulation the true x and g as well as their estimates
with and without using our initialization method.

As it should be clear from the results, performances of all
the methods for Model 1 strongly depend on the initial value
ĝ(0), and the use of Model 2 to assist Model 1 gives out signif-
icantly better results in every measure that we concerned. We
also observe that the MCMC methods for state inference ex-
hibit similar performance for sparse data, so there is not much
need to use the first method, which has much more compu-
tational complexity. Furthermore, one can notice the scale
invariance between x and g from the figure.

Concluding, we have a powerful method for real data ap-
plications on sparse deconvolution, since the effect of initial
value problem is reduced. For example, in seismology, the
earth response is found either by the help of big earthquakes,
where you can measure the excitation signal [11], or by gen-
erating the excitation signal using a wavelet, such as in marine
seismic works [2], where you have strong priors. We plan to
apply our approach on daily seismological data where the ex-
citation signal is small in power and mostly unknown. How-
ever, we still have the identifiability problem because of the
scale invariance mentioned above. Therefore, a forward step
may be using Bayesian inference techniques integrated with
the hybrid method to avoid this problem.
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