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Abstract—We develop a novel online algorithm for posterior in-
ference in Dirichlet Process Mixtures (DPM). Our method is based
on the Sequential Monte Carlo (SMC) samplers framework that
generalizes sequential importance sampling approaches. Unlike
the existing methods, the framework enables us to retrospectively
update long trajectories in the light of recent observations and this
leads to sophisticated clustering update schemes and annealing
strategies that seem to prevent the algorithm to get stuck around
a local mode. The performance has been evaluated on a Bayesian
Gaussian density estimation problem with an unknown number
of mixture components. Our simulations suggest that the pro-
posed annealing strategy outperforms conventional samplers. It
also provides significantly smaller Monte Carlo standard error
with respect to particle filtering given comparable computational
resources.

Index Terms—Dirichlet process mixtures, particle filtering, se-
quential Monte Carlo methods.

I. INTRODUCTION

N recent years, there has been a surge of interest in
I Bayesian nonparametric methods in machine learning
[1] and signal processing [2]. Here, researchers use highly
structured and adaptive models where the model order is to be
determined automatically by the data. The Dirichlet Process
Mixtures (DPM) is the key building block in such models for a
broad range of applications.

Unfortunately, exact computation for the DPM model is in-
tractable. The development of efficient and accurate approxmate
inference strategies for the DPM are crucial so that such models
can be used effectively in practical applications.

Particle filtering is a popular method for inference in DPM
models [3], [4]. Existing particle filtering based approaches up-
date the representation of the posterior distribution sequentially
as each new observation arrives. Especially for large datasets,
sequential processing is preferable over batch approaches (such
as [5]). Advantages include reduction in computational cost and
storage requirement and a natural tempering effect that helps
the inference. However, a problem with sequential inference is
the potential danger of accumulation of Monte Carlo errors and
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consequent decrease in the estimation quality. In this work we
propose a novel sequential Monte Carlo sampler for inference in
the DPM model. The proposed method is an annealed sequential
Monte Carlo (SMC) sampler that enables us to design sophisti-
cated clustering update schemes and ensures convergence to the
true target distribution asymptotically. An important feature of
our approach is that the proposed algorithm updates past particle
trajectories in light of recent observations to avoid error accu-
mulation. This approach is not feasible in the particle filtering
setting.

The performance of the algorithm is evaluated in a Bayesian
density estimation problem with unknown number of compo-
nents where the prior on parameters is conjugate. It is shown
that the proposed annealing scheme accurately represents the
target posterior and it provides smaller standard error compared
to particle filtering. In contrast to our previous work [6] which
utilize mixture kernels in order to target the true DPM posterior,
here we focus on a single proposal kernel targeting an annealed
posterior distribution and update the weights according to the
true target density. The conference version of this work is pre-
sented in [7].

II. DIRICHLET PROCESS MIXTURES (DPM)

In this section we will define the Dirichlet process mixtures
(DPM) model. We will focus on the infinite mixture interpreta-
tion where observations arrive sequentially. It is known that due
to exchangeability and the specific construction of this model,
the actual order is irrelevant [8]. We refer to the time index as n
and the observation sequence obtained until time n is denoted
by ¥n = {YUn,1...Ynn}. Each observation y,;, ¢ = 1,...n,
is assigned to a cluster where z,; € {1,...ky,} is the cor-
responding cluster label and, k, € {1...n} represents the
number of existing clusters at time n. The vector of cluster
variables is defined as z, = {z,.1 ... 2y} and corresponding
cluster parameters are represented with the parameter vector
0, = {0n1-..0nk,

The DPM model assumes that the cluster parameters are i.i.d.
and the observations are independent of each other conditional
on the cluster variable z, ;. Hence the DPM defines the joint
density 7 (zy, 0, ) that can be expressed as

K n
Tn(Zn, 0n) o p(2n) Hp(an,j) Hp(yn,’iwn,zn,i)- (M
j=1

i=1

The prior on clustering variable vector z,, is formulated by (2)
in a recursive way,
L

P(2Zn,it1 = Jlzn {1:4)) = { s
4K

J=1,.. ki

j=k+1 @

where £; is the number of clusters in the assignment 2, {1.}.
In (2), [; is the number of observations that z,, (1. assigns to
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cluster j and k is the positive valued 'novelty’ parameter [8]. In
our model we assume that the parameters 6,, satisfies the con-
jugacy condition hence our aim is to estimate the sequentially
evolving posterior density of the DPM model that is intractable
due to the exploding cardinality of z,.

III. SEQUENTIAL MONTE CARLO SAMPLERS

In sequential inference, one samples from a sequence of target
densities, 71 (z1) - - - mn (), evolving with n each defined on a
measurable space (E,, &, ) where z,, € E,,. Building on the
work of Neal [5], Del Moral et al. [9] proposed an auxiliary
variable technique which solves the sequential importance sam-
pling problem in an extended space E” = {FE; X --- X FE,}.
SMC sampler performs importance sampling between the joint
importance distribution 7,,(z1.,,) and the artificial joint target
distribution defined by 7, (1.n,) = Yn(21.n)/ Zn Where Z,, de-
notes the normalizing constant and

n—1

:?n(xl:n) = 'Yn(xn) H Lk(xk-l—hxk)- (3)
k=1

L, is a backward Markov Kernel from space E,, ;1 to E,,. Note
that, 7, (z1.,) admits m,(x,) = yn(zn)/Z, as a marginal
by construction therefore the resultant weight function ensures
convergence to the true target density.

Assume that a set of weighted particles { W, _;, X{.,_, }j\;”l
approximate 7,1 at time n — 1. At time n the path of each par-
ticle can be extended using a Markov kernel, K,,(%,—1,%n)-
The unnormalized importance weights, ¥y, (21.n) /7 (Z1.n ), as-
sociated with the extended particles are calculated according
t0 Wn(21:m) = Wn—1(1.n—1)Un(Tn—1,z,) Where the incre-
mental term of weight equation, vy, (x,—1, %) is

Yn (xn)Ln—l(xn7 xn—l)
Wn—l(xn—l)Kn(xn—lvwn) .

“4)

vn(xn—h xn) =

The design of efficient sampling schemata hinges on properly
choosing the backward kernel L,,_;. Assuming K, is an Monte
Carlo Markov Chain (MCMC) kernel of invariant distribution
T., an approximate backward kernel can be formulated as
shown in (5):

7rn<xn71)Kn<xn717‘Tn)

ﬂ'n(xn)

®)

Ln71($n7 xlnfl) =

which is accepted as a good approximation for 7, 1 ~ m,
and yields to the incremental weight v, (2, 1,2,) =

”Yn(xn—l)/fyn—l(xn—l)'

IV. SMC SAMPLERS FOR DPM MODELS

Let K,, denote the forward kernel that will be used to gen-
erate samples from the posterior distribution formulated in (1).
We first partition an assignment vector z, = {Zn,r, Zn.d; Zn,n}
where r is a subset of {1,...,n — 1}, a set of not necessarily
consecutive indices, and d = {1,...,n — 1} — r. Throughout
the text we will call the set z,,,. as the active block. We define
u = 7 U{n}, and denote —u = d.

Let us define the forward kernel as follows:

Kn(zn—h Zn) = 6zn,1_,u (Zn,—u) Kn(zn,’rn Zn,1’|zn—1) (6)
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where K, (21 1, Zn,r|#n—1) is a valid MCMC kernel applying a
single Gibbs iteration targeting the full conditional distribution
Tn(Znns Znr |20, —u)-

The corresponding backward kernel can be obtained by sub-
stituting (6) into (5) that yields the incremental weight update
equation

’yn(znfl ryZn 7u)
Un(Zn—1,2n) = ; : . @)
( ! ) Vn—l(zn—l)

Note that as a consequence of using the MCMC kernel K,,, (7)
is independent from the kernel initialization. When the active
block set is selected as r = {1...n — 1}, we obtain the up-
date rule (7) introduced in [10] as S4 algorithm. Intuitively, the
MCMC kernel updates the active block using a Gibbs sampler
and constructs the proposal distribution using the sequence of
full conditional distributions.

In a sequential problem the posterior distribution changes
over time and new modes of the posterior distribution may
emerge as new observations are received. The algorithm must
have a good mixing property to explore the modes of the time
evolving posterior distribution and to achieve a good approx-
imation to the true target posterior. However, conventional
sequential and batch algorithms based on the Gibbs sampler
may fail to represent the modes of the true target posterior
due to the slow convergence property of the Gibbs samplers.
This is particularly when the posterior distribution has a multi
modal form where the modes are isolated [5]. To deal with this
problem, in the next subsection we introduce an algorithm that
converges to the true DPM posterior as the new observations
are received sequentially.

A. Annealing Procedure

The conventional approach presented in Section IV applies
Gibbs moves to each particle in order to obtain weighted
samples from a sequence of target distributions denoted as
m1(21), ..., Tn(2n). This paper proposes an annealing scheme
to improve the efficiency of posterior estimation. In the lit-
erature annealing schemes have been widely used to handle
isolated modes in batch processing. It is adopted to importance
sampling to construct the proposal distribution suitable to
sampling of the true target distribution [5].

To achieve our goal let us construct an annealed time evolving
target posterior as 71 (21),...m,(zn), k = {1...n}, where 7},
is the annealed target posterior defined as

e (2x) = (21| = ag). )

Annealing is achieved by changing the novelty parameter of the
underlying Dirichlet process which is set to «, in (8). Note that
o, is a parameter of the prior distribution of number of com-
ponents where a higher value yields higher number of mixtures.
The idea behind constructing a sequence of annealed target pos-
terior distribution is to obtain a class of intermediate distribu-
tions by selecting a a;, value which is higher than the true model
novelty parameter « and provide a well defined support to the
time evolving target posterior. In other words, the annealed dis-
tributions can be interpreted as an underlying DPM model of
which the parameters are relaxed in order to obtain an annealed
posterior which is easy to sample.
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In order to sample the sequence of annealed target distribu-
tions, let us define a forward kernel as follows:

Kn(zn—hzn) = 6zn,1,,u (Zn,—u) Kn(zn,n; Zn,r|zn—l) (9)

where K,,(%n.n, #n.r|2n—1) is an MCMC kernel which targets
the conditional distribution 7}, (2 n, Zn.r|2n,—u). Using (5), the
backward kernel can be written as in (10):

W;l(zn—l)Kn(Zn—lv zn)

T (2n)

(10)

Ln—l(zn7 Zn—l) =
and the incremental weights for the annealed target posterior can
be obtained as follows:

’7;7,(,2”)7@/1(2:”_1,,“ |Zn—1,—u)
74171(2"—1)’”—41(2717 Zn,'r‘|zn,—u)

(11)

U;(Zn—h Zn) =

where 7l (z,) = ~,(2n)/Zn. and the weights associ-
ated with the particles can be calculated according to
wh(z1m) = wh_1(z1m-1) X v, (2n_1,2,). Assuming
{WT’L('L)} represents  the
mating to 7, (zn), we perform a resampling step if ef-
fective sample size, N.jy = 1/ Zﬁvz"l(W,’z(z)){ is below
a predefined threshold. Finally, in order to approximate
the target distribution m,(z,), we reweight the parti-
cles according to w,(z1.n) = w,(21:m) X vn(2,) where
Vn(2n) = Yn(2n) /7 (2n)-

Specification of the active block size r shown in (11) is an
important issue in the design of the proposed sampler. In order
to limit the computational cost required at each time step we
initially determine a constant block size () and index the block
with 71 ...7¢. The indexes of the active block is incremented
by @) as each new observation is received. The blocks do not
overlap to each other and update scheme is cycled whenever all
the clustering labels up to time n are updated. Note that similar
block update strategies are also used in [11] under the SMC
samplers framework.

normalized weights approxi-

B. The Annealing Parameter

As denoted above the sequence of annealed posterior distri-
butions, 71 (21), ..., 7, (2,) is constructed by updating the an-
nealing parameter «,, of the underlying DPM model shown in
(8). At each time step of the algorithm «, is updated according
to a geometric spacing function

p = a1 + ok — 1) (12)
where a; > 0, a,—1 > «,, and ¢, is the common parameter
that determines the amount of spacing at each time step. Note
that in [5] it is reported that to change the annealing parameter
according to geometric spacing of «y is suitable when the 7/,
varies smoothly with time.

In our framework, we construct the sequence of annealed dis-
tributions by setting an initial value oy and updating «,, as each
new observation arrives. Intuitively the initial value for «; and
the common parameter c,, are set empirically in order to form
the intermediate distributions that are not too far apart from the
true target density ,,. We note that, in conventional annealing
approaches, where one modifies the target density gradually,
finding the correct schedule is a hard but crucial task. In con-
trast, in the SMC framework we don’t have to choose a schedule

very strictly. We are free to choose any forward kernel, provided
we compute the corresponding incremental weight—we will be
sampling from the correct target at any given time.

V. TEST RESULTS AND CONCLUSIONS

Our goal in this section is to illustrate the effectiveness of the
SMC samplers framework for online inference in DPM models.
For this purpose, we compare performance of three samplers
namely; the SMC-G which utilizes conventional Gibbs moves
on the DPM space [10], the proposed SMC sampler (SMC-A),
the SMC-M algorithm that utilize a mixture of Gibbs moves and
approximate Gibbs moves based on sequential approximation
[6] and the Particle filter (PF) [4]. Performance has been re-
ported in terms of log-marginal likelihoods, mean estimates and
respective standard errors. Mixture density estimates are also
provided for visual comparison.

Algorithms are evaluated on a infinite Gaussian mixture den-
sity estimation problem. Observations are drawn from a uni-
variate Gaussian with § = {u, %} where 1 is the mean and
o is the variance. The conjugate prior distributions are chosen
as normal and inverse-gamma, respectively.

To alleviate the degeneracy, a systematic resampling scheme
is applied for sequential algorithms when N.s; < 3/4N,,. For
a fair comparison the number of particles is selected as IV,, =
1000 for PF, N, = 100 for SMC-A algorithm and N, = 200
for the SMC-M algorithm where the active block size () is set
to 9 and 4 for the SMC-A and SMC-M algorithms respectively.
Note that block size determines the approximation introduced
by the kernels for the SMC-M algorithm [6]. The results are
reported for 100 independent Monte Carlo runs for each model.
The initial annealing parameter for annealed target distribution
is set to &y = 1 and it is geometrically updated according to
(12) at each time step where the common parameter, c,, is set
to 1/100.

Two test sets (D-1 and D-2) are generated from a Gaussian
mixture model comprising three mixture components with pa-
rameters given in Table I where u;, 0;, and p;, fori € {1...3},
denote the mean, standard deviation and the mixture weight for
each component, respectively. In order to evaluate the perfor-
mance on real data, we also performed the tests on the speech
data set (D-3) publicly available at [12]. Reported results are
obtained for the emotional state “sad” where the actual number
of mixture components is priorly unknown. Each test set has a
total of 1000 points and the results are reported sequentially for
200, 500, and 1000 samples.

In order to illustrate the mixing capability of the proposed
algorithm we set the novelty parameter to a very low value of
x = 0.05. Note that a low s will probably cause the posterior
to have isolated modes hence this test aims to assess the mixing
property (ability to escape local modes) of the algorithms. We
performed the test by generating a total of 1000 observations
from the model D-1 which comprise three overlapping mixture
components. As a gold standard reference we performed a very
long Gibbs sampler run and observed that the estimated number
of components is 2.16, 3.09, and 3.11 for 200, 500, and 1000
observations consecutively. In Fig. 1, the mixture densities are
plotted for each run of the PF, SMC-G, SMC-A and SMC-M al-
gorithms, respectively. It is clear that SMC-A and SMC-M can
represent all three components of the mixture density in all runs
of the algorithms whereas SMC-G and PF commonly gets stuck
at a local mode and fits two mixture components to the data for
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Fig. 1. Estimated mixture densities by the (a) PF, (b) SMC-G, (c) SMC-A, and
(d) SMC-M algorithm for 50 Monte Carlo runs. SMC-A and SMC-M represent
all tree components of the mixture density in all runs.

TABLE I
TRUE MODEL PARAMETERS

P1,P2,P3 M1, B2, 13 01,02,03
Data-1 (D-1) | 1/3,1/3,1/3 0,1.5,3 0.5,0.5,0.5
Data-2 (D-2) | 1/2,1/6,1/3 0,2,4 0.5,0.5,2.5

several runs (more than the half) of the algorithm. We also re-
ported the log-marginal likelihood, mean estimate of the number
of components and respective standard errors (in parenthesis) in
Table II for SMC-G, SMC-A, SMC-M, and PF. The results il-
lustrate that SMC-A and SMC-M are able to converge to the
three components for a small number of observations, however
the SMC-G and PF algorithms do not converge to the true pos-
terior even when the observation size is 1000. It is also clear that
SMC-A has much lower standard error compared to SMC-G and
PF in means of log-marginal likelihoods and the mean estimates
whereas a slight improvement is achieved over SMC-M.

In order to examine dependency of the performance of the
algorithms on different datasets and parameter settings, we set
the novelty parameter to x = 0.5 and report the results in
Table II for dataset D-2. It is clear that PF and SMC algo-
rithms provide very close mean estimates. However, SMC-G,
SMC-A, and SMC-M can achieve significantly lower standard
error compared to PF at n = 1000. This result shows that SMC
algorithms are more reliable with the same computational cost.
Moreover SMC-A achieves comparable performance to SMC-G
and SMC-M in means of standard error when x = 0.5 while it
provides similar mean estimates.

Finally we compared the performance for dataset D-3, where
the novelty, initial annealing and the common parameter are set
to x = 0.05, a; = 0.25 and ¢, = 1/2000 respectively. As a
gold standard reference the results of a very long Gibbs sam-
pler run are found as 2.53, 3.35, and 4.10 for 200, 500, and
1000 observations consecutively. The results given in Table II
shows that the SMC-A and SMC-M provides closer estimates
to the long Gibbs sampler run particularly when n = 1000
whereas SMC-G and PF underestimates the mean value. Simi-
larly SMC-A outperforms SMC-G and PF in means of log mar-
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TABLE II
ESTIMATED AVERAGE LOG-MARGINAL LIKELIHOODS, MEAN VALUES AND
RESPECTIVE MONTE CARLO STANDARD ERRORS (IN PARENTHESIS)

D-1

Mean Estimate
200 500

2.11 (0.118) | 2.51 (0.152)
2.15 (0.070) | 3.07 (0.077)
2.15 (0.083) | 3.09 (0.104)
2.10 (0.122) | 2.35 (0.425)

D-2
4.14 (0.187)
4.14 (0.158)
4.13 (0.137)
4.14 (0.173)

D-3
2.50 (0.197)
2.61 (0.424)
2.60 (0.303)
2.48 (0.251)

1000
2.67 (0.493)
3.07 (0.071)
3.09 (0.115)
2.49 (0.491)

Algo. K
SMC-G | 0.05
SMC-A
SMC-M | 0.

PF [0.05

Log-marg.

-723.4 (10.1)
-710.8 (1.61)
-711.1 (1.78)
-727.6 (7.27)

SMC-G | 0.5
SMC-A | 0.5
SMC-M | 0.5

PF 0.5

11173 (0.59)
-1117.3 (0.52)
-1117.2 (0.53)
-1117.7 (0.99)

4,54 (0.260)
4.53 (0.244)
4.50 (0.232)
4.56 (0.345)

4.65 (0.266)
4.63 (0.330)
4.58 (0.293)
4.73 (0.530)

SMC-G
SMC-A | 0.05
SMC-M | 0.05

PF 0.05

0.05]2052.1 (2.26)
-2050.6 (0.30)
22051.1 (1.39)

2052.8 (2.54)

3.09 (0.447)
3.40 (0.378)
3.35 (0.360)
3.06 (0.500)

3.58 (0.452)
4.04 (0.320)
4.01 (0.401)
3.39 (0.573)

ginal likelihood and achieves lower standard error compared to
the SMC-M algorithm.

We have developed a novel online algorithm based on the
SMC samplers framework [9]. The key idea of our method is
maintaining an intermediate (annealed) distribution as a surro-
gate target for the SMC algorithm where resampling is carried
out according to this annealed distribution. Consequently, we
use this surrogate density as a proposal to the true target where
we can calculate the correct weights without any extra computa-
tional cost. Intuitively, we are using the SMC machinery to com-
pute a good proposal density. This strategy enables us to main-
tain a diverse particle set that seems to be crucial in obtaining
an efficient sampler. The test results show that proposed algo-
rithm is much more efficient compared to conventional methods
particularly when DPM target posterior distribution has isolated
modes.
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