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Probabilistic Models for Real-time Acoustic Event Detection with

Application to Pitch Tracking

Umut Şimşekli and Ali Taylan Cemgil

Bo�gaziçi University, Turkey

Abstract

In this paper we present two probabilistic models for
real-time acoustic event detection: the Hidden Markov
Model and the Change Point Model. We construct the
generative models in such a way that each time slice of
the audio spectra is generated from a ‘spectral template’
which is multiplied by a volume factor. From this point
of view, we treat the event detection problem as a
template matching problem where the aim is to infer the
active template and its volume while the audio data are
observed. The novel contribution in this paper is a
Change Point Model for real-time template matching
using a conditional Poisson observation model. For this
model, we develop an exact inference algorithm and an
effective approximation schema. We evaluate the models
on online monophonic pitch tracking of two low pitched
instruments where we focus on the trade-off between the
latency and accuracy of the system. The evaluation
results suggest favourable features such as quick detec-
tion, graceful degradation and an acceptable level of
accuracy when compared with a state-of-the-art mono-
phonic pitch tracking algorithm (YIN). We believe that
these models provide a flexible and powerful modelling
framework for real-time event and pitch detection.

1. Introduction

With the rapid growth of the computational power, real-
time computer music systems have become popular in
both artistic and entertainment applications. In order for
the interaction to be fluent, these systems require quick
response in real-time while providing a comprehensive

analysis of music in order to be accurate. Therefore
accurate and flexible event detection methods are needed.

In this study we propose and evaluate two probabil-
istic models for real-time detection of acoustic events.
These events in question can be different notes played by
a harmonic instrument, percussive sounds that are
generated by humans (i.e. hand clapping, finger snap-
ping) or percussive instrument sounds (i.e. cymbals,
membraphones), and so on. The main concern of the
work is reducing the detection latency without compro-
mising the detection quality. Here, the term latency is
defined as the time difference between the true event
onset and the time that the system has computed its
estimate. Clearly, the more data are accumulated the
more accurate the estimates should be. However, we wish
earliest detection as possible to reduce the latency.

From our point of view, there are two reasons for a
real-time acoustic event detection method to have
latency: one is intrinsic and the other one is extrinsic.
The intrinsic reason is that the method cannot estimate
the onset accurately because it has not accumulated
enough data yet. This is in some sense a theoretical limit
of a given model or method, independent of the speed of
a particular computer running the algorithm. The
second, extrinsic reason is the computational burden;
here latency occurs due to poor implementation or other
practicalities such as delays of audio device drivers. We
assume that for an algorithm that performs a constant
amount of computation for each additional sample, these
latter extrinsic reasons can be virtually eliminated by
using more powerful computers and careful program-
ming. Hence, in our work we focus only on the intrinsic
properties of an event detector and study in detail the
latency/accuracy trade-off. In other words, for a
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particular model, we aim to estimate the lower bound of
the processing delay, as a function of accuracy.

The advantage of the proposed framework is that it
can be applied to several types of applications, relevant
for acoustic processing. In this study we tested the
framework on real-time monophonic pitch tracking
where we used recordings of two low pitched instru-
ments: a tuba and a bass guitar. This is considered
challenging since estimating low pitches in shortest time
is intrinsically a difficult problem due to the longer
wavelengths and the ‘blurring’ in the low frequency
spectrum. We conduct our experiments on the electric
bass guitar and tuba recordings of the RWC Musical
Instrument Sound Database. Encouraged by the simula-
tion results, we have implemented the framework as a
plug-in for popular real-time signal processing environ-
ments Pure Data and Max/MSP, suggesting the applic-
ability of the methods in practice.

1.1 Related work

Pitch tracking is one of the most studied topics in the
computer music field since it lies at the centre of many
applications. It is widely used in phonetics, speech
coding, music information retrieval, music transcription,
and interactive musical performance systems. It is also
used as a pre-processing step in more comprehensive
music analysis applications such as chord recognition
systems.

Many pitch tracking methods have been presented in
the literature; indeed the algorithms are so numerous that
it is very difficult, if not impossible to give a complete
summary. The main trends can be summarized as
algorithmic and model based approaches. Puckette, Apel,
and Zicarelli (1998) presented a maximum-likelihood
pitch detector and developed an object called ‘fiddle*’
for the real-time signal processing systems PD and Max/
MSP. Klapuri (2008) proposed an auditory model based
fundamental frequency estimator for polyphonic music
and speech signals. As another algorithmic approach,
Saito, Kameoka, Takahashi, Nishimoto, and Sagayama
(2008) presented the Specmurt analysis technique, where
the pitch estimation is achieved by deconvolution of the
audio signal after transforming it in the specmurt domain.
Assuming that each sound in a polyphonic signal has
exactly the same harmonic structure pattern in the log-
frequency domain, the specmurt method describes the
overall shape of the audio spectrum as the convolution of
a fundamental frequency pattern and the common
harmonic structure pattern.

Model based approaches combine elements of sub-
space techniques or probabilistic models. In a recent
review, Christensen, Stoica, Jakobsson, and Holdt
Jensen (2008) propose and evaluate four statistical signal
processing methods for single and multi-pitch estimation.
Yeh, Roebel, and Chang (2008) proposed a multiple

pitch estimation method which is composed of two parts.
In the first part, they determined the number of sources
(i.e. polyphony) and the related fundamental frequencies
by a frame-by-frame basis. Then, they utilized a Hidden
Markov Model in order to refine the estimation that was
obtained from the first part of their method. Ryynänen
and Klapuri (2008) proposed a method for the automatic
transcription of melody, bass line, and chords in
polyphonic music. The method incorporates both heur-
istic and model-based techniques, such as pitch salience
estimation, acoustic modelling, and musicological mod-
elling, where the Hidden Markov Models are utilized for
acoustic and musicological modelling. Cemgil (2004) also
proposed generative models for both monophonic and
polyphonic music transcription.

Recently, nonnegative matrix factorization (NMF)
methods have become popular for various audio proces-
sing applications and have found its place in music
transcription. Different types of NMF models with
different assumptions and inference schemes have been
proposed and evaluated on polyphonic music analysis
(Cont, 2006; Vincent, Bertin, & Badeau, 2008; Févotte,
Bertin, & Durrieu, 2009; Peeling, Cemgil, & Godsill,
2010). For a more comprehensive overview of different
pitch estimation/detection methods, the curious reader is
referred to Klapuri and Davy (2006).

The current approach combines a NMF-like model
with the change point approach introduced first in
Şimşekli (2010) and Şimşekli and Cemgil (2010), which
reported preliminary results. A Hidden Markov Model
for online recognition of percussive events is reported in
Şimşekli, Jylhä, Erkut, and Cemgil (in press). In this
study, we compare a similar Hidden Markov Model and
a novel improved Change Point Model to the problem of
quick onset detection and pitch tracking and compare
their performances on monophonic audio, in terms of
detection quality and estimation delay.

The novel contributions of this paper are as follows.

. We develop a novel conditionally Poisson Change
Point Model for real-time template matching.

. For the Change Point Model, we develop an exact
inference algorithm, an effective approximation
schema and a training algorithm.

. We introduce a detailed evaluation methodology that
focuses on the trade-off between the intrinsic latency
and detection accuracy.

. We report detailed simulation results for a bass guitar
and tuba.

The rest of the paper is organized as follows. In
Section 2, the required technical background is provided.
The probabilistic models are presented in Section 3. The
inference and training schemes are presented in Sections
4 and 5. We report our results in Section 6 and finally,
Section 7 concludes this paper.

176 Umut Şimşekli and Ali Taylan Cemgil

D
ow

nl
oa

de
d 

by
 [

B
og

az
ic

i U
ni

ve
rs

ity
] 

at
 0

5:
48

 2
3 

Ju
ly

 2
01

1 



2. Technical background

Audio processing can be seen as time-series processing
where a time-series is defined as a sequence of observations
which are measured at an increasing set of time points
(usually uniformly spaced). In this study, wewill be dealing
with two probabilistic models for time-series modelling:
the Hidden Markov Model and the Change Point Model.

2.1 Hidden Markov Model

A Hidden Markov Model (HMM) is a statistical model
which is basically a partially observed Markov chain
(Cappé, Moulines, & Ryden, 2005). At each time point t,
we have a latent state xt, that is not directly observable.
Instead, we observe a related random variable yt.
The goal is to estimate the hidden states given the
observations.

In Figure 1(a), we show a so-called ‘graphical model’ of
a standard HMM (Barber & Cemgil, 2010), which
provides an intuitive way to represent the conditional
independence structure of the probabilistic model. In the
graphical model, the nodes correspond to probability
distributions of model variables, and edges to their
conditional dependencies. The joint distribution can be
rewritten by making use of the directed acyclic graph:

pðx1:T; y1:TÞ ¼
YT
t¼1

pðxtjpaðxtÞÞpðytjpaðytÞÞ; ð1Þ

where pa (w) denotes the parent nodes of w. As can be seen
from the graphical model, the hidden state variable at
time t depends only on the state variable at time t71.
This is called the Markov property1.

pðxtjx1:t�1Þ ¼ pðxtjxt�1Þ: ð2Þ

Similarly, the observation at time t depends only on the
state variable at time t,

pðytjy1:t�1; x1:tÞ ¼ pðytjxtÞ: ð3Þ

In a HMM, the probability distribution in Equation 2 is
called the state transition model and the distribution in
Equation 3 is called the observation model. The HMM is
called homogeneous if the state transition and the
observation models do not depend on time index t,
which is our case in this study.

2.2 Change Point Model

In the classic time-series models, the underlying latent
process is assumed to be either discrete (i.e. Hidden
Markov Model) or continuous (i.e. Kalman Filter).
These kinds of models have been shown to be successful
in many problems from various research fields. However,
in some cases selecting the underlying process either
discrete or continuous would not be sufficient. Thanks to
the increase in the computational power and the
development in the state-of-the-art inference methods,
we are able to construct more complex statistical models
such as the Change Point Models (see Barber & Cemgil
2010, and references herein).

A Change Point Model (CPM) is a switching state
space model where the variables have a special structure.
In a CPM, we have two latent variables: the discrete

switch variable ct and the continuous variable xt. While
the switch variable is off (ct¼ 0), xt follows the pre-
defined structure that depends on xt71. On the other
hand, at the time when the switch variable is on (ct¼ 1),

Fig. 1. Graphical model of (a) a Hidden Markov Model and (b) a Change Point Model. xt represent the latent variables, yt represent
the observations, and ct represent the binary switch variables. These graphs visualize the conditional independence structure between
the random variables and allows the joint distribution to be rewritten by utilizing Equation 1. In the model, the nodes correspond to

probability distributions of model variables, and edges to their conditional dependencies.

1Note that we use MATLAB’s colon operator syntax in
which (1: T) is equivalent to [1, 2, 3, . . . ,T] and x1:T: {x1,

x2, . . . , xT}.
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xt is reset to a new value independent from the previous
values.

In this model, the switch variables ct form a Markov
chain. Besides, conditioned on ct, xt also form a Markov
chain. The graphical model representation of a CPM is
shown in Figure 1(b).

3. Probabilistic modelling of acoustic events

In this section, we infer a predefined set of pitch labels
from streaming audio data. We construct two probabil-
istic models that relate a latent event label to the actual
audio recording. The audio signal is subdivided into
frames and represented by the magnitude spectrum of the
frames which is calculated with discrete Fourier trans-
form. We define xn,t as the magnitude spectrum of the
audio data with frequency index n and time index t,
where n2 {1, 2, . . . , F} and t2 {1, 2, . . . , T}. Here, F is
the number of frequency bins and T is the number of
time frames.

For each time frame t, we define an indicator variable
rt on a discrete state space Dr, which determines the label
we are interested in. In our case Dr consists of note labels
such as {C4, C#4, D4, D#4, . . . , C6}. The indicator
variables rt are hidden since we do not observe them
directly.

In our models, the main idea is that each event has a
certain characteristic spectral shape which is rendered by
a specific volume. The spectral shapes that we denote as
spectral templates are denoted by tn,i. The n index is again
the frequency index and the index i indicates the pitch
labels. Here, i takes values between 1 and I, where I is the
number of different spectral templates. The volume
variables vt define the overall amplitude factor, by which
the whole template is multiplied. An overall sketch of the
model is given in Figure 2.

3.1 Hidden Markov Model

Hidden Markov Models have been widely studied in
various types of applications such as audio processing,
natural language processing, and bioinformatics. Like in
several computer music applications, HMMs have also
been used in pitch tracking applications (Raphael, 2002;
Orio & Sette, 2003).

We define the probabilistic model as follows:

r0 � pðr0Þ;
rtjrt�1 � pðrtjrt�1Þ;

vt � Gðvt; av;bvÞ;

xv;tjvt; rt �
YI
i¼1
POðxv;t; tv;ivtÞ½rt¼i�: ð4Þ

Here [x]¼ 1 if x is true, [x]¼ 0 otherwise and the symbols
G and PO represent the Gamma and the Poisson
distributions respectively, where

Gðx; a; bÞ ¼ exp ðða� 1Þ log x� bx� log �ðaÞ þ a log ðbÞÞ

POðx; lÞ ¼ exp ðx log l� l� log �ðxþ 1ÞÞ;
ð5Þ

where � is the Gamma function. For an integer x, we
have �(xþ 1)¼ x!, the factorial function.

In some recent work on polyphonic pitch tracking,
NMF models are widely used (Vincent et al., 2008;
Févotte et al., 2009). One popular approach uses the KL
divergence as the error metric when fitting a model to a
spectrogram. It is shown in Cemgil (2009), that this
choice is equivalent to a Poisson observation model.
Since our probabilistic models are conceptually similar to
NMF models, we choose a Poisson distribution as the
observation model. We also choose Gamma prior on vt
to preserve conjugacy and make use of the scaling
property of the Gamma distribution. Other choices, such
as Gaussians are also possible but are not investigated
further in this paper.

We choose a Markovian prior on the indicator
variables, rt which means rt depends only on rt71.
Following a similar approach as in Orio and Sette (2003),

Fig. 2. The block diagram of the probabilistic models. The
indicator variables, rt choose which template to be used. The
chosen template is multiplied by the volume parameter vt in

order to obtain the magnitude spectrum, xn,t.
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we use three states to represent a note: one state for the
attack part, one for the sustain part, and one for the
release part. We also use a single state in order to
represent silence. Figure 3(a) shows the graphical model
of the HMM.

In this probabilistic model we can integrate out
analytically the volume variables, vt. It is easy to check
that once we do this, provided the templates tn,i are
already known, the model reduces to a standard HMM
with a Compound Poisson observation model (Şimşekli,
2010).

The observation model assumes that the subsequent
frames are conditionally independent from each other
given the latent indicators rt. Hence, to conform with this
assumption, we calculate the spectra xn,t on nonoverlap-
ping frames. In practice, one could also compute the
spectrum using overlapping frames but then the condi-
tional independence assumption would not be exactly
valid.

3.2 Change Point Model

In addition to the HMM, in the Change Point Model
(CPM), the volume parameter vt has a specific structure
which depends on vt71 (i.e. staying constant, mono-
tonically increasing or decreasing, etc.). But at certain
unknown times, it jumps to a new value independently
from vt71. We call these times ‘change points’. The
occurrence of a change point is determined by the binary
switch variable ct. If ct is on, in other words if ct¼ 1, then
a change point has occurred at time t.

The formal definition of the generative model is given
below:

v0 � Gðvo; a0; b0Þ;
r0 � pðr0Þ;
ct � BEðct;wÞ;

rtjct; rt�1 �
p0ðrtjrt�1Þ; ct ¼ 0;

p1ðrtjrt�1Þ; ct ¼ 1;

�

vtjct; rt; vt�1 �
dðvt � yðrtÞvt�1Þ; ct ¼ 0;

Gðvt; av; bvÞ; ct ¼ 1;

�

xv;tjvt; rt �
YI
i¼1
POðxv;t; tv;ivtÞ½rt¼i�: ð6Þ

Here, d(x) is the Kronecker delta function which is
defined by d(x)¼ 1 when x¼ 0, and d(x)¼ 0 elsewhere.
The symbol BE represents the Bernoulli distribution,
where

BEðx;oÞ ¼ exp ðx log oþ ð1� xÞ log ð1� oÞÞ: ð7Þ

The graphical representation of the probabilistic model is
given in Figure 3(b).

The y(�) function determines the specific structure of
the volume variables where, y(rt)2 {ya,ys,yr}. Here ya, ys,
and yr correspond to the attack, sustain, and release parts
of a note respectively. y(rt) gives flexibility to the CPM
since we can adjust it with respect to the instru-
ment whose sound would be processed (i.e. we can select
ya¼ ys¼ yr¼ 1 for woodwind instruments by assuming
the volume of a single note would stay approximately

Fig. 3. Graphical model of the (a) HMM and (b) CPM. Note that we use the plate notation for the observed variables where F distinct
nodes (i.e. xn,t where n 2{1, . . . , F}) are grouped and represented as a single node in the graphical model. In this case, F is the number
or frequency bins.
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constant). Figure 4 visualizes example templates and
synthetic data which are generated from the CPM.

Note that a similar Change Point Model for music
transcription has been presented by Cemgil, Kappen, and
Barber (2006). That model is similar to our model in
terms of the dependence structure of the latent variables;
however, it has a sinusoidal model-based observation
model which makes heavy assumptions about the
harmonic structure of audio. As opposed to that model,
the proposed Change Point Model is linked to the audio
signal by a template-based observation model which
enables the model to be used in several applications.

4. Inference

Inference is a fundamental issue in probabilistic
modelling where we ask the question ‘what can be the
hidden variables as we have some observations?’
(Cappé et al., 2005). For online processing, we are
interested in the computation of the so-called filtering
density: p(rtjx1:F,1:t), that reflects the information about
the current state rt given all the observations x1:F,1:t so
far. The filtering density can be computed online,

however the estimates that can be obtained from it are
not necessarily very accurate as future observations are
not accounted for.

An inherently better estimate can be obtained
from the so-called fixed lag smoothing density, if we
can afford to wait a few steps more. In other words, in
order to estimate rt, if we accumulate L more observa-
tions, at time tþL, we can compute the distribution
p(rtjx1:F,1:tþL) and estimate rt via:

r�t ¼ argmax
rt

pðr1:tþLjx1:F;1:tþLÞ: ð8Þ

Here, * denotes the optimality, L is a specified lag and it
determines the trade-off between the accuracy and the
latency. By accumulating a few observations from the
future, the detection at a specific frame can be eventually
improved at the cost of introducing a slight latency.
Therefore, we have to fine-tune this parameter in order to
have balance in the latency–accuracy trade-off. In the
following subsections, we will explain the inference
schemes of the HMM and the CPM respectively for
calculation of these quantities.

As a reference to compare against, we will compute
an inherent batch quantity: the most likely label

Fig. 4. Spectral templates of a tuba and synthetic data generated from the HMM and CPM. The topmost figures show a realization of
the indicator variables rt and the second topmost figures show a realization of the volume variables vt. The bottommost figures show
the spectral templates and the audio spectra that are generated from the HMM and CPM respectively. The dashed lines represent the

points where the change points occur. It can be observed that the CPM is more natural in terms of modelling an audio spectrum.
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trajectory given all the observations, the so-called Viterbi
path

r�1:T ¼ argmax
r1:T

pðr1:Tjx1:F;1:TÞ: ð9Þ

This quantity requires that we accumulate all data before
estimation and should give a high accuracy at the cost of
very long latency.

4.1 Hidden Markov Model

The goal of inference in the HMM is computing the
filtering and the (fixed-lag) smoothing distributions and
the (fixed-lag) Viterbi path which are defined at the
beginning of Section 4. In a standard HMM, these
quantities can be computed by the well-known forward–
backward algorithm where the forward (a) and the
backward (b) messages are defined as:

atðrtÞ ¼ pðrt; x1:F;1:tÞ;
btðrtÞ ¼ pðx1:F;tþ1:TjrtÞ: ð10Þ

We can compute these messages via the following
recursions:

atðrtÞ ¼ pðx1:F;tjrtÞ
X
rt�1

pðrtjrt�1Þat�1ðrt�1Þ;

btðrtÞ ¼
X
rtþ1

pðrtþ1jrtÞpðx1:F;tþ1jrtþ1Þbtþ1ðrtþ1Þ: ð11Þ

Here, a0(r0)¼ p(r0) and bT(rT)¼ 1 (Barber & Cemgil,
2010). Once these messages are computed, the smoothing
distribution can be computed easily by multiplying the
forward and backward messages as

pðrtjx1:F;1:TÞ / atðrtÞbtðrtÞ; ð12Þ

where / denotes the proportionality up to a multi-
plicative constant. Besides, the Viterbi path is obtained
by replacing the summations over rt by maximization in
the forward recursion.

The good news about this model is that we can
integrate out analytically the volume variables, vt. Hence,
given that the templates tn,i are already known, the model
reduces to a standard Hidden Markov Model with a
Compound Poisson observation model as shown below
(see Şimşekli 2010 for details):

pðx1:F;tjrt ¼ iÞ

¼
Z
dvt exp

XF
v¼1

log POðxv;t; vttv;iÞ þ log Gðvt; av; bvÞ
 !

¼
�
PF
v¼1

xv;t þ av

� �

�ðavÞ
QF
v¼1

�ðxv;t þ 1Þ

bavv
QF
v¼1

t
xv;t
v;i

PF
v¼1

tv;i þ bv

� �PF
v¼1

xv;tþav
:

ð13Þ

Since we have standard HMM from now on, we can
run the forward algorithm in order to compute the
filtering density or fixed-lag versions with a few back-
ward steps. Also we can estimate the most probable state
sequence by running the Viterbi algorithm. A benefit of
having a standard HMM is that the inference algorithm
can be made to run very fast. This allows the inference
scheme to be implemented in real-time without any
approximation (Alpaydın, 2004).

4.2 Change Point Model

While making inference on the CPM, our task is finding
the posterior probability of the change point variables ct,
indicator variables rt, and the volume variables vt. If vt
were discrete, then the CPM would reduce to an ordinary
HMM with a latent state that is an element of the set
Dc6Dr6Dv, where Dc, Dr, and Dv denote the state
spaces of ct, rt, and vt respectively. However in our case
vt is continuous, an exact forward–backward algorithm
cannot be implemented in general. This is due to the fact
that the prediction density p(ct,rt,vt j x1:F,t) needs to be
computed by integrating over vt71 and summing over
ct71 and rt71. Unfortunately, the summation over
discrete variables ct71 and rt71 does not ‘simplify’ the
prediction density. This density becomes a (Gamma)
mixture model where each mixture component corre-
sponds to a possible setting of the discrete variables and
the number of mixture components grows linearly with
increasing t. Whilst this is still manageable for short
sequences, exact inference becomes impractical for online
processing as the algorithm is requiring increasingly
more computation. In order to eliminate this problem, an
approximate inference scheme is utilized where we
systematically prune low probability components of the
mixture. Figure 5 illustrates the inference scheme and the
pruning procedure. In the figure, the solid arrows
represent the case of the change point, and the dashed
arrows represent the opposite case. The shaded area
illustrates the pruning procedure where the Gamma
potentials with lowest mixture coefficients are pruned
and the number of the mixture components are
guaranteed to be constant. The detailed derivation of
the forward–backward algorithm for the CPM as well as
a more detailed analysis of the pruning strategy can be
found in Şimşekli (2010).

4.2.1 Marginal Viterbi path

The marginal Viterbi path is defined as:

ðc�1:T; r
�
1:TÞ ¼ argmax

c1:T;r1:T

Z
v1:T

pðx1:F;1:T; c1:T; r1:T; v1:TÞ:

In the CPM, replacing the summations over rt and ct by
maximization can be problematic since maximization and
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Fig. 5. Visualization of the forward and the Viterbi algorithm

for the CPM. Here, the number of templates, I is chosen to be 2.
The small dots represent the Gamma potentials. For the
forward procedure, the big circles represent the sum operator

that sums the mixture coefficient of the Gamma potentials. For
the Viterbi procedure, we replace the sum operator with the
max operator which selects the Gamma potential that has the
maximum mixture coefficient.

integration do not commute. We integrate over the hidden
variables vt first, in other words we compute the mixture
coefficients of the Gamma potentials. Then we select the
maximum of them. We call this path ‘marginal’, since in
order to achieve the exact Viterbi path, we should have
also replaced the integration over vt by maximization in
Equation 14. Fortunately, for this model, we are able to
compute the exact marginal distribution of rt and ct,
p(c1:T,r1:Tjx1:F,1:T), and the exact marginal Viterbi path
(Cemgil et al., 2006). Intuitively, the resulting algorithm is
no different from smoothing. We merely replace the sum
operators with max operators in Figure 5. For a detailed
discussion, see Şimşekli (2010).

5. Training and parameter learning

So far, we have constructed the inference algorithms with
the assumption that the templates tn,i are known. In this
section, we describe how the spectral templates tn,i can be
estimated from data by using an Expectation–Maximiza-
tion (EM) algorithm. This algorithm iteratively max-
imizes the log-likelihood as follows:

E-step:

HMM: qðr1:T; v1:TÞðnÞ ¼ pðr1:T; v1:Tjx1:F;1:T; t
ðn�1Þ
1:F;1:IÞ;

CPM: qðc1:T; r1:T; v1:TÞðnÞ ¼ pðc1:T; r1:T; v1:Tjx1:F;1:T; t
ðn�1Þ
1:F;1:IÞ;
ð14Þ

M-step:

HMM: t
ðnÞ
1:F; 1:I ¼ argmax

t1:F; 1:I

log pðr1:T; v1:T; x1:F;1:Tjt1:F; 1:IÞ
� �

qðr1:T; v1:TÞðnÞ ;

CPM: t
ðnÞ
1:F;1:I ¼ argmax

t1:F;1:I

log pðc1:T; r1:T; v1:T; x1:F;1:Tjt1:F;1:IÞ
� �

qðc1:T;r1:T;v1:TÞðnÞ ;

ð15Þ

where hf(x)ip(x)¼
R
p(x) f(x)dx is the expectation of the

function f(x) with respect to p(x).
In the E-step, we compute the posterior distributions

of rt and vt for the HMM and the posterior distributions
of ct, rt, and vt for the CPM. These quantities can be
computed via the methods which we described in
Subsections 4.1 and 4.2 for the HMM and the CPM
respectively. In the M-step, which is a fixed point
equation, we want to find the tn,i that maximize the
likelihood; the solution is given as:

t
ðnÞ
v;i ¼

PT
t¼1
½rt ¼ i�h iðnÞxv;t

PT
t¼1
½rt ¼ i�vth iðnÞ

: ð16Þ

Intuitively, we can interpret this result as the weighted
average of the normalized audio spectra with respect
to vt.

6. Results

In order to evaluate the performance of the probabilistic
models on pitch tracking, we have conducted several
experiments. As mentioned earlier, in this study we focus
on the monophonic pitch tracking of low-pitched
instruments. We have measured and compared the
accuracy and the latency of the models by varying the
amount of lag in the fixed-lag Viterbi algorithm, which is
decribed in Section 4.

In our experiments we used the electric bass guitar and
tuba recordings of the RWC Musical Instrument Sound
Database. We first trained the templates offline, and then
we tested our models by utilizing the previously learned
templates.

At the training step, we ran the EM algorithm which
we described in Section 5, in order to estimate the
spectral templates. For each note we used a short isolated
recording. On the whole, we use 28 recordings for bass
guitar (from E2 to G4) and 27 recordings for tuba (from
F2 to G4). The HMM’s training phase lasts approxi-
mately 30 s and the CPM’s lasts approximately 2 min on
a standard computer.
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At the testing step, we rendered monophonic MIDI
files to audio by using the samples from RWC record-
ings. The total duration of the test files are approximately
5 min. At the evaluation step, we compared our estimates
with the ground truth which is obtained from the MIDI
file. In both our models we used 46 ms long frames at
44.1 kHz sampling rate.

From our point of view, the main trade-off of these
pitch tracking models is between the latency and the
accuracy. We can increase the accuracy by accumulating
the data, in other words increasing the latency. However
after some point the pitch tracking system would be
useless due to the high latency. Hence we tried to find
reasonable latency and accuracy by adjusting the ‘lag’
parameter of the fixed-lag Viterbi path which is defined
in Equation 8.

As evaluation metrics, we used the recall rate, the
precision rate, the speed factor and the note onset
latency. The recall and precision rate, and latency is
defined in Table 1.

The evaluation results of the probabilistic models are
shown in Figure 6. It can be observed that enlarging the
lag yields higher precision and recall rates; however, this
also increases the overall latency of the system at the
same time. Therefore, we notice that a lag of around
135 ms seems reasonable for both models: we obtain
94.5% precision and 94% recall with the HMM and
99.5% precision and 94% recall with the CPM. Besides,
increasing the lag does not affect the results after some
degree and the fixed-lag results converge to offline results
after �250 ms.

In Figure 7, we show the performance of the CPM on
two different instruments, bass guitar and tuba. Since the
sound structures of a plucked string instrument and a
brass instrument are different, the performance would
differ from one instrument to another as expected. From
the figure, it can be observed that the bass guitar fits better
than the tuba to this model. This is not surprising since
the CPM captures the physical properties of a plucked
string instrument better than a brass instrument.

We also compared the performance of our models
with the well-known YIN algorithm (Cheveigné &
Kawahara, 2002). Despite the fact that YIN is a general
purpose method, we compared our results with the
YIN’s, since YIN is accepted as a standard method for
monophonic pitch tracking. We used the aubio imple-

mentation and tuned the onset threshold parameter. The
results are shown in Table 2.

6.1 Real-time implementation

Encouraged by the simulation results, we implemented the
HMM in real-time. We first implemented the framework
by usingMATLAB’s ‘Data Acquisition Toolbox’. Despite
that this toolbox neither works on any operating systems
other than 32 bit MS Windows, nor supports low-latency
ASIO drivers, we achieved good results. However, in
order to have a faster and portable implementation, by
using the boostCþþ libraries and flext Cþþ development
layer, we also implemented the framework as a plug-in for
popular real-time environments Pure Data and Max/
MSP. For details of the implementation, the curious

Table 1. Definition of the evaluation metrics. Note that latency
is computed without considering the label of the estimate.

precision num: of correct notes
num: of transcribed notes

recall num: of correct notes
num: of true notes

onset latency estimated onset time - true onset time

Fig. 6. The average performance of the probabilistic models on

low-pitched audio. The graphics show the precision and the
recall rate, and latency from top to bottom. Note that the total
latency of the system is the sum of the lag and the latency at the

note onsets (y-axis in the bottommost figure).

Fig. 7. The average performance of the CPM on different

instruments.
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reader is referred to Şimşekli et al. (in press). The HMM
object is available at http://www.cmpe.boun.edu.tr/
*umut/eventtracking.

7. Discussion and conclusions

In this study we presented and compared two prob-
abilistic models for real-time acoustic event detection.
In our models, it is assumed that each event has a
certain characteristic spectral shape which we call the
spectral template. The generative models were con-
structed in such a way that each time slice of the audio
spectra is generated from one of these spectral templates
multiplied by a volume factor. From this point of view,
we treated the event detection problem as a template
matching problem where the aim is to infer which
template is active and what the volume is as we observe
the audio data.

The main focus on this work was the trade-off
between latency and accuracy of the pitch tracking
system. We conducted several experiments in order to
find reasonable accuracy and latency. We evaluated the
performance of our models by computing the most-
likely paths that were obtained via filtering or fixed-lag
smoothing distributions. The evaluation was held on
monophonic bass guitar and tuba recordings with
respect to four evaluation metrics. We also compared
the results with the YIN algorithm and obtained better
results.

The proposed models are also extensible to more
complicated scenarios such as polyphony. This can be
done by using factorial models (Cemgil, 2006) or using
hierarchical NMF models where in this case rt and vt
would be vectors instead of scalars. This kind of
extension requires more complex inference schemes,
and we aim to investigate more powerful inference
methods for such models.

As mentioned earlier, our framework can also be used
for several audio processing applications such as

percussive event detection. Thanks to the flexibility of
the framework, for percussive event detection, we only
need to replace the spectral templates of the notes with
spectral templates of the percussive events. Şimşekli et al.
(in press) presented the evaluation results of the HMM
on several percussive events.

We believe that the CPM provides a flexible and
powerful modelling framework for real-time event and
pitch detection.
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