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Abstract—In this paper, we propose a method for restoring the
missing or corrupted observations of nonstationary sinusoidal
signals which are often encountered in music and speech appli-
cations. To model nonstationary signals, we use a time-varying
sinusoidal model which is obtained by extending the static sinu-
soidal model into a dynamic sinusoidal model. In this model, the
in-phase and quadrature components of the sinusoids are modeled
as first-order Gauss–Markov processes. The inference scheme for
the model parameters and missing observations is formulated in a
Bayesian framework and is based on a Markov chain Monte Carlo
method known as Gibbs sampler. We focus on the parameter
estimation in the dynamic sinusoidal model since this constitutes
the core of model-based interpolation. In the simulations, we first
investigate the applicability of the model and then demonstrate
the inference scheme by applying it to the restoration of lost audio
packets on a packet-based network. The results show that the
proposed method is a reasonable inference scheme for estimating
unknown signal parameters and interpolating gaps consisting of
missing/corrupted signal segments.

Index Terms—Bayesian signal processing, sinusoidal signal
model, state space modeling.

I. INTRODUCTION

T HE interpolation of missing, corrupted and future signal
samples is an important task in several applications. For

example, speech and audio signals are often transmitted over
packet-based networks in which packets may be lost, delayed or
corrupted. If the contents of neighboring packets are correlated,
the erroneous packets can be approximately reconstructed by
using suitable interpolation techniques. The simplest inter-
polation techniques employ signal repetition [1] and signal
stretching [2]. More advanced interpolation techniques are
based on filter bank methods such as GAPES and MAPES [3],
[4] or based on signal models such as autoregressive models

Manuscript received March 01, 2010; revised June 30, 2010; accepted Jan-
uary 04, 2011. Date of publication January 24, 2011; date of current version
July 20, 2011. The work of J. K. Nielsen was supported in part by the Oticon
Foundation’s Scholarship. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Daniel Ellis.

J. K. Nielsen and S. H. Jensen are with the Multimedia Information and Signal
Processing Group, Department of Electronic Systems, Aalborg University, 9220
Aalborg, Denmark (e-mail: jkn@es.aau.dk; shj@es.aau.dk).

M. G. Christensen is with the Department of Architecture, Design, and Media
Technology, Aalborg University, 9220 Aalborg, Denmark (e-mail: mgc@create.
aau.dk).

A. T. Cemgil is with the Department of Computer Engineering, Boğaziçi Uni-
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[5], [6], hidden Markov models [7], and sinusoidal models
[8]–[10]. An integral part of the techniques based on signal
modeling is the estimation of the signal parameters. Given
estimates of these parameters, signal samples are interpolated
by simulating data from the model.

Within the applied speech and audio processing field, the si-
nusoidal signal model is one of the more popular parametric
signal models because voiced speech and signals originating
from several musical instruments can be accurately modeled as
a sum of sinusoids [11]. In this paper, we initially consider the
dampened sinusoidal signal model in its real form given by

(1)

where the sampling indices label the uniform
sampled data. In the model, , , , and denote
the undampened in-phase component, the undampened quadra-
ture component, the (angular) frequency, and the damping coef-
ficient of the th sinusoid, respectively. The observed sample
at time index is the sum of such dampened sinusoids and a
white Gaussian noise term with variance . The model in
(1) is also sometimes written in its polar form given by

(2)

where and are the undamp-
ened amplitude and phase of the th sinusoid, respectively. In
this paper, we refer to the models in (1) and (2) as static sinu-
soidal models. This naming convention is adopted in order to
distinguish it from the dynamic sinusoidal model, which we in-
troduce later.

The static sinusoidal model and its variations have been
subject to extensive research for many years. This is pri-
marily due to the large-scale applicability of the model, and
because frequency parameters and damping coefficients enter
the model in a nonlinear fashion. The latter complicates the
estimation problem significantly and several methods for
solving this problem have therefore been devised. Most of
these estimators are aimed at estimating the frequency pa-
rameters. Well-known estimators comprise the Min–Norm
method [12], nonlinear least squares estimators [13], [14], and
the high-order Yule–Walker method [15]. Other well-known
estimators are the subspace-based methods such as MUSIC
[16], root-MUSIC [17], ESPRIT [18], and weighted subspace
fitting [19]. A thorough review of most of these estimators is
given in [20]. The theoretical foundation of these estimators is
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based on classical statistics which is also known as frequentist
or orthodox statistics. The other major approach to statistics is
Bayesian statistics which offers some conceptual advantages to
classical statistics (see, e.g., [21] and [22]). For instance, the
Bayesian approach copes with nuisance parameters and signal
interpolation in a highly standardised way. However, the history
of Bayesian frequency estimators is much shorter because the
Bayesian methods often struggle with practical problems such
as the evaluation of high-dimensional and intractable integrals.
In recent years, various developments in Markov chain Monto
Carlo (MCMC) methods (see, e.g., [23]) have largely overcome
these problems. Nevertheless, the methods still suffer from a
high computational complexity.

Bayesian frequency estimation was first considered by Jaynes
and Bretthorst in [24] and [25], respectively. In the pioneering
work of the latter, the existence of analytical solutions to the
Bayesian frequency estimation problem was demonstrated only
in the case of a few sinusoids. Moreover, the general inference
problem with multiple sinusoids was solved using suitable an-
alytical approximations, under the assumptions that the sinu-
soids were well-separated, and enough data were available. This
was not assumed in [26] and [27] in which the general fre-
quency estimation problem was solved by use of an approxi-
mate MCMC technique which led to improved performance for
closely spaced sinusoids. The performance was improved even
further by Andrieu and Doucet in [28], where the case of un-
known model orders was also considered and solved using re-
versible jump MCMC [29]. Recently, this work has been ex-
tended to the case of complex and dampened sinusoidal signals
in [30]. In [31], Bayesian inference in the sinusoidal model was
applied to the analysis of western tonal music.

In the static model in (2), the undampened amplitude and
the phase are assumed to be constant over a segment of
samples. Although this model is widely applicable, the model
assumption violates the behavior of many real-world tonal sig-
nals. To better model these signals, the model in (2) has been
modified in various ways. Typical modifications comprise am-
plitude and/or phase modulation [32], [33]. the representation of
the amplitudes and/or phases as a linear combination of atoms
from a suitable basis [34], and autoregressive (AR) frequency
parameters [10]. In this paper, we use a dynamic sinusoidal
model formulation in which the in-phase and quadrature com-
ponents in (1) evolve as a first-order Gauss–Markov process.
Within the field of econometrics, this class of dynamic models is
referred to as stochastic cyclical models [35], [36]. Two slightly
different stochastic cyclical models were given a fully Bayesian
treatment using MCMC inference techniques in [37] and [38].
Independently, Cemgil et al. introduced a dynamic sinusoidal
model for the application of polyphonic music transcription in
[39]–[41]. In this model, the frequency parameters were dis-
crete random variables, and significant attention was given to the
problem of estimating note onset and offset. In the more recent
papers [42], [43], Bayesian inference schemes for dynamic si-
nusoidal models were also considered. Like the proposed infer-
ence scheme by Cemgil et al., they base their inference schemes
on analytical approximations.

In this paper, we first analyze the dynamic model and discuss
its interpretation. In this connection, we show that the in-phase
and quadrature components of the dynamic sinusoidal model
evolve as first-order Gauss–Markov processes. We also extend
the cited work in the previous paragraph by developing an in-
ference scheme for the dynamic sinusoidal model on basis of
MCMC inference techniques. Moreover, we consider the more
general case in which the frequency parameters are continuous
random variables and some of the observations are missing. To
achieve this, we develop a Gibbs sampler whose output can be
used to form the histograms of the unknown parameters of in-
terest. These histograms have the desirable property that they
converge towards the probability distribution of these unknown
parameters when the number of generated samples is increased,
enabling us to extract statistical features for the model parame-
ters and to perform the interpolation of the missing observations.

The paper is organized as follows. In Section II, we present
and analyze the dynamic sinusoidal model. We set up the
Bayesian framework for the model in Section III, and the pro-
posed inference scheme based on a Gibbs sampler is derived in
Section IV. Four simulations are performed in Section V illus-
trating the applicability of the model as well as the performance
of the sampler and interpolator, and Section VI concludes this
paper. The Appendix contains a list of the relevant probability
distributions.

II. DYNAMIC SIGNAL MODEL

In the static sinusoidal model in (1), the undampened in-phase
and quadrature components are constant throughout the seg-
ment of samples. In the dynamic sinusoidal model, however,
this restriction is no longer imposed. Similar to, e.g., [38], [39],
we consider a dynamic sinusoidal model given by

observation equation

state equation (3)

where is a state vector and is a zero-mean Gaussian state
noise1 vector with covariance matrix

(4)

The state noise vectors are mutually independent and indepen-
dent of the observation noise. Further, we have that

(5)

(6)

(7)

Notice that the state equation of (3) decouples into indepen-
dent state equations of the form

(8)

1In this paper, noise is not an unwanted component but a random process of
interest. We use the term noise for � and ��� since this is common practice
when working with the state space model in (3).
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due to the block-diagonal structure of and ,
The dynamic model reduces to the static model if there is

no state noise. For non-zero state noise, however, the dynamic
model models the in-phase and quadrature components as first-
order Gauss–Markov processes. In order to see this, we recur-
sively insert the state equation into the observation equation and
obtain

(9)

(10)

(11)

(12)

where we have defined

(13)

Equation (12) is of the same form as (1) with one important
difference: the in-phase and quadrature components are now
time-varying which means that the amplitude and the phases of
the polar form of (12) are also time-varying. We analyze the
statistical behavior of the time-varying in-phase and quadrature
components by introducing the stochastic process defined by

. First, we write for in
a recursive way given as

(14)

with . If we select a Gaussian distribution
for the initial state, i.e., , then is
a first-order Gauss–Markov process. Second, we notice that,
the transformation is an orthogonal
transformation, and we therefore have that

(15)

Thus, the statistical behavior of

(16)

is the same as that of (14). Therefore, is a very simple first-
order Gauss–Markov process evolving independently of the fre-
quency parameter. Further, if we select the mean and variance of
the initial state to be and , respec-
tively, is a stationary first-order Gauss–Markov process, i.e.,
a first-order autoregressive process (AR). Also, our model for
the observations in (3) reduces to a simple AR(1) process if

. In summary, the statistical behavior of the dynamic
model in (3) is equivalent to that of the model given by2

(17)

2Here, we have introduced�� meaning that, e.g., �� �� � for the same noise
realizations although they share the same statistical behavior.

in which the in-phase and quadrature components are explicitly
evolving as a first-order Gauss–Markov process. In the model in
(3), however, the frequencies have been separated from the time
indices. This makes the inference problem for the frequencies
more tractable.

We have shown that the in-phase and quadrature components
are modeled as first order Gauss–Markov processes in the dy-
namic model. Unfortunately, it is not easy to make a statistical
analysis of the time-varying amplitude and phase since the re-
lationship between these and the in-phase and quadrature com-
ponents are highly nonlinear. Instead, we make a simulation in
Section V which give some insight into this.

III. PROBLEM FORMULATION

As stated in the introduction, we take a Bayesian approach
to performing the interpolation and making inference about the
unknown parameters of the dynamic sinusoidal model in (3). In
the Bayesian approach, these variables are all random variables,
and for the model in (3) they are all real and given by

Observations:

Latent variables:

Model parameters:

where consists of two-dimensional
state vectors pertaining to the sinusoids. The evolution of
these two-dimensional state vectors is given by (8). We also
assume that of the elements in are missing or corrupted, and
that we know their indices . Using this set of in-

dices, we define the vectors and containing
the missing or corrupted observations and the valid
observations, respectively. The notation denotes “without
element ”.

A. Inference Aims

The primary aim is to perform the interpolation of the missing
or corrupted samples, i.e., to reconstruct the elements of
given the valid observations in . In classical statistics, this
interpolation task is often solved by using an EM-algorithm
which iteratively maximizes the likelihood function ,
whereas the MAP or MMSE estimate of the posterior distri-
bution is often used in Bayesian statistics. For the
purpose of interpolating music and speech, however, both of
these methods tend to produce over-smoothed interpolants in the
sense that they do not agree with the stochastic part of the valid
observations [6], [44], [45]. In a Bayesian framework, a much
more typical interpolant can be obtained by simply drawing a
sample from the posterior distribution .
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B. Bayesian Inference

The posterior distribution for the missing samples given the
valid samples is given by

(18)

Unfortunately, we are not able to draw a sample directly from
since we are not able to integrate the nuisance param-

eters and out analytically. However, we can obtain a sample
from by taking a single sample from the joint poste-
rior distribution and simply ignore the generated
values for and . The joint posterior distribution can be written
as

(19)

where is known from the observation equation of
(3). Thus, in order to generate a sample for the only problem
left is computing . By Bayes’ theorem we may write
it as

(20)

where , and are referred to as the
likelihood, the prior and the model evidence, respectively. The
likelihood can be factored as

(21)

which from (3) is seen to be a product of normal distributions.
Since the state equation of (3) decouples into independent
state equations as in (8), we can factor the normal distribution

into bivariate normal distributions given by

(22)

The form of the prior is considered in Section III-D. Implicit
in the formulation of (20) is the model assumption which we
consider as known (including its order ).3 The model evidence
in the denominator of (20) acts therefore as a mere scale factor
since it is independent of and . To reflect this, we simply
write Bayes’ theorem as

(23)

where denotes “proportional to.”
The joint posterior distribution encapsulates all knowledge

about the states and model parameters by combining the prior
knowledge with the information in the observed data through
Bayes’ theorem. Theoretically, it is also possible to derive
posterior distributions, moments, probability intervals and
other posterior characteristics for the individual variables by
use of marginalization and various transformations. In practice,
however, it is often either infeasible or impossible to compute
these posterior characteristics, and we have to rely on numerical

3This assumption is quite common although not very realistic.

inference methods. The stochastic numerical methods offer
various ways of generating samples from the posterior distri-
bution. These samples are then used to form histograms which
converge to the true posterior distributions for an increasing
sample size. For an overview of some of the methods see, e.g.,
[22], [23], [46].

C. Markov Chain Monto Carlo Sampling

Markov chain Monto Carlo (MCMC) methods are currently
a very popular class of stochastic sampling methods adopted by
the Bayesian community in the late 1980s [47]. They work by
selecting the transition kernel of an ergodic Markov chain such
that the invariant distribution of the Markov chain is the desired
posterior distribution which we wish to draw samples from.
After an initial transient period in which the Markov chain con-
verges, samples generated by the Markov chain are distributed
according to the desired distribution. The two most well-known
MCMC sampling schemes are the Metropolis–Hastings (MH)
algorithm [48]–[50] and the Gibbs sampler [51]. In the MH al-
gorithm, samples generated from the desired posterior distribu-
tion, say , which we know up to some normalizing constant

with , are generated by use of a user-defined
proposal distribution , where is the current state
of the Markov chain. By construction, is selected as a
tradeoff between how similar it is to and how easy it is to
generate samples from. A candidate sample is
accepted as the next state with probability

(24)

Otherwise, the current state of the Markov chain is re-
tained. The Gibbs sampler is a special case of the MH-algo-
rithm in which sampling from the multivariate distribution

is broken up into alternating sam-
pling from the lower dimensional conditional distribution

. Specifically, for the ’s iteration, we sample for
from

(25)

The generated samples from these conditional distributions are
always accepted.

D. Prior Distributions

To complete the Bayesian setup, we need to specify prior dis-
tributions on the initial state as well as on the model parameters.
In this paper, we assume that we have only vague prior informa-
tion about the parameters whose joint prior distribution factor as

(26)

For the joint distribution of the th frequency parameter and
damping coefficient, we use the Jeffreys’ prior for the likeli-
hood in (22), i.e., for
and . It is common to restrict the damping coefficient
to be smaller than one since this ensures that the evolution of
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Fig. 1. Directed graphical model for the parameter estimation and interpolation problem. Shaded nodes denote observed variables (notice that � is a missing
observation), open circles denote latent variables, and smaller solid circles denote deterministic hyperparameters. The box denotes a plate, and it is labelled with
� � �� � � � � � indicating that there are � copies of the nodes inside.

the in-phase and quadrature components in (14) is stable. This
yields a beta prior distribution with parameters 2 and 1 on the
damping coefficient. In this paper, however, we do not impose
this restriction since we wish to model nonstationary signal seg-
ments. The selected prior on the frequency parameters causes
symmetry in the likelihood of the model parameters which leads
to the problem of label switching [52]. More precisely, the joint
posterior distribution is a mixture distribution of similar dis-
tributions up to a permutation of labels [28]. For the interpola-
tion of missing samples, which is the primary focus of this paper,
this is not a problem. For making inference about the unknown
parameters; however, the problem can be addressed by ensuring
identifiability of the frequency parameters through a joint prior
distribution on the frequency parameters given by

(27)

where is the indicator function on the region . Alterna-
tively, the generated samples can also be postprocessed by ap-
plying various clustering techniques to the generated frequency
parameters [52].

For the observation and state noise variances, we use in-
verse gamma distributions, i.e., and

. These distributions can be made
diffuse by choosing small values for the hyperparameters.
They can also be used for preventing the noise variances from
collapsing to zero which is often a necessary requirement in
MCMC-based inference [5]. For the initial state distribution,
we assume a normal distribution, i.e., .

IV. DERIVATION OF INFERENCE SCHEME

The Bayesian model considered in the previous section is
summarized in the directed graphical model in Fig. 1. The figure
clearly reveals the assumptions, the conditional dependency
between the variables, and the hierarchical structure to the
setup also given by likelihood in (21) and (22), and the prior in
(26). In our inference scheme for the variables of the model, we
draw samples from the joint posterior distribution
by means of a Gibbs sampler. As detailed in Section III-C,

we therefore have to group the variables into suitable blocks
and derive conditional distributions for them. In this paper, we
consider the following two conditional distributions given by

States: (28)

Model parameters: (29)

The selected grouping of variables in (28) and (29) leads to a
set of conditional distributions which are fairly easy to sample
from. Further, by sampling all model parameters in a single
step, we increase the mixing properties of the sampler, i.e.,
we decrease the correlation of the generated samples leading
to faster convergence of the underlying Markov chain. In the
next section, we derive the particular form of these conditional
distributions.

A. States

The conditional state distribution in (28) is a multivariate
Gaussian distribution. However, the dimension of a sample from
this distribution is which would render direct sampling
from it infeasible for most applications. Instead, we use the sim-
ulation smoother for drawing samples from (28). The simula-
tion smoother is an efficient sampling scheme using standard
Kalman smoothing, and it is easily modified to handle the case
of missing observations since this corresponds to skipping the
update step of the build-in Kalman filter for these samples. The
simulation smoother exists in several versions of which we use
the version in [53] (see, e.g., [54]–[56] for other versions of the
simulation smoother).

B. Model Parameters

Since the model parameter of the observation equation
and the sets of model parameters of the state
equation are mutually independent conditioned on the states ,
we can factor (29) as

(30)
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Thus, sampling from the conditional distribution in (29) can be
done by sampling the conditional distributions on the
right-hand side of (30) independently.

1) Frequency, Damping and State Noise Variance: The
main difficulty of our Gibbs sampler is to draw samples from
the joint conditional distribution of the frequency parameter,
the damping coefficient, and the state noise variance given
the states, i.e., . To our knowledge, it is not
possible to sample directly from —although
we come close in this paper. A Gibbs sampling scheme on
the individual parameters is also not straight-forward since it
suffers from poor mixing and since the th damping coefficient
conditioned on the th frequency parameter and state noise
variance has a nonstandard distribution. In order to improve
mixing, we therefore propose sampling all parameters at once
from by use of an MH-sampler previously
discussed in Section III-C. For the proposed MH-sampler the
candidate samples are easy to generate and the acceptance
probability turns out to be very easy to evaluate.

Given the states, the posterior distribution for the th set of
model parameters of the state equation can be written as

(31)

where is the prior distribution which, as stated in
Section III-D, factors into

The distribution for is a bivariate
normal distribution and the product over of of these
can therefore be written as

(32)

In order to write this distribution in a useful way in terms of
the frequency parameter and the damping coefficient, we rewrite

into

(33)

where is obtained by a 90 clockwise rotation of and

(34)

Inserting this into (32) and replacing the summation with an
inner product yields

where we have defined

(35)

(36)

(37)

(38)

Now, by assuming a non-informative prior for of the form

(39)

and by using standard Bayesian inference for the linear model
[21], we obtain after some algebra

(40)

(41)

where the parameters of the normal-scaled inverse gamma dis-
tribution are defined by

(42)

(43)

(44)

(45)

The Jacobian determinant of the transformation from to
is given by

which is proportional to the prior distribution on the damping
coefficient. Therefore, we may write (41) as

(46)

with replaced by the expression in (34). Thus, the dis-
tribution is nearly identical to the desired
distribution in (31). The only difference be-
tween the two distributions is that the frequency parameter of

is uniform on whereas is it uniform on
in . In order to remedy for this, we use

as a proposal distribution in an MH-sampler.
We draw a sample from this proposal by first sampling a set

from the bivariate normal-scaled inverse gamma
distribution in (41). Sampling from the bivariate normal-scaled
inverse gamma distribution can be done in various ways. Here,
we sample from its marginal densities given by

(47)

(48)

This is done by sampling from [46]

(49)

(50)

(51)
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Second, we transforms the generated sample into
by use of the transformation

(52)

(53)

Finally, the samples generated by this proposal distribution are
accepted with probability

(54)

If the sample is not accepted, the previous values
are retained. In the case where we use the structured prior on the
frequency parameters, the indicator function should be changed
to .

2) Observation Noise Variance: By Bayes’ theorem, we can
write as

(55)

where is the likelihood of the observa-
tion equation in (3) and is the prior distribution
for . Since and

, the posterior distribution
is an inverse gamma distribution, , with
parameters

(56)

(57)

C. Summary of Inference Scheme

Table I summarises our proposed Gibbs sampler for gener-
ating samples from . The computational complexity
of the algorithm is fairly high primarily due to the generation
of the states by the simulation smoother. In our implementa-
tion with observations and sinusoids, it takes
approximately 40 ms for generating a state sample . This
corresponds to nearly 97% of the time consumption of one iter-
ation of the Gibbs sampler. For the application of interpolation,
we only need a single sample for the states and model param-
eters from the invariant distribution of the underlying Markov
chain of the sampler. Once these have been generated, we may
perform the interpolation by simulating from the observation
equation of (3). Therefore, the computational complexity of the
algorithm heavily depends on proper initialisation and the con-
vergence speed of the chain.

TABLE I
SUMMARY OF PROPOSED GIBBS SAMPLER FOR

GENERATING SAMPLES FROM ������ ������� �

V. SIMULATIONS

In this section, we first demonstrate that the dynamic signal
model is able to model signals with amplitude and frequency
modulation. These phenomena are encountered in real-world
signals. Second, we illustrate the proposed inference scheme
on a synthetic signal and apply it to the application of recon-
structing missing or corrupted audio packets on a packet-based
network.4 In our simulations, we use the following common
setup for our Gibbs sampler. We use non-informative prior dis-
tributions with hyperparameters

where . The small nonzero value for is selected
in order to prevent the noise variances from collapsing to zero.
The Gibbs sampler is iterated 10 000 times and samples from the
first 1000 iterations are discarded as burn-in samples. The ini-
tial values for the frequency and observation noise variance are
found by using a simple matching pursuit algorithm [57]. The
initial value for the damping coefficient and state noise variance
are set to 1 and , respectively. For the model order, we
use in the two examples with synthetic signals and
in the two examples with real-world signals.

A. Applicability of the Model

The static model in (2) is very useful for modeling the
periodic parts of a signal. However, since the phase and fre-
quency are modeled as constants and the amplitude with an
exponentially decaying envelope, the static model is in general
not able to capture common phenomena such as amplitude
and frequency modulation [10]. As discussed in Section II, the
dynamic model allows the in-phase and quadrature components
to develop as a first order Gauss–Markov process. Thus, the

4The MATLAB code and audio samples used in the simulations can be ob-
tained from http://kom.aau.dk/~jkn/publications/publications.php.
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Fig. 2. Synthetic signal with both amplitude and phase modulation. The shaded area indicates a missing section of the signal. Plot (a) shows the signal (dashed
line), a state generated by our Gibbs sampler, and the average amplitude. Plot (b) shows the true (dashed lines) and the average in-phase and quadrature components.
Plot (c) and (d) show the true (dashed lines) and the average phase and time-varying part of the frequency. (a) Observations and apmplitude. (b) In-phase and
quadrature components. (c) Time-varying phase. (d) Time-varying frequency.

model also allows the amplitude, the phase and hence the
frequency to be time-varying. These are given by

(58)

(59)

(60)

where the time-varying frequency is a sum of the frequency
from the dynamic model in (3) and the sampled derivative of

the continuous-time phase .
In Fig. 2(a), we have shown a synthetic signal consisting of

a single sinusoid with both sinusoidal amplitude and frequency
modulation (dashed line). The signal consists of sam-
ples and is given by

(61)

(62)

(63)

where is white Gaussian noise with variance . The sam-
ples from index 300 to index 350 were removed and considered
to be missing samples. We used the proposed inference scheme
for analysing the signal , and the full line on top of the dashed
line in Fig. 2(a) shows a state vector generated by our Gibbs
sampler. For all generated state samples, we also demodulated
the states in order to obtain the samples for the in-phase and
quadrature components. Based on these samples, we calculated
the average amplitude , the average in-phase and quadrature
components, the average phase and the average derivative
of the phase as . The latter is an approximation to
the derivative of the phase. These averages (full lines) are com-
pared against their true values (dashed lines) in Fig. 2(a)–(d),
respectively. Clearly, the model is able to capture both ampli-
tude and frequency modulation. However, the figures also reveal
a potential problem for the application of interpolating missing
samples; In this example, the in-phase and quadrature compo-
nents do not evolve as a typical Gauss–Markov process. There-

fore, we cannot expect the interpolation to be very successful
since our interpolation scheme, on average, will reconstruct the
missing samples in the in-phase and quadrature components
with a straight line.

B. Synthetic Signal

We consider a simple synthetic signal generated by the static
sinusoidal model. We do this in order to illustrate some of the
features of the proposed Bayesian inference scheme and inter-
polator. Specifically, we generated observations from
the static model in (1) with a single sinusoidal component with
parameters

We also removed 50% of the observations distributed over three
sections as illustrated in Fig. 3(e). Fig. 3 shows the results of
running the Gibbs sampler. In Fig. 3(a)–3(d), the traces of the
10 000 generated samples for the model parameters are shown,
and Fig. 3(e) shows the results of interpolating the sections of
missing observations. The underlying Markov chain seems to
have converged to its invariant distribution after approximately
500 samples. The histograms in the margin of the first four
plots are based on the last 9000 generated samples. They are
an approximation to the marginal distribution for the individual
model parameters, and they converge to it for an increasing
number of iterations of the Gibbs sampler. As previously dis-
cussed in Section IV, the histograms can be used for summa-
rizing various posterior features such as point and interval es-
timates. For example, computing their means yields the esti-
mates , , , and

.
In Fig. 3(e), the three interpolation sections are shown with

a shaded background. In all three simulation sections, we have
shown the 95% credible interval for the missing observations.5

In the last interpolation section, we have used the mean es-
timate of the interpolated samples whereas the interpolation

5The credible intervals were computed by assuming that the missing ob-
servations were normally distributed. More precise, but also more complex,
methods for estimating the credible interval can be found in, e.g., [58].
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Fig. 3. Traces of 10 000 generated samples for the (a) frequency, (b) damping coefficient, (c) state noise variance, and (d) observation noise variance. The his-
tograms in the right margin of plots (a)–(d) are computed based on the last 9000 samples. Only 50% of the signal is observed and the three missing sections are
indicated by a shaded background. In the three interpolation sections, the 95% credible interval for the posterior distribution ������ ���� � of the interpolated sam-
ples are shown along with interpolated samples based on the mean of ������ ���� � (last section), a sample from ������ ���� � (middle section) and both (first section).
(a) Trace of samples for the frequency. (b) Trace of samples for the damping coefficient. (c) Trace of samples for the state noise varience. (d) Trace of samples for
observation noise variance. (e) Observed signal and results of the interpolation.

Fig. 4. Plot (a) shows the six traces for the frequencies each consisting of 10 000 samples. Plot (b) shows the spectrogram for the complete trumpet signal whereas
plot (c) shows the periodogram for the section indicated in plot (b). The time series corresponding to this section is shown in plot (d) with the middle section of
25 ms audio missing. The plot also shows the result of the interpolation in terms of 95% probability interval, a sample for the posterior distribution ������ ���� �
and the true missing observations (dotted). (a) Traces of samples for the frequencies. (b) Spectrogram. (c) Periodogram. (d) Observed signal and results of the
interpolation.

in the middle section is a random sample from the posterior
distribution. Both methods are shown in the first interpola-
tion section. Clearly, sampling from the posterior distribution

yields a much more typical sample than using the mean esti-
mate. The latter has higher probability, but it does not model
the noise.
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Fig. 5. Plot (a) shows the six traces for the frequencies each consisting of 10 000 samples. Plot (b) shows the spectrogram for the complete speech signal
whereas plot (c) shows the periodogram for the section indicated in plot (b). The time series corresponding to this section is shown in plot (d) with
the middle section of 25 ms audio missing. The plot also shows the result of the interpolation in terms of 95% probability interval, a sample for the
posterior distribution ������ ���� � and the true missing observations (dotted). For comparison, the missing packet was also interpolated in plot (e) by use
of a simpler interpolator. (a) Traces of samples for the frequencies. (b) Spectrogram. (c) Periodogram. (d) Observed signal and results of the proposed
interpolater. (e) Observed signal and results of simple linear sinusoidal interpolation.

C. Music Signal

In the third simulation, we considered a segment of observa-
tions from a downsampled trumpet signal whose spectrogram
can be seen in Fig. 4(b). The considered snapshot corresponds
to 75 ms of audio and is shown in Fig. 4(d). The periodogram
of the observations in the snapshot is shown in
Fig. 4(c). Prior to running the Gibbs sampler, we removed
the middle section thus emulating a lost audio packet of 25
ms on a packet-based network. In Fig. 4(a), we have shown
the six traces of samples for the frequencies. We see that the
sampler reached a stationary point after approximately 500
iterations after which samples for the dominating six frequency
components were generated. The results of the interpolation are
shown in Fig. 4(d). It is observed, that the 95% credible interval
was very tight and that the generated sample from the posterior
distribution for the missing observations therefore almost coin-
cided with the true missing observations. An informal listening
test also confirmed that the music segment had been restored
with almost no perceptual loss.

D. Speech Signal

In the fourth and final simulation, we considered a more
challenging segment of observations originating from a speech

signal; where the frequency spectrum and amplitudes of the
trumpet signal in the previous simulation were approximately
constant, the snapshot shown in Fig. 5(d) is clearly nonsta-
tionary. Additionally, as can be seen from the spectrogram in
Fig. 5(b), some of the frequencies are nonconstant in the snap-
shot. The speech signal originates from a female voice uttering
“Why were you away a year, Roy?,” and it was downsampled to
8000 Hz. As in the previous simulation, we removed the middle
section of 25 ms prior to running the Gibbs sampler. The traces
of samples for the frequencies are shown in Fig. 5(a). The
sampling scheme seemed to have reached a stationary point
after approximately 1500 iterations. The interpolated samples
in Fig. 5(d) follows the same increasing trend as the true signal.
Compared against the interpolation of the trumpet signal, the
95% confidence interval is wider reflecting the more complex
structure of the signal. Despite this, an informal listening test
revealed that the music segment had been restored with only
little perceptual loss. For comparison, we have also performed
the interpolation of the missing packet by use of a simpler
interpolater based on [9]. In this interpolation scheme, the
amplitudes and frequencies are estimated on both sides of the
missing packet which is recovered by linearly interpolating
these amplitudes and frequencies. The result of this inter-
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polation is shown in Fig. 5(e). In order to compare the two
methods, we have measured the reconstruction signal-to-noise
ratio (SNR) for both methods. For the simple linear sinusoidal
interpolater, the SNR was 7.7 dB whereas a sample from the
posterior distribution resulted in an SNR of 10.8 dB.
If we instead used the posterior mean as an interpolant, the
SNR was 15.8 dB. It should be noted, however, that SNR
cannot be used as an objective measure for the reconstruction
performance since the human auditory system does not perceive
sound degradation in the two norm.

VI. CONCLUSION

In this paper, we have presented a Bayesian interpolation and
parameter estimation inference scheme based on a dynamic
signal model hypothesis for the observed segment of data.
The dynamic model enables modeling of real-world signals
with nonstationary, but smooth evolution since the in-phase
and quadrature components were modeled as first-order
Gauss–Markov processes. The proposed inference scheme for
the dynamic model was developed in a Bayesian framework
and comprised two stages. In the first stage, a two state Gibbs
sampler alternated between sampling from the conditional
distribution for the hidden states given the model parameters
and sampling from the conditional distribution for the model
parameters given the hidden states. In the second stage, a single
draw from the posterior distribution for the missing observa-
tions given the last sample for the hidden states and model
parameters was obtained. This sample was used for replacing
the missing sample with a typical interpolant for the underlying
process.

In the simulations, we demonstrated that the inference
scheme can be used for generating histograms for the unknown
parameters from which, e.g., point and interval estimates can be
derived. We also demonstrated the applicability of the proposed
inference scheme to audio restoration. For a simple segment
from a trumpet signal and a more complex segment from a
speech signal, we recovered a 25-ms packet by use of the two
neighboring packets. Informal listening tests revealed that the
restoration procedure restored the audio signal segments with a
slight perceptual loss.

APPENDIX

PROBABILITY DISTRIBUTIONS

In the following list, is a scalar positive random variable
and is an -dimensional random vector.

Exponential Distribution: The exponential distribution with
rate parameter has the probability distribution

and is denoted by .
Inverse Gamma Distribution: The inverse gamma distribu-

tion with shape parameter and scale parameter has the prob-
ability distribution

and is denoted by .

Multivariate Normal Distribution: The multivariate normal
distribution with the mean vector and covariance matrix
has the probability distribution

and is denoted by .
Multivariate Normal-Scaled Inverse Gamma Distribution:

The multivariate normal-scaled inverse gamma distribution
with the location vector , covariance scale matrix , shape pa-
rameter , and scale parameter has the probability distribution

and is denoted by .
Multivariate Student’s t-Distribution: The multivariate stu-

dent’s t-distribution with the mean vector , covariance matrix
, and degrees of freedom has the probability distribution

and is denoted by .
Uniform Distribution: For , the uniform distribution

with lower and upper boundary parameters and has the prob-
ability distribution

for
otherwise

and is denoted by .
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where he cultivates his interests in machine learning methods, stochastic pro-
cesses, and statistical signal processing. His research is focused towards devel-
oping computational techniques for audio, music, and multimedia processing.

Simon J. Godsill (M’95) is a Professor of Statistical
Signal Processing in the Engineering Department,
Cambridge University, Cambridge, U.K. He has
research interests in Bayesian and statistical methods
for signal processing, Monte Carlo algorithms for
Bayesian problems, modeling and enhancement of
audio and musical signals, tracking, and high-fre-
quency financial data. He has published extensively
in journals, books, and conferences. He is currently
co-organizing a year-long program on sequential
Monte Carlo Methods at the SAMSI Institute in

North Carolina.
Prof. Godsill was an Associate Editor for the IEEE TRANSACTIONS ON

SIGNAL PROCESSING and the journal Bayesian Analysis, and is a member of
IEEE Signal Processing Theory and Methods Committee. He has coedited in
2002 a special issue of the IEEE TRANSACTIONS ON SIGNAL PROCESSING on
Monte Carlo Methods in Signal Processing and organized many conference
sessions on related themes.

Søren Holdt Jensen (S’87–M’88–SM’00) received
the M.Sc. degree in electrical engineering from Aal-
borg University, Aalborg, Denmark, in 1988, and the
Ph.D. degree in signal processing from the Technical
University of Denmark, Lyngby, in 1995.

Before joining the Department of Electronic Sys-
tems, Aalborg University, he was with the Telecom-
munications Laboratory of Telecom Denmark, Ltd,
Copenhagen, Denmark, the Electronics Institute of
the Technical University of Denmark, the Scientific
Computing Group of Danish Computing Center for

Research and Education (UNI•C), Lyngby, the Electrical Engineering Depart-
ment of Katholieke Universiteit Leuven, Leuven, Belgium, and the Center for
PersonKommunikation (CPK), Aalborg University. He is Full Professor and is
currently heading a research team working in the area of numerical algorithms
and signal processing for speech and audio processing, image and video pro-
cessing, multimedia technologies, and digital communications.

Prof. Jensen was an Associate Editor for the IEEE TRANSACTIONS ON SIGNAL

PROCESSING and Elsevier Signal Processing, and is currently Member of the
Editorial Board of the EURASIP Journal on Advances in Signal Processing.
He is a recipient of an European Community Marie Curie Fellowship, former
Chairman of the IEEE Denmark Section, and Founder and Chairman of the
IEEE Denmark Section’s Signal Processing Chapter. In January 2011, he was
appointed as member of the Danish Council for Independent Research—Tech-
nology and Production Sciences by the Danish Minister for Science, Technology
and Innovation.


