
Gain Estimation Approaches in Catalog-Based
Single-Channel Speech-Music Separation

Cemil Demir 1,3, Ali Taylan Cemgil 2, Murat Saraclar 3
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Abstract—In this study, we analyze the gain estimation prob-
lem of the catalog-based single-channel speech-music separation
method, which we proposed previously. In the proposed method,
assuming that we know a catalog of the background music,
we developed a generative model for the superposed speech
and music spectrograms. We represent the speech spectrogram
by a Non-Negative Matrix Factorization (NMF) model and the
music spectrogram by a conditional Poisson Mixture Model
(PMM). In this model, we assume that the background music
is generated by repeating and changing the gain of the jingle
in the music catalog. Although the separation performance of
the proposed method is satisfactory with known gain values,
the performance decreases when the gain value of the jingle is
unknown and has to be estimated. In this paper, we address the
gain estimation problem of the catalog-based method and propose
three different approaches to overcome this problem. One of these
approaches is to use Gamma Markov Chain (GMC) probabilistic
structure to impose the correlation between the gain parameters
across the time frames. By using GMC, the gain parameter is
estimated more accurately. The other approaches are maximum a
posteriori (MAP) and piece-wise constant estimation (PCE) of the
gain values. Although all three methods improve the separation
performance as compared to the original method itself, GMC
approach achieved the best performance.

I. INTRODUCTION

Recently automatic speech recognition (ASR) applications
have become popular in broadcast news transcription systems.
One major problem is the serious drop in the performance
with the presence of background music, that is often present
in radio and television broadcasts [1], [2]. Therefore, removing
the background music is important for developing robust ASR
systems. A real-world ASR solution should contain a front-
end system capable of segmenting and separating music and
speech from incoming audio signals. The aim of this study is
to analyze the performance of the catalog-based speech-music
separation method, that we proposed previously, when it is
used as a front-end for an ASR system.

Many researchers studied single-channel source separation
for mixture of speech from two speakers [3] but there are
a few studies on single-channel speech-music separation [4],
[5], [6]. Model-based approaches are used to separate sound
mixtures that contain the same class of sources such as
speech from different people [7], [8] or music from different
instruments [9], [10].

In a previous study [11], [12], [13] , we introduced a simple
probabilistic model-based approach to separate speech from

music. Unlike other probabilistic approaches, we do not model
the speech in great detail, but instead focus on a model for the
music. The motivation behind our approach is that, especially
in broadcast news, most of the time, the background music is
composed of some repetitive piece of music, called a ’jingle’.
Therefore, we can assume that we can learn a catalog of
these jingles and hope to improve separation performance. In
our model, the catalog corresponds to a conditional mixture
model. Each spectrogram frame of the music is generated
by a single mixture component, i.e., a catalog element. The
speech spectrogram is generated from a Non-Negative Matrix
Factorization (NMF) model. The observed spectrogram is the
sum of the speech and music. Separation is achieved by joint
estimation of the unknown parameters and hidden variables of
this hierarchical model.

We assume that, although we do not have any prior informa-
tion about the speech part of the mixture, we can assume that
the magnitude spectrogram of the speech signal is generated
by an NMF model. This way, by finding the parameters of
the NMF model, we can recover the speech signal from the
mixture.

Unlike the previous studies [11], [12], we address the gain
estimation problem of the catalog-based method and propose
three different techniques to enhance the gain estimation
performance of the catalog-based method. With the analysis of
the problem, we decided to use Gamma Markov Chain (GMC)
probabilistic structure to impose the correlation between the
gain parameters across the time frames. As alternative to this
approach, we developed the maximum a posteriori (MAP) and
piece-wise constant estimation (PCE) of the gain values. The
separation performance of the method with gain estimation
approaches is improved as compared to the method itself.
However, the best improvement is obtained using the GMC
approach.

This paper is organized as follows. In Section II, we
overview the catalog-based speech-music separation method.
In Section III, we analyze the gain estimation problem of the
catalog-based speech-music separation method and propose
three different gain estimation techniques. The experimental
results and comparisons are provided in Section IV. Section V
presents the discussion, conclusions and comments for further
investigation.
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II. CATALOG-BASED SPEECH-MUSIC SEPARATION

In catalog-based speech-music separation framework, it is
assumed that a speech-music segmentation system can parti-
tion an incoming audio as speech, music and speech-music
mixture. Moreover, the background music is composed of
the jingles in the catalog. Which jingle is used to create the
background music can be detected using the music parts of
the audio. Although speech part of the segmented audio can
be used in the separation phase, in this work we do not use
the speech segment to separate speech from the mixture.

1) Model Description: In this model, we express each time-
frequency entry of the magnitude spectrogram of the mixture
at time t and frequency bin u as

Xut = Sut +Mut (1)

where S and M represent the magnitude spectrogram of the
speech and music signals, respectively. We assume an NMF
based generative model, which uses a Poisson observation
model [14], for the spectrogram of the speech. In this proba-
bilistic model, each time-frequency entry of the spectrogram
of the speech is generated by B Poisson sources as

Sut =
B∑
i=1

suit where suit ∼ PO(suit;UuiVit) (2)

where U and V matrices contain the hyper-parameters of
the spectrogram of the speech signal and also correspond to
template and excitation matrices respectively in NMF model.
We also use a Poisson observation model in the generative
model of the magnitude spectrogram of the music part where
Mut = mut as

mut|rt = j ∼ PO(mut;Cujfuvt)
[rt=j] (3)

where [rt = j] represents the indicator function, which is
1 when j-th frame of the catalog is used and its value is
0, otherwise. In Equation (3), Cuj represents the magnitude
spectrogram corresponding to the u-th frequency bin and the
j-th member of the jingle catalog, fu represents the filtering
parameter for frequency bin u and vt represents the gain
parameter for time frame t. The goal is here to model gain
changes (fade-in, fade-out) and filtering (equalization). Each
active frame index is drawn independently from a set of
catalog indexes as

r(t) = j ∈ {1, 2, .., N} with probability πj (4)

where π represents probability distribution on the catalog
frame indexes. The difference from the speech model is that,
the intensity parameter of the Poisson model is chosen from a
magnitude spectrogram of a set of previously obtained catalog
frames. Moreover, the intensity parameters are multiplied by
a gain factor and a filter.

The overall graphical model corresponding to the generation
of the mixture of the speech and music signals is shown in
Figure 1. Upper side of the graphical model generates the
spectrogram of the speech part of the mixture whereas the
lower side generates the spectrogram of the music part.

Θv Vi1 · · · Vit · · · ViT

Θu Uui

Sui1 · · · Suit · · · SuiT

xu1 · · · xut · · · xuT

mu1 · · · mut · · · muT

Θπ r1 · · · rt · · · rT

Θf fu

Θv v1 · · · vt · · · vT

i = 1,2, · · · ,B

u = 1,2, · · · ,F

Fig. 1. Graphical Model For Speech-Music Mixture.

2) Multiplicative Update Rules: In the previous study [11],
it was shown that the overall joint posterior distribution over
hidden sources (speech, music sources and catalog indexes)
is a mixture of multinomials. For each j, the posterior distri-
bution of the latent sources is a multinomial distribution as
follows

M(sju1t, .., s
j
uBt,m

j
ut;Xut, p

j
u1t, ..., p

j
uBt, p

j
ut) (5)

where M represents the multinomial distribution. The param-
eters of the multinomial distribution which corresponds to the
conditional posterior probability of i-th speech source and the
j-th music source in frequency u and time t can be found as
follows:

pjuit =
UuiVit∑

i UuiVit + Cujfuvt
(6)

pjut =
Cujfuvt∑

i UuiVit + Cujfuvt
(7)

The conditional marginal expectations of the latent sources in
poisson model are:

〈sjuit〉 = Xutp
j
uit and 〈mj

ut〉 = Xutp
j
ut. (8)

As a result, the hyper-parameters of the speech and music
signals can be updated using the EM algorithm which is
described in [11] in detail. These update equations correspond
to the multiplicative update rules of the NMF method. Each
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entry of the template matrix, U , can be calculated as

Uui =

∑
t,j〈[rt = j]〉〈sjuit〉∑

t Vit

(9)

where 〈sjuit〉 represents the expected value of hidden speech
source w.r.t the conditional posterior which can be calculated
as

p(suit|rt = j) =
∑
mut

p(suit,mut|rt = j). (10)

Here, 〈[rt = j]〉 represents expected value of active frame
index r(t) being equal to j at time frame t which is equal to
the posterior probability of the active frame index and can be
calculated as follows:

p(rt = j|X) =

∏
u,t PO(Xut;Cujfuvt +

∑
i UuiVit)πj∑

j

∏
u,t PO(Xut;Cujfuvt +

∑
i UuiVit)πj

.

(11)
Each entry of the excitation matrix of the speech spectrogram,
V can be calculated using

Vit =

∑
u,j〈[rt = j]〉〈sjuit〉∑

u Uui

. (12)

The gain parameter at each time frame can be found by using

vt =

∑
u,j〈[rt = j]〉〈mj

ut〉∑
u,j〈[rt = j]〉Cujfu

(13)

where 〈mj
ut〉 similarly represents the expected value of hidden

music source. The filtering parameters for each frequency bin
can be found by using

fu =

∑
t,j〈[rt = j]〉〈mj

ut〉∑
t,j〈[rt = j]〉Cujvt

. (14)

III. GAIN ESTIMATION PROBLEM

When we use the update in Equation 13 to estimate the
gain parameter for each time frame, it is observed that the
estimation error is very high at the mixture frames which either
have

1) low input Music-to-Speech Ratio (MSR) values or
2) active catalog frames with low energy.

Figure 2 shows these two facts visually. In this example, the
true gain parameter is constant at 1 for all frames. For example,
for the first five frames though the input MSR values are high,
the gain estimation error is very high due to the fact that
the active catalog frame has low frame energy and so it is
confused with other frames. This fact can be seen in Figure 3.
When we analyze the gain parameter of the frames between
the time indices twenty and twenty five, it can be seen that
though the active catalog frames have high energy, the gain
estimation error is high due to the fact that input MSR value
is low and the speech signal suppresses the music signal. In
fact, at these parts, the inference method cannot estimate the
posterior probabilities of the catalog frames accurately. That
is, the method cannot decide which part of the catalog is active
at these parts. This fact is shown in Figure 3. Although most of
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Fig. 2. Gain Estimation Problem Reasons: Low Input MSR and Low Active
Frame Energy.
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Fig. 3. Relation between the Gain Parameter and the MAP.

the maximum a posterior probabilities (MAP) of the catalog
frames are very low, 67% of the frames with MAP are the
actual active frames for this example.

Using this analysis about the gain estimation problem, we
propose two different correction methods so as to enhance
the gain estimation performance of the inference method. The
methods are called ”MAP Estimation Method” and ”Piece-
wise Constant Estimation Method”.

A. MAP-Estimation Method

Experimentally, we observe that although MAP for most of
the mixture frames are very low, the frames which have MAP
are indeed the active frames. Therefore, after some iterations
with the original posterior update Equation 11, the frames
with the MAP can be chosen as the active frames. Then the
posterior probability of these MAP frames are assigned to 1
so as to estimate the gain parameter more accurately. After
this assignment, even though the posterior probabilities are not
updated, other update rules are applied via reassigned posterior
probabilities. This approach can be shown mathematically as
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follows:
r∗t = argmax

rt
p(rt|X, θ) (15)

p(rt = j) =

{
1 if j = r∗t ,

0 Otherwise
(16)

B. Piece-wise Constant Estimation

When we analyze the gain estimation results obtained using
the original update Equation 13 in Figure 3, it is observed
that when the MAP of a frame is high enough, the gain
parameter for this frame is estimated correctly. Therefore, we
can use the gain parameter of the closest frame which has
high MAP values as gain parameter for the frame which has
low MAP value. The question here is, what will be used as
the threshold to decide whether the MAP of a frame is low or
high? We decide on this threshold value using a development
set which maximizes the separation performance. We call
this estimation method, given in Algorithm 1, as ’Piece-wise
Constant Estimation’ because of the fact that the resultant gain
parameter is a piece-wise constant version of the originally
estimated gain parameter.

Algorithm 1 Piece-wise Constant Estimation Algorithm
f=empty
for t = 1 to T do

if MAP (t) ≥ Threshold then
Add t to f

end if
end for
L = length(f)
i = 1
for t = 1 to T do

if i < L and |t− f(i+ 1)| < |t− f(i)| then
i = i+ 1;

end if
ves(t) = ves(i)

end for

C. Gamma Markov Chain For Gain Estimation

A Gamma Markov chain (GMC) [15], which is shown in
Figure 4, is a prior structure for a chain of positive variables,
where the correlation between consecutive variables is posi-
tive. In addition, each variable is conditionally conjugate, i.e.,
their prior and full conditional distributions are Gamma. A
GMC of v1:T can be defined as

v1 ∼ G(v1; av, bv/av) (17)

zt|vt ∼ IG(zt; az, azvt) (18)

vt+1|zt ∼ G(vt+1; av, zt/av) (19)

where av , az , bv are the hyper-parameters of the chain and
z1:T−1 are auxiliary variables introduced to have positive
correlation and conjugacy properties simultaneously. av and
az are the coupling hyper-parameters and they determine the

v1 z1 v2 zT−1 vT
....

Fig. 4. GMC Graphical Model For Gain Parameter

degree of correlation between variables. G and IG represent
Gamma and Inverse-Gamma distributions respectively.

The full joint distribution of the catalog-based model with
GMC can be decomposed as:

logφ = log p(X, s,m, r, v, z|Θ)

= log p(X |s,m) + log p(s|Θu,v) + log p(m|r, v) +

log p(v, z|Θv) + log p(r|Θ)

where Θ represents the hyper-parameters of the latent speech
and music sources. Since the posterior distributions of the
gain parameters, v, z and the hidden sources are coupled, we
cannot compute the overall joint posterior distribution exactly.
In this case, we use the variational technique that factorizes
the posterior distribution into the posteriors of the decoupled
random variables as follows:

q(s,m, r) ∝ exp(〈log p(X, s,m, r, v, z|Θ)〉q(v)q(z))

q(v) ∝ exp(〈log p(X, s,m, r, v, z|Θ)〉q(s,m,r)q(z))

q(z) ∝ exp(〈log p(X, s,m, r, v, z|Θ)〉q(s,m,r)q(v))

The joint posterior distribution of the latent speech and music
sources and the catalog indexes is also a multinomial mixture
model (MMM). However, the calculation of the parameters
of the distribution differ from the original model which is
described in Section II. The overall posterior distribution can
be decomposed conditioned on the catalog frame, j, as

q(s,m, r) = q(s,m|r)q(r)

q(s,m|r) = M(su1t, ., suBt,mut;Xut, p
j
u1t, ., p

j
uBt, p

j
ut)

The parameters of this MMM can be computed using:

pjuit =
UuiVit

(
∑

i UuiVit) + Cujfu exp(〈log vt〉)

pjut =
Cujfu exp(〈log vt〉)

(
∑

i UuiVit) + Cujfu exp(〈log vt〉)

q(rt = j) =

∏
u,t PO(Xut;

∑
i UuiVit + Cujfu〈vt〉)πj∑

j

∏
u,t PO(Xut;

∑
i UuiVit + Cujfu〈vt〉)πj

= 〈[rt = j]〉

The only difference from Equations 6 and 11 is that instead of
using vt , its expectations are used to calculate the posteriors.
The marginal expectation of the latent sources under the
posterior distribution can found using:

〈suit〉 = Xut(
∑
j

〈[rt = j]〉pjuit) (20)

〈mut〉 = Xut(
∑
j

〈[rt = j]〉pjut) (21)

(22)
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Now, the posterior distribution of the gain parameter, vt and
the auxiliary variable, zt, are calculated. The posterior of
the gain parameter, vt, is also Gamma-distributed due to the
conjugacy of Poisson and Gamma distributions. The posterior
distribution of vt+1 conditioned on the auxiliary variable zt
is:

q(vt+1) ∝ G(vt+1;α
v
t+1, β

v
t+1) (23)

αv
t+1 = av +

∑
u

〈mu(t+1)〉 (24)

βv
t+1 = (av〈

1

zt
〉+

∑
u,j

Cujfu)
−1 (25)

The sufficient statistics of the gain parameter, which are used
to estimate the posteriors of the other parameters are:

exp(〈log vt+1〉) = exp(Ψ(αv
t+1))β

v
t+1 (26)

〈vt+1〉 = αv
t+1β

v
t+1 (27)

where Ψ denotes the digamma function defined as Ψ(α) ≡
d log Γ(a)/da. We also need to compute the posterior and the
sufficient statistics of the inverse of the gain parameter which
has an Inverse-Gamma distribution as follows:

1

vt+1
∼ IG(

1

vt+1
;αv

t+1,
1

βv
t+1

) (28)

〈
1

vt+1
〉 =

1

(αv
t+1 − 1)βv

t+1

(29)

The posterior of auxiliary variable, zt, is also Inverse Gamma-
distributed due to the conjugacy of Poisson and Inverse
Gamma distributions. The posterior distribution of zt condi-
tioned on the gain parameter, vt is:

q(zt) ∝ IG(zt;α
z
t , β

z
t ) (30)

αz
t = az and βz

t = (
1

az
〈
1

vt
〉)−1 (31)

The sufficient statistics of the auxiliary variable, which are
used to estimate the posterior of the gain parameter are:

〈zt〉 =
βz
t

αz
t − 1

(32)

We also need to compute the posterior and the sufficient
statistics of the inverse of the auxiliary variable which has
a Gamma distribution as follows:

1

zt
∼ G(

1

zt
;αz

t ,
1

βz
t

) and 〈
1

zt
〉 =

αz
t

βz
t

. (33)

IV. EXPERIMENTAL RESULTS

A. Speech Recognition System and Test Set

For speech recognition tests, we used a CMU-Sphinx
HMM-based continuous density speech recognizer which is
trained to recognize Turkish Broadcast News speech. The
gender-dependent acoustic models are trained using MFCCs
and their deltas and double-deltas calculated in 25ms frames
with 10ms shift of the clean speech data. For each gender ,
40 hours of speech data is used to train context dependent
phone models. The vocabulary size of the recognition system
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Fig. 5. Estimation of constant gain parameter.

TABLE I
AVERAGE SMR VALUES (DB)

Output SMR (dB) Input SMR Values
Method 0dB 5dB 10dB 15dB 20dB
Truth 17.6 24.2 32.1 38.2 46.2

Original 6.5 15.3 24.3 33.5 42.8

MAP 12.5 20.3 28.4 36.8 45.3

PCE 15.3 22.5 30.1 37.9 46.2

GMC 18.5 24.6 31.4 38.8 46.7

is about 30k. The test set contains 1232 utterances distributed
approximately uniformly across 8 speakers. The total length
of the test set is about 2 hours. The test utterances are mixed
with a 4 sec. length jingle at different Speech-to-Music Ratio
(SMR) levels to create the test set. The background music
signal is generated by repeating the jingle up to the length of
the speech. The average length of the speech sentences is 6
sec. The jingle is taken from the broadcast news jingles. The
magnitude spectrogram is computed using 1024-point length
frames and 512 point frame shift is used. The reason why
we use a larger window and shift size is to decrease the
computational complexity of the separation algorithm. The
number of speech bases is fixed at 30. The speech recognition
performance is measured using Word Accuracy Ratio (WAcc).

B. Experimental Analysis

In this section, the effects of proposed gain estimation
techniques to the separation performance are analyzed and
compared. As an example for comparing estimation perfor-
mances of the methods, the estimated gain parameter values
for constant and fading gain cases are shown in Figure 5 and
6.

When we examine the gain estimation results with the
original method in Table I, II and corresponding estimated
gain parameter in Figure 5, it is observed that when the
speech signal suppresses the music signal, the gain parameter
is under-estimated. Therefore, music signal is contaminated in
speech signal and so SMR value of the original method is
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Fig. 6. Estimation of fading gain parameter.

TABLE II
AVERAGE SAR VALUES (DB)

Output SAR (dB) Input SMR Values
Method 0dB 5dB 10dB 15dB 20dB
Truth 10.9 14.2 17.2 20.2 23.2

Original 7.5 11.4 14.9 18.4 21.9

MAP 10.5 13.8 16.8 19.6 22.3

PCE 11.7 14.5 17.3 20.1 22.9

GMC 11.7 14.4 17.1 20.1 23.1

very low compared to ”Truth” case. In this part, the original
method corresponds to estimating the gain parameter with
Equation 13. When we use MAP, since some of the frames
with low MAP are actual active frames, the estimated gain
parameters for these frames are increased, so the SMR and
Speech-to-Artifact Ratio (SAR) values are higher compared to
the original case. However, for the frames whose active frames
are not correctly identified, the gain parameter is over or under
estimated. In PCE case, the gain parameter is estimated using
the frames which have high MAP, so the gain parameter of the
frames are smoothed over these frames. As a result, the gain
estimation performance increases as compared to the original
case. In GMC method, by imposing correlation between the
gain parameter along the frames, it is not allowed to have
abrupt changes in the estimated values. This scenario is more
realistic because of the fact that the gain parameter is not
changed instantaneously in real life. ASR results with different
gain estimation techniques are presented in Table III and it
is experimentally shown that the proposed gain estimation
techniques enhance the speech recognition results. It is very
promising that by using the proposed techniques the speech
recognition performance can be improved to a level that is very
close to the speech recognition performance with the true gain
values as can be seen in Table III.

V. CONCLUSIONS

As a conclusion, we address the gain estimation problem of
the catalog-based method and propose three different solutions
to this problem. MAP and Piece-wise constant estimation

TABLE III
AVERAGE WACC VALUES (%)

WAcc (%) Input SMR Values
Method 0dB 5dB 10dB 15dB 20dB
Clean 75.1 75.1 75.1 75.1 75.1

Mixed 0.4 2.6 15.3 40.9 60.4

Truth 29.2 46.7 59.4 66.9 70.4

Original 3.5 14.8 41.7 52.4 66.6

MAP 13.7 35.1 48.8 61.2 69.5

PCE 17.6 35.9 55.6 63.6 70.0

GMC 26.1 41.5 57.3 63.4 70.9

methods are ad-hoc methods which we developed by analyzing
the reasons of estimation errors. Also we applied GMC struc-
ture to overcome this gain estimation issue. It is shown that all
of these enhancement techniques improves the gain estimation
performance of the catalog-based method. Moreover, by using
the proposed approaches the separation performance can be
improved as if the truth gain values are used in the separation
process.
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