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Abstract

In this paper we present a graphical model for polyphonic music transcription. Our model, formulated
as a Dynamical Bayesian Network, embodies a transparent and computationally tractable approach to
this acoustic analysis problem. An advantage of our approach is that it places emphasis on explicitly
modelling the sound generation procedure. It provides a clear framework in which both high level
(cognitive) prior information on music structure can be coupled with low level (acoustic physical)
information in a principled manner to perform the analysis. The model is a special case of the, generally
intractable, switching Kalman filter model. Where possible, we derive, exact polynomial time inference
procedures, and otherwise efficient approximations. We argue that our generative model based approach
is computationally feasible for many music applications and is readily extensible to more general auditory

scene analysis scenarios.

Index Terms

music transcription, polyphonic pitch tracking, Bayesian signal processing, switching Kalman filters

I. INTRODUCTION

When humans listen to sound, they are able to associate acoustical sighals generated by different
mechanisms with individual symbolic events [1]. The study and computational modelling of this human

ability forms the focus of computational auditory scene analysis (CASA) and machine listening [2].
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Research in this area seeks solutions to a broad range of problems such as the cocktail party problem,
(for example automatically separating voices of two or more simultaneously speaking persons, see e.g.
[3], [4]), identification of environmental sound objects [5] and musical scene analysis [6]. Traditionally,
the focus of most research activities has been in speech applications. Recently, analysis of musical scenes
is drawing increasingly more attention, primarily because of the need for content based retrieval in very

large digital audio databases [7] and increasing interest in interactive music performance systems [8].

A. Music Transcription

One of the hard problems in musical scene analysis is automatic music transcription, that is, the
extraction of a human readable and interpretable description from a recording of a music performance.
Ultimately, we wish to infer automatically a musical notation (such as the traditional western music
notation) listing the pitch levels of notes and corresponding time-stamps for a given performance. Such a
representation of the surface structure of music would be very useful in a broad spectrum of applications
such as interactive music performance systems, music information retrieval (Music-IR) and content
description of musical material in large audio databases, as well as in the analysis of performances.
In its most unconstrained form, i.e., when operating on an arbitrary polyphonic acoustical input possibly
containing an unknown number of different instruments, automatic music transcription remains a great
challenge. Our aim in this paper is to consider a computational framework to move us closer to a practical
solution of this problem.

Music transcription has attracted significant research effort in the past — see [6] for a detailed review of
early work. In speech processing, the related task of tracking the pitch of a single speaker is a fundamental
problem and methods proposed in the literature are well studied[9]. However, most current pitch detection
algorithms are based largely on heuristics (e.g., picking high energy peaks of a spectrogram, correlogram,
auditory filter bank, etc.) and their formulation usually lacks an explicit objective function or signal model.

It is often difficult to theoretically justify the merits and shortcomings of such algorithms, and compare
them objectively to alternatives or extend them to more complex scenarios.

Pitch tracking is inherently related to the detection and estimation of sinusoidals. The estimation and
tracking of single or multiple sinusoidals is a fundamental problem in many branches of applied sciences,
so it is less surprising that the topic has also been deeply investigated in statistics, (e.g. see [10]).
However, ideas from statistics seem to be not widely applied in the context of musical sound analysis,
with only a few exceptions [11], [12] who present frequentist techniques for very detailed analysis

of musical sounds with particular focus on decomposition of periodic and transient components. [13]
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has presented real-time monophonic pitch tracking application based on a Laplace approximation to the
posterior parameter distribution of an AR(2) model [14], [10, page 19]. Their method outperforms several
standard pitch tracking algorithms for speech, suggesting potential practical benefits of an approximate
Bayesian treatment. For monophonic speech, a Kalman filter based pitch tracker is proposed by [15] that
tracks parameters of a harmonic plus noise model (HNM). They propose the use of Laplace approximation
around the predicted mean instead of the extended Kalman filter (EKF). For both methods, however, it
is not obvious how to extend them to polyphony.

Kashino [16] is, to our knowledge, the first author to apply graphical models explicitly to the problem
of polyphonic music transcription. Sterian [17] described a system that viewed transcription as a model
driven segmentation of a time-frequency image. Walmsley [18] treats transcription and source separation
in a full Bayesian framework. He employs a frame based generalized linear model (a sinusoidal model)
and proposes inference by reversible-jump Markov Chain Monte Carlo (MCMC) algorithm. The main
advantage of the model is that it makes no strong assumptions about the signal generation mechanism,
and views the number of sources as well as the nhumber of harmonics as unknown model parameters.
Davy and Godsill [19] address some of the shortcomings of his model and allow changing amplitudes
and frequency deviations. The reported results are encouraging, although the method is computationally

very expensive.

B. Approach

Musical signals have a very rich temporal structure, both on a physical (signal) and a cognitive
(symbolic) level. From a statistical modelling point of view, such a hierarchical structure induces very
long range correlations that are difficult to capture with conventional signal models. Moreover, in many
music applications, such as transcription or score following, we are usually interested in a symbolic
representation (such as a score) and not so much in the “details” of the actual waveform. To abstract
away from the signal details, we define a set of intermediate variables (a sequence of indicators), somewhat
analogous to a “piano-roll” representation. This intermediate layer forms the “interface” between a
symbolic process and the actual signal process. Roughly, the symbolic process describes how a piece is
composed and performed. We view this process as a prior distribution on the piano-roll. Conditioned on
the piano-roll, the signal process describes how the actual waveform is synthesized.

Most authors view automated music transcription as an “audio to piano-roll” conversion and usually
consider “piano-roll to score” a separate problem. This view is partially justified, since source separation

and transcription from a polyphonic source is already a challenging task. On the other hand, automated
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generation of a human readable score includes nontrivial tasks such as tempo tracking, rhythm quantiza-
tion, meter and key induction [20], [21], [22]. As also noted by other authors (e.g. [16], [23], [24]), we
believe that a model that integrates this higher level symbolic prior knowledge can guide and potentially
improve the inferences, both in terms quality of a solution and computation time.

There are many different natural generative models for piano-rolls. In [25], we proposed a realistic
hierarchical prior model. In this paper, we consider computationally simpler prior models and focus more
on developing efficient inference techniques of a piano-roll representation. The organization of the paper is
as follows: We will first present a generative model, inspired by additive synthesis, that describes the signal
generation procedure. In the sequel, we will formulate two subproblems related to music transcription:
melody identification and chord identification. We will show that both problems can be easily formulated
as combinatorial optimization problems in the framework of our model, merely by redefining the prior on
piano-rolls. Under our model assumptions, melody identification can be solved exactly in polynomial time
(in the number of samples). By deterministic pruning, we obtain a practical approximation that works
in linear time. Chord identification suffers from combinatorial explosion. For this case, we propose a
greedy search algorithm based on iterative improvement. Consequently, we combine both algorithms for
polyphonic music transcription. Finally, we demonstrate how (hyper-)parameters of the signal process

can be estimated from real data.

I[I. PoOLYPHONIC MODEL

In a statistical sense, music transcription, (as many other perceptual tasks such as visual object
recognition or robot localization) can be viewed as a latent state estimation problem: given the audio
signal, we wish to identify the sequence of events (e.g. notes) that gave rise to the observed audio signal.

This problem can be conveniently described in a Bayesian framework: given the audio samples, we
wish to infer a piano-roll that represents the onset times (e.g. times at which a ‘string’ is ‘plucked’), note
durations and the pitch classes of individual notes. We assume that we have one microphone, so that at
each timet we have a one dimensional observed quantityMultiple microphones (such as required for
processing stereo recordings) would be straightforward to include in our model. We denote the temporal
sequence of audio samplég:, ya, ..., vy, ...,yr} by the shorthand notatiog.. A constant sampling
frequencyF; is assumed.

Our approach considers the quantities we wish to infer as a collection of ‘*hidden’ variables, whilst
acoustic recording valuag . are ‘visible’ (observed). For each observed samplave wish to associate

a higher, unobserved quantity that labels the samplappropriately. Let us denote the unobserved
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guantities byH;.; where eacl; is a vector. Our hidden variables will contain, in addition to a piano-
roll, other variables required to complete the sound generation procedure. We will elucidate their meaning

later. As a general inference problem, the posterior distribution is given by Bayes’ rule

p(Herlyrr) o< p(yrr|Hir)p(Hir) 1)

The likelihood termp(y1.7|H1.7) in (1) requires us to specify a generative process that gives rise to
the observed audio samples. The prior terth{,.7) reflects our knowledge about piano-rolls and other
hidden variables. Our modelling task is therefore to specify both how, knowing the hidden variable states
(essentially the piano-roll), the microphone samples will be generated, and also to state a prior on likely

piano-rolls. Initially, we concentrate on the sound generation process of a single note.

A. Modelling a single note

Musical instruments tend to create oscillations with modes that are roughly related by integer ratios,
albeit with strong damping effects and transient attack characteristics [26]. It is common to model such
signals as the sum of a periodic component and a transient non-periodic component (See e.g. [27], [28],
[12]). The sinusoidal model [29] is often a good approximation that provides a compact representation
for the periodic component. The transient component can be modelled as a correlated Gaussian noise
process [15], [19]. Our signal model is also in the same spirit, but we will define it in state space form,
because this provides a natural way to couple the signal model with the piano-roll representation. Here
we omit the transient component and focus on the periodic component. It is conceptually straightforward
to include the transient component as this does not effect the complexity of our inference algorithms.

First we consider how to generate a damped sinugpithrough time, with angular frequency.

Consider a Gaussian process where typical realizagippsare damped “noisy” sinusoidals with angular

frequencyw:
st ~ N(pB(w)si-1,Q) (2)
y ~ N(Csi,R) (3)
so ~ N(0,85) (4)

We useN (u,X) to denote a multivariate Gaussian distribution with meaand covariance:. Here
B(w) = ( Ontz ’;E:i ) is a Givens rotation matrix that rotates two dimensional vestoby w

degrees counterclockwis€! is a projection matrix defined as = [1, 0]. The phase and amplitude

characteristics of;; are determined by the initial conditiafy drawn from a prior with covarianc€. The
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Fig. 1. A damped oscillator in state space form. Left: At each time step, the state veotates byw and its length becomes
shorter. Right: The actual waveform is a one dimensional projection from the two dimensional state vector. The stochastic
model assumes that there are two independent additive noise components that corrupt the stateanelctbe sample, so

the resulting waveforny;.r is a damped sinusoid with both phase and amplitude noise.

damping factor0 < p; < 1 specifies the rate at whicky contracts to0. See Figure 1 for an example.
The transition noise variana@ is used to model deviations from an entirely deterministic linear model.
The observation noise varianée models background noise.

In reality, musical instruments (with a definite pitch) have several modes of oscillation that are roughly
located at integer multiples of the fundamental frequetacyWe can model such signals by a bank of

oscillators giving a block diagonal transition mate% = A(w, p;) defined as

pgl)B(u)) 0 . 0
0 pPB(2w)
_ )
0
0 . 0 ng)B(Hw)

where H denotes the number diarmonics assumed to be known. To reduce the number of free
parameters we define each harmonic damping faetor in terms of a basigp. A possible choice is

to take p§h> = p}, motivated by the fact that damping factors of harmonics in a vibrating string scale
approximately geometrically with respect to that of the fundamental frequency, i.e. higher harmonics
decay faster [30]A(w, p;) is the transition matrix at time and encodes the physical properties of the
sound generator as a first order Markov Process. The rotation ancg@® be made time dependent for
modelling pitch drifts or vibrato. However, in this paper we will restrict ourselves to sound generators
that produce sounds with (almost) constant frequency. The state of the sound generator is represented by

st, @ 2H dimensional vector that is obtained by concatenation of all the oscillator states in (2).

B. From Piano-Roll to Microphone

A piano-roll is a collection of indicator variables;, wherej = 1... M runs over sound generators
(i.e. notes or “keys” of a piano) and= 1...7T runs over time. Each sound generator has a unique

fundamental frequency; associated with it. For example, we can choagesuch that we cover all
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notes of the tempered chromatic scale in a certain frequency range. This choice is arbitrary and for a
finer pitch analysis a denser grid with smaller intervals between adjacent notes can be used.

Each indicator is binary, with values “sound” or “mute”. The essential idea is that, if previously muted,
rjt—1 = “mute” an onset for the sound generagooccurs ifr;; = “sound”. The generator continues to
sound (with a characteristic damping decay) until it is again set to “mute”, when the generated signal
decays to zero amplitude (much) faster. The piano-roll, being a collection of indieaters.z, can be
viewed as a binary sequence, e.g. see Figure 2. Each row of the piamgirplicontrols an underlying

sound generator.

" "
b
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 2. Piano-roll. The vertical axis corresponds to the sound generator jratek the horizontal axis corresponds to time index

t. Black and white pixels correspond to “sound” and “mute” respectively. The piano-roll can be viewed as a binary sequence
that controls an underlying signal process. Each row of the piana=fallr controls a sound generator. Each generator is a
Gaussian process (a Kalman filter model), where typical realizations are damped periodic waveforms of a constant fundamental
frequency. As in a piano, the fundamental frequency is a function of the generatorjindiee actual observed signgl.r is

a superposition of the outputs of all generators.

The piano-roll determines the both sound onset generation, and the damping of the note. We consider
first the damping effects.

1) Piano-Roll : Damping: Thanks to our simple geometrically related damping factors for each
harmonic, we can characterise the damping factor for eachjneté, ..., M by two decay coefficients
Psound and pmute SUCh thatl > psound> pmute > 0. The piano-rollr; ;.7 controls the damping coefficient

p;t of notej at timet by:

Pit = Psount{rj,t = SOUﬂdl + Pmute[rj,t = mth (6)

Here, and elsewhere in the article, the notafior- text has value equal to 1 when variahtgs in state

text, and is zero otherwise. We denote the transition matrix;%tée = A(wj, pmute); Similarly for A§°“”d.
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Fig. 3. Graphical Model. The rectangle box denotes “platdg”replications of the nodes inside. Each plate= 1,..., M

represents the sound generator (note) variables through time.

2) Piano-Roll : Onsets:At each new onset, i.e. whefr;;—; = mute) — (r;; = sound, the old
states;_; is “forgotten” and a new state vector is drawn from a Gaussian prior distribultici S).
This models the energy injected into a sound generator at an onset (this happens, for example, when
a guitar string is plucked). The amount of energy injected is proportional to the determin&narud
the covariance structure f describes how this total energy is distributed among the harmonics. The
covariance matrixS thus captures some of the timbre characteristics of the sound. The transition and

observation equations are given by

isonsef; = (rj;—1 = muteAr;; =sound (7)
Ajp = [rje =mutd A"+ [r;; = soundA3*" (8)
sjt ~ [-isonsef JN(A;si—1,Q) + [isonsef N (0, .5) 9)
yjt ~ N(Csji,R) (10)
In the above,C is al x 2H projection matrixC' = [1,0,1,0,...,1,0] with zero entries on the even

components. Hencg;; has a mean being the sum of the damped harmonic oscillaorsodels the
variance of the noise in the output of each sound generator. Finally, the observed audio signal is the

superposition of the outputs of all sound generators,
o= > Y (11)
J

The generative model (6)-(11) can be described qualitatively by the graphical model in Figure 3.
Equations (10) and (11) defingyi.7|s1.a,1.7). Equations (6) (8) and (9) relate and s and define
p(s1:am,1:7|m1:02,1:7)- In this paper, the prior model(r;./,1.7) is Markovian and will be defined in the

following sections.
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C. Inference
Given the polyphonic model described in section I, to infer the most likely piano-roll we need to
compute

iy = argmax p(riar|yiT) (12)

T1:M,1:T

where the posterior is given by

1
p(rimir|yir) = p(y1:7|81:0,1:7)
S1:M,1:T

p(yrr)

XP(SI:M,I:T’TI:M,I:T)p(TL]V[,l:T)
The normalization constanp(y;.r), obtained by summing the integral term over all configurations
ri.1.7 iS called the evidence.

Unfortunately, calculating this most likely piano-roll configuration is generally intractable, and is
related to the difficulty of inference in Switching Kalman Filters [31], [32]. We shall need to develop
approximation schemes for this general case, to which we shall return in a later section.

As a prelude, we consider a slightly simpler, related model which aims to track the pitch (melody
identification) in a monophonic instrument (playing only a single note at a time), such as a flute. The
insight gained here in the inference task will guide us to a practical approximate algorithm in the more

general case later.

IIl. M ONOPHONICMODEL

Melody identification, or monophonic pitch tracking with onset and offset detection, can be formulated
by a small modification of our general framework. Even this simplified task is still of huge practical
interest, e.g. in real time MIDI conversion for controlling digital synthesizers using acoustical instruments

or pitch tracking from the singing voice in a “karaoke” application. One important problem in real time

LIt is instructive to interpret (12) from a Bayesian model selection perspective [33]. In this interpretation, we view the set
of all piano-rolls, indexed by configurations of discrete indicator variables,:.r, as the set of all models among which we
search for the best model.,, ;.. In this view, state vectors;.,s 1.7 are the model parameters that are integrated over. It
is well known that the conditional predictive densjify|r), obtained through integration over automatically penalizes more
complex models, when evaluated sjat= yi.7. In the context of piano-roll inference, this objective will automatically prefer
solutions with less notes. Intuitively, this is simply because at each note onset, the statesyét@initialized using a broad
GaussianV (0, S). Consequently, a configurationwith more onsets will give rise to a conditional predictive distributjgg|r)
with a larger covariance. Hence, a piano-roll that claims the existence of additional onsets without support from data will get a

lower likelihood.
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pitch tracking is the time/frequency tradeoff: to estimate the frequency accurately, an algorithm needs
to collect statistics from a sufficiently long interval. However, this often conflicts with the real time
requirements.

In our formulation, each sound generator is a dynamical system with a sequence of transition models,
sound and mute. The stateevolves first according to the sounding regime with transition matffnd
and then according to the muted regime witR"*®. The important difference from a general switching
Kalman filter is that when the indicaterswitches from mute to sound, the old state vector is “forgotten”.
By exploiting this fact, in the appendix I-A we derive, for a single sound generator (i.e. a single note
of a fixed pitch that gets on and off), an exact polynomial time algorithm for calculating the evidence
p(y1.7) and MAP configuratiorn ;..

1) Monophonic pitch trackingHere we assume that at any given timenly a single sound generator
can be sounding, i.e;;; = sound=- r; , = mute for;’ # j. Hence, for practical purposes, the factorial
structure of our original model is redundant; i.e. we can “share” a single state veatoong all sound
generators The resulting model will have the same graphical structure as a single sound generator but
with an indicatorj; € 1... M which indexes the active sound generator, and {sound mute} indicates
sound or mute. Inference for this case turns out to be also tractable (i.e. polynomial). We allow switching
to a new;’ only after an onset. The full generative model using the p@girs+), which includes both

likelihood and prior terms is given as
re o~ p(ryri—1)
isonset = (ry = soundA r,_; = mute
Jt ~ [~isonsefd(ji; ji—1) + [isonsedu(ji)
A = [ry = mutdAT"®+ [r, = soundAS*"
st ~ [-isonseflN (Aisi—1,Q) + [isonse N (0, .S)
ye ~ N(Cs, R)

Herew(j) denotes a uniform distribution an. .., M andd(j;; j:—1) denotes a degenerate (deterministic)
distribution concentrated oy, i.e. unless there is an onset the active sound generator stays the same.
Our choice of a uniformu(j) simply reflects the fact that any new note is as likely as any other. Clearly,

more informative priors, e.g. that reflect knowledge about tonality, can also be proposed.

2\We ignore the cases when two or more generators are simultaneously in the mute state.
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Fig. 4. Simplified Model for monophonic transcription. Since there is only a single sound generator active at any given time,
we can represent a piano-roll at each time slice by the tgple~;) wherej, is the index of the active sound generator and

re+ € {soundmute} indicates the state.
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100 200 300 400 500 600 700 800 900 1000

Fig. 5. Monophonic pitch tracking. (Top) Synthetic data sampled from model in Figure 4. Vertical bars denote the onset and

offset times. (Bottom) The filtering densi®f(r+, j¢|y1:¢).

The graphical model is shown in Figure 4. The derivation of the polynomial time inference algorithm
is given in appendix I-C. Technically, it is a simple extension of the single note algorithm derived in
appendix [-A.

In Figure 5, we illustrate the results on synthetic data sampled from the model where we show the
filtering densityp(r¢, j:|y1.¢). After an onset, the posterior becomes quickly crisp, long before we observe
a complete cycle. This feature is especially attractive for real time applications where a reliable pitch
estimate has to be obtained as early as possible.

2) Extension to vibrato and legatdihe monophonic model has been constructed such that the rotation
angle w remains constant. Although the the transition noise with variacstill allows for small
and independent deviations in frequencies of the harmonics, the model is not realistic for situations
with systematic pitch drift or fluctuation, e.g. as is the case with vibrato. Moreover, on many musical
instruments, it is possible to pldggatqg that is without an explicit onset between note boundaries. In

our framework, pitch drift and legato can be modelled as a sequence of transition models. Consider the
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Fig. 6. Tracking varying pitch. Top and middle panel show the true piano-roll and the sampled signal. The estimated piano-roll

is shown below.

generative process for the note indgx

e o~ P(Tt|7”t—1)
isonset = (r; = soundA r;_; = mute)
issound = (r; =soundA r;_; = sound
jge ~  [issound|d(je|jei-1) +
[re = mutgo(ji; ji—1) + [isonsedu(j)

Here,d(j:|j:—1) is a multinomial distribution reflecting our prior belief how likely is it to switch between
notes. Whenr, = mute, there is no regime change, reflected by the deterministic distribitjgry;—1)
peaked around; 1. Remember that neighbouring notes have also close fundamental frequefioy
simulate pitch drift, we can choose a fine grid such thgtv;, = Q. Here,Q < 1 is the quality factor,

a measure of the desired frequency precision not to be confused with the transitio@nbisthis case,
we can simply definel(j;|j:—1) as a multinomial distribution with support dg._1 — 1, j¢—1, je—1 + 1]
with cell probabilities[d_; dy d;]. We can take a larger support féfj;|j:—1), but in practice we would
rather reduce the frequency precisionto avoid additional computational cost.

Unfortunately, the terms included by the drift mechanism render an exact inference procedure in-
tractable. We derive the details of the resulting algorithm in the appendix I-D. A simple deterministic
pruning method is described in appendix II-A. In Figure 6, we show the estimated MAP trajettpry
for drifting pitch. We use a model where the quality factords= 27120, (120 generators per octave)
with drift probability d_; = d; = 0.1. A fine pitch contour, that is accurate to sample precision, can be

estimated.
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IV. POLYPHONIC INFERENCE

In this section we return to the central goal of inference in the general polyphonic model described
in section Il. To infer the most likely piano-roll we need to compattgmax p(r1.as,1.7|y1:7) defined in
(12). Unfortunately, the calculation of (12) is intractable. Indeedtlg\'/léTn the calculation of the Gaussian
integral conditioned on a particular configurationas,;.r using standard Kalman filtering equations is
prohibitive since the dimension of the state vectdsjs= 2H x M, whereH is the number of harmonics.
For a realistic application we may hawd ~ 50 and H ~ 10. It is clear that unless we are able to

develop efficient approximation techniques, the model will be only of theoretical interest.

A. Vertical Problem: Chord identification

Chord identification is the simplest polyphonic transcription task. Here we assume that a given audio
signaly;.7 is generated by a piano-roll wherg; = r; for all® j = 1... M. The task is to find the MAP

configuration

iy = argmaxp(yir,Ti:m)

T1:M
Each configuration corresponds to a chord. The two extreme cases are “silence” and “cacophony” that
correspond to configurationg.y;[mute mute ... mutd and[sound sound... sound respectively.
The size of the search space in this ca¥e which is prohibitive for direct computation.

A simple approximation is based on greedy search: we start iterative improvement from an initial
configurationrg?]@ (silence, or randomly drawn from the prior). At each iteratiprwe evaluate the
probability p(y1.7, 71:a) Of all neighbouring configurations @ﬁf;}). We denote this set byeigh(rﬁ;})).

A configurationr’ € neigh(r), if # can be reached from within a single flip (i.e., we add or remove
single notes). Ifrﬁj) has a higher probability than all its neighbours, the algorithm terminates, having

found a local maximum. Otherwise, we pick the neighbour with the highest probability and set

(6 _
Ty T argmax (Y11, m1:M)
7471)

ri.nv €Eneigh(ry’y;
and iterate until convergence. We illustrate the algorithm on a signal sampled from the generative model,
see Figure 7. This procedure is guaranteed to converge to a (possibly local) maxima. Nevertheless, we
observe that for many examples this procedure is able to identify the correct chord. Using multiple
restarts from different initial configurations will improve the quality of the solution at the expense of

computational cost.

3We will assume that initially we start from silence wherg, = mute for allj = 1... M
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Fig. 7. We have first drawn a random piano-roll configuration (a random chergl). Givenri.,s, we generate a signal of
length400 samples with a sampling frequenéy = 4000 from p(y1.7|r1:a). We assume 24 notes (2 octaves). The synthesized
signal from the generative model and its discrete time Fourier transform modulus are shown above. The true chord configuration
and the associated log probability is at the bottom of the table. For the iterative algorithm, the initial configuration in this
example was silence. At this point we compute the probability for each single note configurations (all one flip neighbours of
silence). The first note that is added is actually not present in the chord. Until itegatidhiterations add extra notes. Iteration

9 and 10 turn out to be removing the extra notes and iterations converge to the true chord. The intermediate configurations

visited by the algorithm are shown in the table below. Here, sound and mute states are represeistethdy’s.

One of the advantages of our generative model based approach is that we can in principle infer a chord
given any subset of data. For example, we can simply downsamplgwithout any preprocessing) by
an integer factor ofD and view the discarded samples simply as missing values. Of course, hen
is large, i.e. when we throw away many samples, due to aliasing, higher harmonics will overlap with
harmonics in the lower frequency band which will cause a more diffuse posterior on the piano-roll,
eventually degrading performance.

In Figure 8, we show the results of such an experiment. We have downsagnpledth factorD = 2,3
and 4. The energy spectrum is quite coarse due to the short length of the data. Consequently many
harmonics are not resolved, e.g. we can not identify the underlying line spectrum by visual inspection.
Methods based on template matching or identification of peaks may have serious problems for such
examples. On the other hand, our model driven approach is able to identify the true chord. We note that,

the presented results are illustrative only and the actual behaviour of the algorithm (sensitiliity to
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o] fiffenc] i
mwmwmm

p(y:pir, i) Init

2685 True
—3179 Silence
—2685 Random

—2057 True
2057 Silence
—2616 Random
—1605 True
—1668 Silence
—1591 Random

Fig. 8. Iterative improvement results when data are subsampled by a factor-o®2, 3 and 4, respectively. For each factor
D, the top line shows the true configuration and the corresponding probability. The second line is the solution found by starting

from silence and the third line is starting from a random configuration drawn form the prior (b@shdépendent runs).

importance of starting configuration) will depend on the details of the signal model.

B. Piano-Roll inference Problem: Joint Chord and Melody identification

The piano-roll estimation problem can be viewed as an extension of chord identification in that we
also detect onsets and offsets for each note within the analysis frame. A practical approach is to analyze
the signal in sufficiently short time windows and assume that for each note, at most one changepoint can
occur within the window.

Consider data in a short window, say.,w. We start iterative improvement from a configuration
rg?}v,w, where each time sliceg?j)\u fort =1...W is equal to a “chordr;.ps0. The chordri.a o
can be silence or, during a frame by frame analysis, the last time slice of the best configuration found
in the previous analysis window. Let the configuration: at 1'th iteration be denoted asElMll - At
each new iteratiori, we evaluate the posterior probabilityy; w, r1.a,1:w), Wherery.a 1.7 runs over
all neighbouring configuration ofg M)l - Each member.y; 1.1 of the neighbourhood is generated as
follows: For eachj = 1... M, we clamp all the other rows, i.e. we set 1.,y = 7"3(17113(/ for 5 # ;.

For each time step = 1...W, we generate a new configuration such that the switches up tottime

are equal to the initial switch;, and its opposite-r; o aftert, i.e.r; . r;o[t’ < t]+ —rjo[t’ > t]. This

is equivalent to saying that a sounding note may get muted, or a muted note may start to sound. The
computational advantage of allowing only one changepoint at each row is that the probability of all
neighbouring configurations for a fixgdcan be computed by a single backward, forward pass [22], [32].

Finally, we pick the neighbour with the maximum probability. The algorithm is illustrated in Figure 9.
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The analysis for the whole sequence proceeds as follows: Consider two successive analysis windows
Yorev = y1.w @andY = yw1.0w. Suppose we have obtained a solutiﬁg}e\, = TT:MJ:W obtained by
iterative improvement. Conditioned di¥;,, we compute the posterignsi.as,w |Yprev, Fprey) by Kalman
filtering. This density is the prior of for the current analysis window. The search starts from a chord
equal to the last time slice d&;,. In Fig. 10 we show an illustrative result obtained by this algorithm
on synthetic data. In similar experiments with synthetic data, we are often able to identify the correct
piano-roll.

This simple greedy search procedure is somewhat sensitive to location of onsets within the analysis
window. Especially, when an onset occurs near the end of an analysis window, it may be associated with
an incorrect pitch. The correct pitch is often identified in the next analysis window, when a longer portion
of the signal is observed. However, since the basic algorithm does not allow for correcting the previous
estimate by retrospection, this introduces some artifacts. A possible method to overcome this problem is
to use a fixed lag smoothing approach, where we simply carry out the analysis on overlapping windows.
For example, for an analysis windoWfrev = y1.w, we findry, ), ;.;,. The next analysis window is taken
asyr+1.w+r WhereL < W. We find the priomp(s1.as,2|y1:2,77.51.) by Kalman filtering. On the other
hand, obviously, the algorithm becomes slower by a factok Gf/ .

An optimal choice for, and W will depend upon many factors such as signal characteristics, sampling
frequency, downsampling factdp, onset/offset positions, number of active sound generators at a given
time as well as the amount of CPU time available. In practice, these values may be critical and they
need to be determined by trial and error. On the other hand, it is important to noté #rat I/ just

determine how the approximation is made but not enter the underlying model.

V. LEARNING

In the previous sections, we assumed that the correct signal model paraetersS, p, Q, R)
were known. These include in particular the damping coefficiegisa pmute transition noise variance
Q, observation noisé? and the initial prior covariance matri¥ after an onset. In practice, for an
instrument class (e.g. plucked string instruments) a reasonable ran@edor be specified a-priori. We
may safely assume th#& will be static (not time dependent) during a given performance. However,
exact values for these quantities will vary among different instruments (e.g. old and new strings) and
recording/performance conditions.

One of the well-known advantages of Bayesian inference is that, when uncertainty about parameters

is incorporated in a model, this leads in a natural way to the formulation of a learning algorithm. The
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(@ (b)

Fig. 9. lIterative improvement with changepoint detection. The true piano-roll, the signal and its Fourier transform magnitude
are shown in Figure 9.(a). In Figure 9.(b), configuratief8 visited during iterative improvement steps. lteration numbers

are shown left and the corresponding probability is shown on the right. The initial configuration (i.e. “chord’) is set to

silence. At the first step, the algorithm searches all single note configurations with a single onset. The winning configuration is
shown on top panel of Figure 9.(b). At the next iteration, we clamp the configuration for this note and search in a subset of two
note configurations. This procedure adds and removes notes from the piano-roll and converges to a local maxima. Typically, the

convergence is quite fast and the procedure is able to identify the true chord without making a “detour” as in (b).

piano-roll estimation problem, omitting the time indices, can be stated as follows:

o = avgmax [ [ plols,0)p(sir. 0p(0)p(r) (13)
Unfortunately, the integration ol can not be calculated analytically and approximation methods
must be used [34]. A crude but computationally cheap approximation replaces the integratiavithn
maximization:

= srgmaxmix / p(yls, O)p(s|r, O)p(O)p(r)

S

This leads to the following greedy coordinate ascent algorithm where the steps are iterated until

convergence

r@ = argmax / p(yls, 0D p(s|r, 0 )p(0)p(r)

S

9%) = argmax / p(yls, O)p(slr®, 0)p()p(r™)
0

S

For a single note, conditioned @Y, () can be calculated exactly, using the message propagation

algorithm derived in appendix I-B. Conditioned o, calculation oY) becomes equivalent to parameter
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Fig. 10. A typical example for Polyphonic piano-roll inference from synthetic data. We generate a realistic piano-roll (top) and
render a signal using the polyphonic model (middle). Given only the signal, we estimate the piano-roll by iterative improvement
in successive windows (bottom). In this example, only the offset time of the lowest note is not estimated correctly. This is a

consequence that, for long notes, the state vecwonverges to zero before the generator switches to the mute state.

estimation in a linear dynamical systems, which can be achieved by an expectation maximization (EM)
algorithm [32], [35]. In practice, we observe that for realistic starting conditisther(?) are identical,
suggesting that* is not very sensitive to variations #hnear to a local optimum.

In Figure 11, we show the results of training the signal model based on a single note (a C from the
low register) of an electric bass. We use this model to transcribe a polyphonic segment performed on
the same instrument, see Figure 12. Ideally, one could train different parameter sets each different note
or each different register of an instrument. In practice, we observe that the transcription procedure is not
very sensitive to actual parameter settings; a rough parameter estimate, obtained by a few EM iterations,
leads often to the correct result. For example, the results in Figure 12 are obtained using a model that is

trained by only three EM iterations.

VI. DISCUSSION

We have presented a model driven approach where transcription is viewed as a Bayesian inference
problem. In this respect, at least, our approach parallels the previous work of [18], [19], [36]. We believe,
however, that our formulation, based on a switching state space model, has several advantages. We can
remove the assumption of a frame based model and this enables us to analyse music online and to sample
precision. Practical approximations to an eventually intractable exact posterior can be carried out frame-
by-frame, such as by using a fixed time-lag smoother. This, however, is merely a computational issue
(albeit an important one). We may also discard samples to reduce computational burden, and account for

this correctly in our model.
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500

o 200 400 600 800 1000 1200 h

(a) A single note from an electric  (b) Top to Bottom: Fourier trans-
bass. Original sampling rate of form of the downsampled signal
22050 Hz is reduced by down- and diagonal entries ofS, @
sampling with factorD = 20. and damping coefficient®sound
Vertical lines show the change- for each harmonic.

points of the MAP trajectory

T:K.

Fig. 11. Training the signal model with EM from a single note from an electric bass using a sampling 2at&@fHz. The
original signal is downsampled by a factor Bf= 20. Given some crude first estimate for model parame‘;t@Ps{S, 0, Q, R), we
estimater), shown in (a). Conditioned orf), we estimate the model parametéf§ and so on. Lef;, denote the2 x 2 block

matrix from the diagonab, corresponding to th&'th harmonic, similarly forQ. In (b), we show the estimated parameters for

each harmonic sum of diagonal elements, Te.S;, and Tr Q. The damping coefficient is found @gouna= (det AhA,TL)l/4

where A, is a2 x 2 diagonal block matrix of transition matrixi*®™ For reference, we also show the Fourier transform
modulus of the downsampled signal. We can see, that on the low frequency sandmjics the average energy distribution

of the note. However, transient phenomena, such as the strongly daritpethrmonic with relatively high transition noise,

is hardly visible in the frequency spectrum. On the other hand for online pitch detection, such high frequency components are

important to generate a crisp estimate as early as possible.

An additional advantage of our formulation is that we can still deliver a pitch estimate even when the
fundamental and lower harmonics of the frequency band are missing. This is related to swicaiéd
pitch perception [37]: we tend to associate notes with a pitch class depending on the relationship between
harmonics rather than the frequency of the fundamental component itself.

There is a strong link between model selection and polyphonic music transcription. In chord identi-
fication we need to compare models with different number of notes, and in melody identification we
need to deduce the number of onsets. Model selection becomes conceptually harder when one needs to
compare models of different size. We partially circumvent this difficulty by using switch variables, which

implicitly represent the number of components.
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0 500 1000 1500 2000 2500

Fig. 12. Polyphonic transcription of a short segment from a recording of a bass guitar. (Top) The signal, original sampling
rate 0f22050 Hz is downsampled with a factor d? = 5. (Middle) Spectrogram (Short time Fourier transform modulus) of the
downsampled signal. Horizontal and vertical axes correspond to time and frequency, respectively. Grey level denotes the energy
in a logarithmic scale. The low frequency notes are not well resolved due to short window length. Taking a longer analysis
window would increase the frequency resolution but smear out onsets and offsets. (Bottom) Estimated piano-roll. The model
usedM = 30 sound generators where fundamental frequencies were placed on a chromatic scale that spahbexttinee

interval between the low A (second open string on a bass) and alhi¢fighest note on the forth string). Model parameters

are estimated by a few EM iterations on a single note (similar to Figure 11) recorded from the same instrument. The analysis
is carried out using a window length & = 450 samples, without overlap between analysis frames [i.e- W). The greedy
procedure was able to identify the correct pitch classes and their onsets to sample precision. For this example, the results were

qualitatively similar for different window lengthB/ around300 — 500 and downsampling factor® up to 8.

Following the established signal processing jargon, we may call our approach a time-domain method,
since we are not explicitly calculating a discrete-time Fourier transform. On the other hand, the signal
model presented here has close links to the Fourier analysis and sinusoidal modelling. Our analysis can
be interpreted as a search procedure for a sparse representation on a set of basis vectors. In contrast to
Fourier analysis, where the basis vectors are simple sinusoids, we represent the observed signal implicitly
using signals drawn from a stochastic process which typically generates decaying periodic oscillations
(e.g. notes) with occasional changepoints. The sparsity of this representation is a consequence of the
onset mechanism, that effectively puts a mixture prior over the hidden state ve@tus prior is peaked

around zero and has broad tails, indicating that most of the sources are muted and only a few are sounding.
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A. Future work

Although our approach has many desirable features (automatically deducing number of correct notes,
high temporal resolution e.t.c.), one of the main disadvantage of our method is computational cost
associated with updating large covariance matrices in Kalman filtering. It would be very desirable
to investigate approximation schemas that employ fast transformations such as the FFT to accelerate
computations.

When transcribing music, human experts rely heavily on prior knowledge about the musical structure —
harmony, tempo or expression. Such structure can be captured by training probabilistic generative models
on a corpus of compositions and performances by collecting statistics over selected features (e.g. [38]).
One of the important advantages of our approach is that such prior knowledge about the musical structure
can be formulated as an informative prior on a piano-roll; thus can be integrated in signal analysis in
a consistent manner. We believe that investigation of this direction is important in designing robust and
practical music transcription systems.

Our signal model considered here is inspired by additive synthesis. An advantage of our linear
formulation is that we can use the Kalman filter recursions to integrate out the continuous latent state
analytically. An alternative would be to formulate a nonlinear dynamical system that implements a
nonlinear synthesis model (e.g. FM synthesis, waveshaping synthesis, or even a physical model[39]). Such
an approach would reduce the dimensionality of the latent state space but force us to use approximate
integration methods such as particle filters or EKF/UKF [40]. It remains an interesting open question
whether, in practice, one should trade-off analytical tractability versus reduced latent state dimension.

In this paper, for polyphonic transcription, we have used a relatively simple deterministic inference
method based on iterative improvement. The basic greedy algorithm, whilst still potentially useful in
practice, may occasionally get stuck in poor solutions. We believe that, using our model as a framework,
better polyphonic transcriptions can be achieved using more elaborate inference or search methods
(deterministic, stochastic or hybrids).

We have not yet tested our model for more general scenarios, such as music fragments containing
percussive instruments or bell sounds with inharmonic spectra. Our simple periodic signal model would
be clearly inadequate for such a scenario. On the other hand, we stress the fact that the framework
presented here is not only limited to the analysis of signals with harmonic spectra, and in principle
applicable to any family of signals that can be represented by a switching state space model. This is

already a large class since many real-world acoustic processes can be approximated well with piecewise
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linear regimes. We can also formulate a joint estimation schema for unknown parameters as in (13) and
integrate them out (e.g. see [19]). However, this is currently a hard and computationally expensive task.
If efficient and accurate approximate integration methods can be developed, our model will be applicable
to mixtures of many different types of acoustical signals and may be useful in more general auditory

scene analysis problems.

APPENDIX |

DERIVATION OF MESSAGE PROPAGATION ALGORITHMS

In the appendix, we derive several exact message propagation algorithms. Our derivation closely follows
the standard derivation of recursive prediction and update equations for the Kalman filter [41]. First we
focus on a single sound generator. In appendix I-A and I-B, we derive polynomial time algorithms for
calculating the evidencg(y;.r) and MAP configuration,,, = argmax p(y1.7,r1.7) respectively. The
MAP configuration is useful for onset/offset detection. In the follgv;ing section, we extend the onset/offset
detection algorithms to monophonic pitch tracking with constant frequency. We derive a polynomial time
algorithm for this case in appendix I-C. The case for varying fundamental frequency is derived in the

following appendix I-D. In appendix Il we describe heuristics to reduce the amount of computations.

A. Computation of the evidengéy,.r) for a single sound generator by forward filtering

We assume a Markovian prior on the indicatoysvherep(r; = i|r,—1 = j) = p; ;. For convenience,
we repeat the generative model for a single sound generator by omitting the notejindex
re o~ p(rilre-1)
isonset = (r; = soundA r;_; = mute)
st ~ [-isonsef N (A, si—1,Q) + [isonsetl NV (0, .5)
ye ~ N(Csi R)

For simplicity, we will sometime use the labelsand 2 to denote sound and mute respectively. We

enumerate the transition models As(s¢|s;—1) = N (A,,s:—1, Q). We define the filtering potential as

. = Py, S, 1, Te-1) = Z/ p(Y1:t; S0:t, T1:¢)
S0:t—1

T1:t—2
We assume thatis always observed, hence we use the term potential to indicate the faetithats;, r¢, r:—1)

is not normalized. The filtering potential is in general a conditional Gaussian mixture, i.e. a mixture of
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Gaussians for each configuration f 1.;. We will highlight this data structure by using the following
notation

1,1 1,2
i Oy QY

Oét =
21 22
Qy Qi

where eachyf;’j = p(y1:, St,7¢ = 1,m—1 = j) for i, 7 =1...2 are also Gaussian mixture potentials. We
will denote the conditional normalization constants as

Zi = plyra,re=1i) = Z/ "
St

Tt—1

Consequently the evidence is given by

Zy = p(ylzt):ZZ/atZZZf

Tt Te—1

We also define the predictive density

Qtjt—1 = p(ylztl,Stﬂ"tﬂ“tl):Z/ p(st|si—1, e, Te—1)p(re|re—1)u—1
St—1

Tt—2

In general, for switching Kalman filters, calculating exact posterior features, such as the evidence
Zy = p(y1.¢), is not tractable. This is a consequence of the fact that the number of mixture components to
required to represent the exact filtering densitygrows exponentially with time stefp(i.e. one Gaussian
for each of the exponentially many configurationg). Luckily, for the model we are considering here,
the growth is polynomial irk only. See also [42].

To see this, suppose we have the filtering density available atttirieasa; ;. The transition models

can be organized also in a table whétk row and;’'th column correspond tp(s;|s;—1,7¢ = i,7¢—1 = j)
fi(selsi—1)  w(se)
fa(stlst—1)  fa(st|st—1)

Calculation of the predictive potential is straightforward. First, summation gyver yields

p(St\St—hT’tﬂ't—ﬂ =

1,1 1,2 1
Z N o | ) S
t—1 = =
21 2.2 9
Th—2 g + Qg gtfl

Integration overs;_; and multiplication byp(r|r,—1) yields the predictive potential

p1ai(se) p12ZE  m(st)

Otlt—1 = ) )
p2aa(st)  p22v3(st)

where we define

Zi =/ & #(St):/ filstlsi—1)€]_,
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The potentialsdzf can be computed by applying the standard Kalman prediction equations to each
component oELl. The updated potential is given by = p(y:|s:)ay,—;. This quantity can be computed
by applying standard Kalman update equations to each component; of.

From the above derivation, it is clear thcai’2 has only a single Gaussian component. This has the
consequence that the number of Gaussian componemblir'nncreases only linearly (the first row-sum
terms¢} , propagated througlf;). The second row sum tergf is more costly; it increases at every
time slice by the number of componentsgh ;. Since the size of} ; grows linearly, the size of?

grows quadratically with time.

B. Computation of MAP configuratiory. .

The MAP state is defined as

k
" = argmax/ P(Y1:1, 80:T5 T1:T)
So:T

Ti:T

= argmax (o, T1:7)
T1:T So:T

For finding the MAP state, we replace summations oyeny maximization. One potential technical
difficulty is that, unlike in the case for evidence calculation, maximization and integration do not commute.

Consider a conditional Gaussian potential

o(s,r) = {d(s,r =1),¢(s,m =2)}
whereg¢(s, r) are Gaussian potentials for each configuration.&/e can compute the MAP configuration
r* = argmax/qﬁ(s,r) = argmaX{Zl,ZQ}
r s
where Z7 = fs o(s,r = j). We evaluate the normalization of each component (i.e. integrate over the
continuous hidden variable first) and finally find the maximum of all normalization constants.

However, direct calculation of}.,. is not feasible because of exponential explosion in the number
of distinct configurations. Fortunately, for our model, we can introduce a deterministic pruning schema
that reduces the number of kernels to a polynomial order and meanwhile guarantees that we will never
eliminate the MAP configuration. This exact pruning method hinges on the factorization of the posterior
for the assignment of variables = 1,71 = 2 (mute to sound transition) that breaks the direct link

betweens; ands;_1:

d(s1:7yr1—2, -1 = 2,7t = L, req1.1) = d(S0—1, T1:6—2, Tt—1 = 2)O(See, Ter1:7, Tt = 11em1 = 2)

(14)
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In this case:

maxy, . [, ¢(s0r,T14-2,71-1 = 2,7t = 1, 7411.7)

= max,,, , [, ¢(S0t—1,T1:0-2,Tt-1 = 2)

0:t—1
X maXp,, [;  @(spr, Terrr, e = 1ri-1 = 2)
= Zf xmaxy,,,, [, é(ser, v, e = 1ri1 = 2) (15)

This Equation shows that whenever we have an onset, we can calculate the maximum over the past
and future configurations separately. Put differently, provided that the MAP configuration has the form
i = [l 3, m-1 = 2,7 = 1,77 .7, the prefix[r], 5,71 = 2] will be the solution for the reduced

maximization problemirg max,,,, , [

S0:t—1

A(50:4—1,T1:4-1)-

1) Forward pass:Suppose we have a collection of Gaussian potentials
L1 1,2

51571 5t71 51‘,171

2,1 2,2 9
021 0.5 i1

01
with the property that the Gaussian kernel corresponding the prgfix of the MAP state is a member
of 6;—1, i.€. ¢(Sk—1,774_1) € 04—1 S.L.75.p = [r74_1,7)p]. We also define the subsets

52’,_;‘1 = {d(sk—1,71:4—1) : ¢ € @ndr_ = 4,10 = j}
éfl = Udﬁl
J
We show how we find;. The prediction is given by

Opi—1 = / p(se|st—1, ¢, re—1)p(re|re—1)0¢—1
St—1

The multiplication byp(r¢|r;—1) and integration oves,;_; yields the predictive potentia,,_;

pia [y Filsidsi—1)y prem(se) [, 07
P21 [y, | fo(stlsi—1)d} 1 paga [, | falsilsi—1)07
By the (15), we can replace the collection of numbgrs §2_, with with the scalaZ? | = max L. 62,
without changing the optimum solution:
1,2
6t|t—1 = pl,QZtQ—lﬂ(St)

The updated potential is given By = p(y:|s:)d;;—- The analysis of the number of kernels proceeds as

in the previous section.
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2) Decoding: During the forward pass, we tag each Gaussian componedit with its past history
of r1.+. The MAP state can be found by a simple search in the collection of polynomially many numbers

and reporting the associated tag:

rip = argmax/ or
T1:T ST

We finally conclude that the forward filtering and MAP (Viterbi path) estimation algorithms are essentially

identical with summation replaced by maximization and an additional tagging required for decoding.

C. Inference for monophonic pitch tracking

In this section we derive an exact message propagation algorithm for monophonic pitch tracking.
Perhaps surprisingly, inference in this case turns out to be still tractable. Even though the size of the
configuration spacey. s 1.7 is of size(M + 1)K 0 (2K 18 M) 'the space complexity of an exact algorithm
remains quadratic in First, we define a “mega” indicator node= (j;, ;) wherej; € 1... M indicates
the index of the active sound generator apd {soundmute} indicates its state. The transition model

p(z|zi—1) is a large sparse transition table with probabilities

P11 p1,2/M p1,2/M
1,1 | pr2/M 1,2/M
pia | P12/ P12/ (16)
P2,1 D22
b2 b22

where the transitions(z; = (j,7)|z—1 = (j,’)) are organized at the’'th row andm’th column where
n=rxM+j—1andm =1 x M + j' — 1. (16). The transition models(s¢|s;_1, 2t = (j,7),2t—1 =

(4/,7")) can be organized similarly:

fi1 w(se) ... m(st)
fine | 7w(se) ... m(sy)
fa1 fa1
fQ,M fQ,M

Here, f,. ; = frj(s¢|si—1) denotes the transition model of thigh sound generator when in state The

derivation for filtering follows the same lines as the onset/offset detection model, with only slightly more
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tedious indexing. Suppose we have the filtering density available atttimeas«;_ 1. We first calculate
the predictive potential. Summation over > yields the row sums
é-t(i’{) — Z at(”:jl‘)v(rlvj,)
,r,/7j/
Integration overs;_; and multiplication byp(z|z;—1) yields the predictive potentiat,,_,. The compo-
(r:g)(r"3")

nents are given a@t‘t_l =

A/M)prpa(s) 277 r=1A1 =2 a7)
[j = 7] X ppyrp" D) otherwise

where we define

70 = ()

PN = / Fri(silse)g” )

t

The potentialsyy can be computed by applying the standard Kalman prediction equations to each
component of¢é. Note that the forward messages have the same sparsity structure as the prior, i.e.
ag’;{)(w’j’) # 0 whenp(ry = r,j: = jlr—1 = ', j: = j') is nonzero. The updated potential is given by

o = p(ye|se)ay—1- This quantity can be computed by applying standard Kalman update equations to

each nonzero component afj;_;.

D. Monophonic pitch tracking with varying fundamental frequency

We model pitch drift by a sequence of transition models. We choose a grid such;that,; = Q,

where Q is close to one. Unfortunately, the subdiagonal terms introduced to the prior transition matrix

p(ze = (1,7¢)|ze-1 = (1, §i—1))

(do+dy) d—y
dy do d_;
P11 X dp . . (18)
do d_q
di (do+d-1)

render an exact algorithm exponentiatifThe recursive update equations, starting with,, are obtained

by summing ovee,_», integration over;_; and multiplication byp(z;|z;—1). The only difference is that
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the prediction equation (17) needs to be changediﬁ@l(””j’) -

d(j — §') X prpp" P e — 1A =1
(1 M)ppm(s) 207 r=1nr =2
[ = 3 % prap™ ) r=2

where and Z are defined in (18). The reason for the exponential growth is the following: Remember

ag“{)’(’""j')- Unlike

14
5 -

that eachy("7)(":3) has as many components as an entire row suﬁﬁﬁ:}f =y
the inference for piecewise constant pitch estimation, now at some rows there are two or more messages

(e.g.aiﬁt’f)l(l’j) and aillt’f)l(l’jﬂ)) that depend onp.

APPENDIXII

COMPUTATIONAL SIMPLIFICATIONS
A. Pruning

Exponential growth in message size renders an algorithm useless in practice. Even in special cases,
where the message size increases only polynomiall{,irthis growth is still prohibitive for many
applications. A cheaper approximate algorithm can be obtained by pruning the messages. To keep the
size of messages bounded, we limit the number of componenié émd store only components with
the highest evidence. An alternative is discarding components of a message that contribute less than a
given fraction (e.g0.0001) to the total evidence. More sophisticated pruning methods with profound
theoretical justification, such as resampling [22] or collapsation [43], are viable alternatives but these
are computationally more expensive. In our simulations, we observe that using a simple pruning method
with the maximum number of components per message sEt+0100, we can obtain results very close

to an exact algorithm.

B. Kalman filtering in a reduced dimension

Kalman filtering with a large state dimensits} at typical audio sampling rates; ~ 40 kHz may be
prohibitive with generic hardware. This problem becomes more severe when the number af/histes
large, (which is typically around0 — 60), than even conditioned on a particular configuratign,, the
calculation of the filtering density is expensive. Hence, in an implementation, tricks of precomputing the
covariance matrices can be considered [41] to further reduce the computational burden.

Another important simplification is less obvious from the graphical structure and is a consequence of

the inherent asymmetry between the sound and mute states. Typically, when a note switches and stays
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for a short period in the mute state, g, = mute for some period, the marginal posterior over the state
vectors;; will converge quickly to a zero mean Gaussian with a small covariance matrardlessof
observationg. We exploit this property to save computations by clamping the hidden states for sequences
of s, to zero forr; ., = “mute”. This reduces the hidden state dimension, since typically, only a few

sound generators will be in sound state.
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