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Abstract

In this paper we present a graphical model for polyphonic music transcription. Our model, formulated

as a Dynamical Bayesian Network, embodies a transparent and computationally tractable approach to

this acoustic analysis problem. An advantage of our approach is that it places emphasis on explicitly

modelling the sound generation procedure. It provides a clear framework in which both high level

(cognitive) prior information on music structure can be coupled with low level (acoustic physical)

information in a principled manner to perform the analysis. The model is a special case of the, generally

intractable, switching Kalman filter model. Where possible, we derive, exact polynomial time inference

procedures, and otherwise efficient approximations. We argue that our generative model based approach

is computationally feasible for many music applications and is readily extensible to more general auditory

scene analysis scenarios.

Index Terms

music transcription, polyphonic pitch tracking, Bayesian signal processing, switching Kalman filters

I. I NTRODUCTION

When humans listen to sound, they are able to associate acoustical signals generated by different

mechanisms with individual symbolic events [1]. The study and computational modelling of this human

ability forms the focus of computational auditory scene analysis (CASA) and machine listening [2].
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Research in this area seeks solutions to a broad range of problems such as the cocktail party problem,

(for example automatically separating voices of two or more simultaneously speaking persons, see e.g.

[3], [4]), identification of environmental sound objects [5] and musical scene analysis [6]. Traditionally,

the focus of most research activities has been in speech applications. Recently, analysis of musical scenes

is drawing increasingly more attention, primarily because of the need for content based retrieval in very

large digital audio databases [7] and increasing interest in interactive music performance systems [8].

A. Music Transcription

One of the hard problems in musical scene analysis is automatic music transcription, that is, the

extraction of a human readable and interpretable description from a recording of a music performance.

Ultimately, we wish to infer automatically a musical notation (such as the traditional western music

notation) listing the pitch levels of notes and corresponding time-stamps for a given performance. Such a

representation of the surface structure of music would be very useful in a broad spectrum of applications

such as interactive music performance systems, music information retrieval (Music-IR) and content

description of musical material in large audio databases, as well as in the analysis of performances.

In its most unconstrained form, i.e., when operating on an arbitrary polyphonic acoustical input possibly

containing an unknown number of different instruments, automatic music transcription remains a great

challenge. Our aim in this paper is to consider a computational framework to move us closer to a practical

solution of this problem.

Music transcription has attracted significant research effort in the past – see [6] for a detailed review of

early work. In speech processing, the related task of tracking the pitch of a single speaker is a fundamental

problem and methods proposed in the literature are well studied[9]. However, most current pitch detection

algorithms are based largely on heuristics (e.g., picking high energy peaks of a spectrogram, correlogram,

auditory filter bank, etc.) and their formulation usually lacks an explicit objective function or signal model.

It is often difficult to theoretically justify the merits and shortcomings of such algorithms, and compare

them objectively to alternatives or extend them to more complex scenarios.

Pitch tracking is inherently related to the detection and estimation of sinusoidals. The estimation and

tracking of single or multiple sinusoidals is a fundamental problem in many branches of applied sciences,

so it is less surprising that the topic has also been deeply investigated in statistics, (e.g. see [10]).

However, ideas from statistics seem to be not widely applied in the context of musical sound analysis,

with only a few exceptions [11], [12] who present frequentist techniques for very detailed analysis

of musical sounds with particular focus on decomposition of periodic and transient components. [13]
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has presented real-time monophonic pitch tracking application based on a Laplace approximation to the

posterior parameter distribution of an AR(2) model [14], [10, page 19]. Their method outperforms several

standard pitch tracking algorithms for speech, suggesting potential practical benefits of an approximate

Bayesian treatment. For monophonic speech, a Kalman filter based pitch tracker is proposed by [15] that

tracks parameters of a harmonic plus noise model (HNM). They propose the use of Laplace approximation

around the predicted mean instead of the extended Kalman filter (EKF). For both methods, however, it

is not obvious how to extend them to polyphony.

Kashino [16] is, to our knowledge, the first author to apply graphical models explicitly to the problem

of polyphonic music transcription. Sterian [17] described a system that viewed transcription as a model

driven segmentation of a time-frequency image. Walmsley [18] treats transcription and source separation

in a full Bayesian framework. He employs a frame based generalized linear model (a sinusoidal model)

and proposes inference by reversible-jump Markov Chain Monte Carlo (MCMC) algorithm. The main

advantage of the model is that it makes no strong assumptions about the signal generation mechanism,

and views the number of sources as well as the number of harmonics as unknown model parameters.

Davy and Godsill [19] address some of the shortcomings of his model and allow changing amplitudes

and frequency deviations. The reported results are encouraging, although the method is computationally

very expensive.

B. Approach

Musical signals have a very rich temporal structure, both on a physical (signal) and a cognitive

(symbolic) level. From a statistical modelling point of view, such a hierarchical structure induces very

long range correlations that are difficult to capture with conventional signal models. Moreover, in many

music applications, such as transcription or score following, we are usually interested in a symbolic

representation (such as a score) and not so much in the “details” of the actual waveform. To abstract

away from the signal details, we define a set of intermediate variables (a sequence of indicators), somewhat

analogous to a “piano-roll” representation. This intermediate layer forms the “interface” between a

symbolic process and the actual signal process. Roughly, the symbolic process describes how a piece is

composed and performed. We view this process as a prior distribution on the piano-roll. Conditioned on

the piano-roll, the signal process describes how the actual waveform is synthesized.

Most authors view automated music transcription as an “audio to piano-roll” conversion and usually

consider “piano-roll to score” a separate problem. This view is partially justified, since source separation

and transcription from a polyphonic source is already a challenging task. On the other hand, automated
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generation of a human readable score includes nontrivial tasks such as tempo tracking, rhythm quantiza-

tion, meter and key induction [20], [21], [22]. As also noted by other authors (e.g. [16], [23], [24]), we

believe that a model that integrates this higher level symbolic prior knowledge can guide and potentially

improve the inferences, both in terms quality of a solution and computation time.

There are many different natural generative models for piano-rolls. In [25], we proposed a realistic

hierarchical prior model. In this paper, we consider computationally simpler prior models and focus more

on developing efficient inference techniques of a piano-roll representation. The organization of the paper is

as follows: We will first present a generative model, inspired by additive synthesis, that describes the signal

generation procedure. In the sequel, we will formulate two subproblems related to music transcription:

melody identification and chord identification. We will show that both problems can be easily formulated

as combinatorial optimization problems in the framework of our model, merely by redefining the prior on

piano-rolls. Under our model assumptions, melody identification can be solved exactly in polynomial time

(in the number of samples). By deterministic pruning, we obtain a practical approximation that works

in linear time. Chord identification suffers from combinatorial explosion. For this case, we propose a

greedy search algorithm based on iterative improvement. Consequently, we combine both algorithms for

polyphonic music transcription. Finally, we demonstrate how (hyper-)parameters of the signal process

can be estimated from real data.

II. POLYPHONIC MODEL

In a statistical sense, music transcription, (as many other perceptual tasks such as visual object

recognition or robot localization) can be viewed as a latent state estimation problem: given the audio

signal, we wish to identify the sequence of events (e.g. notes) that gave rise to the observed audio signal.

This problem can be conveniently described in a Bayesian framework: given the audio samples, we

wish to infer a piano-roll that represents the onset times (e.g. times at which a ‘string’ is ‘plucked’), note

durations and the pitch classes of individual notes. We assume that we have one microphone, so that at

each timet we have a one dimensional observed quantityyt. Multiple microphones (such as required for

processing stereo recordings) would be straightforward to include in our model. We denote the temporal

sequence of audio samples{y1, y2, . . . , yt, . . . , yT } by the shorthand notationy1:T . A constant sampling

frequencyFs is assumed.

Our approach considers the quantities we wish to infer as a collection of ‘hidden’ variables, whilst

acoustic recording valuesy1:T are ‘visible’ (observed). For each observed sampleyt, we wish to associate

a higher, unobserved quantity that labels the sampleyt appropriately. Let us denote the unobserved
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quantities byH1:T where eachHt is a vector. Our hidden variables will contain, in addition to a piano-

roll, other variables required to complete the sound generation procedure. We will elucidate their meaning

later. As a general inference problem, the posterior distribution is given by Bayes’ rule

p(H1:T |y1:T ) ∝ p(y1:T |H1:T )p(H1:T ) (1)

The likelihood termp(y1:T |H1:T ) in (1) requires us to specify a generative process that gives rise to

the observed audio samples. The prior termp(H1:T ) reflects our knowledge about piano-rolls and other

hidden variables. Our modelling task is therefore to specify both how, knowing the hidden variable states

(essentially the piano-roll), the microphone samples will be generated, and also to state a prior on likely

piano-rolls. Initially, we concentrate on the sound generation process of a single note.

A. Modelling a single note

Musical instruments tend to create oscillations with modes that are roughly related by integer ratios,

albeit with strong damping effects and transient attack characteristics [26]. It is common to model such

signals as the sum of a periodic component and a transient non-periodic component (See e.g. [27], [28],

[12]). The sinusoidal model [29] is often a good approximation that provides a compact representation

for the periodic component. The transient component can be modelled as a correlated Gaussian noise

process [15], [19]. Our signal model is also in the same spirit, but we will define it in state space form,

because this provides a natural way to couple the signal model with the piano-roll representation. Here

we omit the transient component and focus on the periodic component. It is conceptually straightforward

to include the transient component as this does not effect the complexity of our inference algorithms.

First we consider how to generate a damped sinusoidyt through time, with angular frequencyω.

Consider a Gaussian process where typical realizationsy1:T are damped “noisy” sinusoidals with angular

frequencyω:

st ∼ N (ρtB(ω)st−1, Q) (2)

yt ∼ N (Cst, R) (3)

s0 ∼ N (0, S) (4)

We useN (µ,Σ) to denote a multivariate Gaussian distribution with meanµ and covarianceΣ. Here

B(ω) =
(

cos(ω) − sin(ω)

sin(ω) cos(ω)

)
is a Givens rotation matrix that rotates two dimensional vectorst by ω

degrees counterclockwise.C is a projection matrix defined asC = [1, 0]. The phase and amplitude

characteristics ofyt are determined by the initial conditions0 drawn from a prior with covarianceS. The
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Fig. 1. A damped oscillator in state space form. Left: At each time step, the state vectors rotates byω and its length becomes

shorter. Right: The actual waveform is a one dimensional projection from the two dimensional state vector. The stochastic

model assumes that there are two independent additive noise components that corrupt the state vectors and the sampley, so

the resulting waveformy1:T is a damped sinusoid with both phase and amplitude noise.

damping factor0 ≤ ρt ≤ 1 specifies the rate at whichst contracts to0. See Figure 1 for an example.

The transition noise varianceQ is used to model deviations from an entirely deterministic linear model.

The observation noise varianceR models background noise.

In reality, musical instruments (with a definite pitch) have several modes of oscillation that are roughly

located at integer multiples of the fundamental frequencyω. We can model such signals by a bank of

oscillators giving a block diagonal transition matrixAt = A(ω, ρt) defined as



ρ
(1)
t B(ω) 0 . . . 0

0 ρ
(2)
t B(2ω)

...
...

... 0

0 . . . 0 ρ
(H)
t B(Hω)




(5)

where H denotes the number ofharmonics, assumed to be known. To reduce the number of free

parameters we define each harmonic damping factorρ(h) in terms of a basicρ. A possible choice is

to takeρ
(h)
t = ρh

t , motivated by the fact that damping factors of harmonics in a vibrating string scale

approximately geometrically with respect to that of the fundamental frequency, i.e. higher harmonics

decay faster [30].A(ω, ρt) is the transition matrix at timet and encodes the physical properties of the

sound generator as a first order Markov Process. The rotation angleω can be made time dependent for

modelling pitch drifts or vibrato. However, in this paper we will restrict ourselves to sound generators

that produce sounds with (almost) constant frequency. The state of the sound generator is represented by

st, a 2H dimensional vector that is obtained by concatenation of all the oscillator states in (2).

B. From Piano-Roll to Microphone

A piano-roll is a collection of indicator variablesrj,t, wherej = 1 . . . M runs over sound generators

(i.e. notes or “keys” of a piano) andt = 1 . . . T runs over time. Each sound generator has a unique

fundamental frequencyωj associated with it. For example, we can chooseωj such that we cover all
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notes of the tempered chromatic scale in a certain frequency range. This choice is arbitrary and for a

finer pitch analysis a denser grid with smaller intervals between adjacent notes can be used.

Each indicator is binary, with values “sound” or “mute”. The essential idea is that, if previously muted,

rj,t−1 = “mute” an onset for the sound generatorj occurs ifrj,t = “sound”. The generator continues to

sound (with a characteristic damping decay) until it is again set to “mute”, when the generated signal

decays to zero amplitude (much) faster. The piano-roll, being a collection of indicatorsr1:M,1:T , can be

viewed as a binary sequence, e.g. see Figure 2. Each row of the piano-rollrj,1:T controls an underlying

sound generator.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 2. Piano-roll. The vertical axis corresponds to the sound generator indexj and the horizontal axis corresponds to time index

t. Black and white pixels correspond to “sound” and “mute” respectively. The piano-roll can be viewed as a binary sequence

that controls an underlying signal process. Each row of the piano-rollrj,1:T controls a sound generator. Each generator is a

Gaussian process (a Kalman filter model), where typical realizations are damped periodic waveforms of a constant fundamental

frequency. As in a piano, the fundamental frequency is a function of the generator indexj. The actual observed signaly1:T is

a superposition of the outputs of all generators.

The piano-roll determines the both sound onset generation, and the damping of the note. We consider

first the damping effects.

1) Piano-Roll : Damping: Thanks to our simple geometrically related damping factors for each

harmonic, we can characterise the damping factor for each notej = 1, . . . ,M by two decay coefficients

ρsound andρmute such that1 ≥ ρsound> ρmute > 0. The piano-rollrj,1:T controls the damping coefficient

ρj,t of note j at time t by:

ρj,t = ρsound[rj,t = sound] + ρmute[rj,t = mute] (6)

Here, and elsewhere in the article, the notation[x = text] has value equal to 1 when variablex is in state

text, and is zero otherwise. We denote the transition matrix asAmute
j ≡ A(ωj , ρmute); similarly for Asound

j .
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M

rj,1 rj,2 . . . rj,t

sj,1 sj,2 . . . sj,t

yj,1 yj,2 . . . yj,t

y1 y2 . . . yt

Fig. 3. Graphical Model. The rectangle box denotes “plates”,M replications of the nodes inside. Each plate,j = 1, . . . , M

represents the sound generator (note) variables through time.

2) Piano-Roll : Onsets:At each new onset, i.e. when(rj,t−1 = mute) → (rj,t = sound), the old

statest−1 is “forgotten” and a new state vector is drawn from a Gaussian prior distributionN (0, S).

This models the energy injected into a sound generator at an onset (this happens, for example, when

a guitar string is plucked). The amount of energy injected is proportional to the determinant ofS and

the covariance structure ofS describes how this total energy is distributed among the harmonics. The

covariance matrixS thus captures some of the timbre characteristics of the sound. The transition and

observation equations are given by

isonsetj,t = (rj,t−1 = mute∧ rj,t = sound) (7)

Aj,t = [rj,t = mute]Amute
j + [rj,t = sound]Asound

j (8)

sj,t ∼ [¬isonsetj,,t]N (Aj,tst−1, Q) + [isonsetj,t]N (0, S) (9)

yj,t ∼ N (Csj,t, R) (10)

In the above,C is a 1 × 2H projection matrixC = [1, 0, 1, 0, . . . , 1, 0] with zero entries on the even

components. Henceyj,t has a mean being the sum of the damped harmonic oscillators.R models the

variance of the noise in the output of each sound generator. Finally, the observed audio signal is the

superposition of the outputs of all sound generators,

yt =
∑

j

yj,t (11)

The generative model (6)-(11) can be described qualitatively by the graphical model in Figure 3.

Equations (10) and (11) definep(y1:T |s1:M,1:T ). Equations (6) (8) and (9) relater and s and define

p(s1:M,1:T |r1:M,1:T ). In this paper, the prior modelp(r1:M,1:T ) is Markovian and will be defined in the

following sections.
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C. Inference

Given the polyphonic model described in section II, to infer the most likely piano-roll we need to

compute

r∗1:M,1:T = argmax
r1:M,1:T

p(r1:M,1:T |y1:T ) (12)

where the posterior is given by

p(r1:M,1:T |y1:T ) =
1

p(y1:T )

∫

s1:M,1:T

p(y1:T |s1:M,1:T )

×p(s1:M,1:T |r1:M,1:T )p(r1:M,1:T )

The normalization constant,p(y1:T ), obtained by summing the integral term over all configurations

r1:M,1:T is called the evidence.1

Unfortunately, calculating this most likely piano-roll configuration is generally intractable, and is

related to the difficulty of inference in Switching Kalman Filters [31], [32]. We shall need to develop

approximation schemes for this general case, to which we shall return in a later section.

As a prelude, we consider a slightly simpler, related model which aims to track the pitch (melody

identification) in a monophonic instrument (playing only a single note at a time), such as a flute. The

insight gained here in the inference task will guide us to a practical approximate algorithm in the more

general case later.

III. M ONOPHONICMODEL

Melody identification, or monophonic pitch tracking with onset and offset detection, can be formulated

by a small modification of our general framework. Even this simplified task is still of huge practical

interest, e.g. in real time MIDI conversion for controlling digital synthesizers using acoustical instruments

or pitch tracking from the singing voice in a “karaoke” application. One important problem in real time

1It is instructive to interpret (12) from a Bayesian model selection perspective [33]. In this interpretation, we view the set

of all piano-rolls, indexed by configurations of discrete indicator variablesr1:M,1:T , as the set of all models among which we

search for the best modelr∗1:M,1:T . In this view, state vectorss1:M,1:T are the model parameters that are integrated over. It

is well known that the conditional predictive densityp(y|r), obtained through integration overs, automatically penalizes more

complex models, when evaluated aty = y1:T . In the context of piano-roll inference, this objective will automatically prefer

solutions with less notes. Intuitively, this is simply because at each note onset, the state vectorst is reinitialized using a broad

GaussianN (0, S). Consequently, a configurationr with more onsets will give rise to a conditional predictive distributionp(y|r)
with a larger covariance. Hence, a piano-roll that claims the existence of additional onsets without support from data will get a

lower likelihood.
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pitch tracking is the time/frequency tradeoff: to estimate the frequency accurately, an algorithm needs

to collect statistics from a sufficiently long interval. However, this often conflicts with the real time

requirements.

In our formulation, each sound generator is a dynamical system with a sequence of transition models,

sound and mute. The states evolves first according to the sounding regime with transition matrixAsound

and then according to the muted regime withAmute. The important difference from a general switching

Kalman filter is that when the indicatorr switches from mute to sound, the old state vector is “forgotten”.

By exploiting this fact, in the appendix I-A we derive, for a single sound generator (i.e. a single note

of a fixed pitch that gets on and off), an exact polynomial time algorithm for calculating the evidence

p(y1:T ) and MAP configurationr∗1:T .

1) Monophonic pitch tracking:Here we assume that at any given timet only a single sound generator

can be sounding, i.e.rj,t = sound⇒ rj′,t = mute forj′ 6= j. Hence, for practical purposes, the factorial

structure of our original model is redundant; i.e. we can “share” a single state vectors among all sound

generators2. The resulting model will have the same graphical structure as a single sound generator but

with an indicatorjt ∈ 1 . . . M which indexes the active sound generator, andrt ∈ {sound, mute} indicates

sound or mute. Inference for this case turns out to be also tractable (i.e. polynomial). We allow switching

to a newj′ only after an onset. The full generative model using the pairs(jt, rt), which includes both

likelihood and prior terms is given as

rt ∼ p(rt|rt−1)

isonsett = (rt = sound∧ rt−1 = mute)

jt ∼ [¬isonsett]δ(jt; jt−1) + [isonsett]u(jt)

At = [rt = mute]Amute
jt

+ [rt = sound]Asound
jt

st ∼ [¬isonsett]N (Atst−1, Q) + [isonsett]N (0, S)

yt ∼ N (Cst, R)

Hereu(j) denotes a uniform distribution on1, . . . , M andδ(jt; jt−1) denotes a degenerate (deterministic)

distribution concentrated onjt, i.e. unless there is an onset the active sound generator stays the same.

Our choice of a uniformu(j) simply reflects the fact that any new note is as likely as any other. Clearly,

more informative priors, e.g. that reflect knowledge about tonality, can also be proposed.

2We ignore the cases when two or more generators are simultaneously in the mute state.
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r0 r1 . . . rT

j0 j1 . . . jT

s0 s1
. . . sT

y1 . . . yT

Fig. 4. Simplified Model for monophonic transcription. Since there is only a single sound generator active at any given time,

we can represent a piano-roll at each time slice by the tuple(jt, rt) wherejt is the index of the active sound generator and

rt ∈ {sound, mute} indicates the state.

100 200 300 400 500 600 700 800 900 1000

100 200 300 400 500 600 700 800 900 1000

Fig. 5. Monophonic pitch tracking. (Top) Synthetic data sampled from model in Figure 4. Vertical bars denote the onset and

offset times. (Bottom) The filtering densityp(rt, jt|y1:t).

The graphical model is shown in Figure 4. The derivation of the polynomial time inference algorithm

is given in appendix I-C. Technically, it is a simple extension of the single note algorithm derived in

appendix I-A.

In Figure 5, we illustrate the results on synthetic data sampled from the model where we show the

filtering densityp(rt, jt|y1:t). After an onset, the posterior becomes quickly crisp, long before we observe

a complete cycle. This feature is especially attractive for real time applications where a reliable pitch

estimate has to be obtained as early as possible.

2) Extension to vibrato and legato:The monophonic model has been constructed such that the rotation

angle ω remains constant. Although the the transition noise with varianceQ still allows for small

and independent deviations in frequencies of the harmonics, the model is not realistic for situations

with systematic pitch drift or fluctuation, e.g. as is the case with vibrato. Moreover, on many musical

instruments, it is possible to playlegato, that is without an explicit onset between note boundaries. In

our framework, pitch drift and legato can be modelled as a sequence of transition models. Consider the
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50 100 150 200 250 300 350 400 450 500

Fig. 6. Tracking varying pitch. Top and middle panel show the true piano-roll and the sampled signal. The estimated piano-roll

is shown below.

generative process for the note indexj:

rt ∼ p(rt|rt−1)

isonsett = (rt = sound∧ rt−1 = mute)

issoundt = (rt = sound∧ rt−1 = sound)

jt ∼ [issoundt]d(jt|jt−1) +

[rt = mute]δ(jt; jt−1) + [isonsett]u(jt)

Here,d(jt|jt−1) is a multinomial distribution reflecting our prior belief how likely is it to switch between

notes. Whenrt = mute, there is no regime change, reflected by the deterministic distributionδ(jt; jt−1)

peaked aroundjt−1. Remember that neighbouring notes have also close fundamental frequencyω. To

simulate pitch drift, we can choose a fine grid such thatωj/ωj+1 = Q. Here,Q < 1 is the quality factor,

a measure of the desired frequency precision not to be confused with the transition noiseQ. In this case,

we can simply defined(jt|jt−1) as a multinomial distribution with support on[jt−1 − 1, jt−1, jt−1 + 1]

with cell probabilities[d−1 d0 d1]. We can take a larger support ford(jt|jt−1), but in practice we would

rather reduce the frequency precisionQ to avoid additional computational cost.

Unfortunately, the terms included by the drift mechanism render an exact inference procedure in-

tractable. We derive the details of the resulting algorithm in the appendix I-D. A simple deterministic

pruning method is described in appendix II-A. In Figure 6, we show the estimated MAP trajectoryr∗1:T

for drifting pitch. We use a model where the quality factor isQ = 2−120, (120 generators per octave)

with drift probability d−1 = d1 = 0.1. A fine pitch contour, that is accurate to sample precision, can be

estimated.
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IV. POLYPHONIC INFERENCE

In this section we return to the central goal of inference in the general polyphonic model described

in section II. To infer the most likely piano-roll we need to computeargmax
r1:M,1:T

p(r1:M,1:T |y1:T ) defined in

(12). Unfortunately, the calculation of (12) is intractable. Indeed, even the calculation of the Gaussian

integral conditioned on a particular configurationr1:M,1:T using standard Kalman filtering equations is

prohibitive since the dimension of the state vector is|s| = 2H×M , whereH is the number of harmonics.

For a realistic application we may haveM ≈ 50 and H ≈ 10. It is clear that unless we are able to

develop efficient approximation techniques, the model will be only of theoretical interest.

A. Vertical Problem: Chord identification

Chord identification is the simplest polyphonic transcription task. Here we assume that a given audio

signaly1:T is generated by a piano-roll whererj,t = rj for all3 j = 1 . . .M . The task is to find the MAP

configuration

r∗1:M = argmax
r1:M

p(y1:T , r1:M )

Each configuration corresponds to a chord. The two extreme cases are “silence” and “cacophony” that

correspond to configurationsr1:M [mute mute . . . mute] and [sound sound. . . sound] respectively.

The size of the search space in this case2M , which is prohibitive for direct computation.

A simple approximation is based on greedy search: we start iterative improvement from an initial

configurationr
(0)
1:M (silence, or randomly drawn from the prior). At each iterationi, we evaluate the

probabilityp(y1:T , r1:M ) of all neighbouring configurations ofr(i−1)
1:M . We denote this set byneigh(r(i−1)

1:M ).

A configurationr′ ∈ neigh(r), if r′ can be reached fromr within a single flip (i.e., we add or remove

single notes). Ifr(i−1)
1:M has a higher probability than all its neighbours, the algorithm terminates, having

found a local maximum. Otherwise, we pick the neighbour with the highest probability and set

r
(i)
1:M = argmax

r1:M∈neigh(r
(i−1)
1:M )

p(y1:T , r1:M )

and iterate until convergence. We illustrate the algorithm on a signal sampled from the generative model,

see Figure 7. This procedure is guaranteed to converge to a (possibly local) maxima. Nevertheless, we

observe that for many examples this procedure is able to identify the correct chord. Using multiple

restarts from different initial configurations will improve the quality of the solution at the expense of

computational cost.

3We will assume that initially we start from silence whererj,0 = mute for all j = 1 . . . M
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iteration r1 rM log p(y1:T , r1:M )

1 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ −1220638254

2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ −665073975

3 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • −311983860

4 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • −162334351

5 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • −43419569

6 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −1633593

7 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −14336

8 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −5766

9 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −5210

10 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −4664

True ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −4664

Fig. 7. We have first drawn a random piano-roll configuration (a random chord)r1:M . Given r1:M , we generate a signal of

length400 samples with a sampling frequencyFs = 4000 from p(y1:T |r1:M ). We assume 24 notes (2 octaves). The synthesized

signal from the generative model and its discrete time Fourier transform modulus are shown above. The true chord configuration

and the associated log probability is at the bottom of the table. For the iterative algorithm, the initial configuration in this

example was silence. At this point we compute the probability for each single note configurations (all one flip neighbours of

silence). The first note that is added is actually not present in the chord. Until iteration9, all iterations add extra notes. Iteration

9 and 10 turn out to be removing the extra notes and iterations converge to the true chord. The intermediate configurations

visited by the algorithm are shown in the table below. Here, sound and mute states are represented by•’s and◦’s.

One of the advantages of our generative model based approach is that we can in principle infer a chord

given any subset of data. For example, we can simply downsampley1:T (without any preprocessing) by

an integer factor ofD and view the discarded samples simply as missing values. Of course, whenD

is large, i.e. when we throw away many samples, due to aliasing, higher harmonics will overlap with

harmonics in the lower frequency band which will cause a more diffuse posterior on the piano-roll,

eventually degrading performance.

In Figure 8, we show the results of such an experiment. We have downsampledy1:T with factorD = 2, 3

and 4. The energy spectrum is quite coarse due to the short length of the data. Consequently many

harmonics are not resolved, e.g. we can not identify the underlying line spectrum by visual inspection.

Methods based on template matching or identification of peaks may have serious problems for such

examples. On the other hand, our model driven approach is able to identify the true chord. We note that,

the presented results are illustrative only and the actual behaviour of the algorithm (sensitivity toD,
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D p(y1:D:T , r1:M ) Init

2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −2685 True

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ • ◦ • ◦ • ◦ • −3179 Silence

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −2685 Random

3 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −2057 True

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −2057 Silence

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ • • • • ◦ ◦ • −2616 Random

4 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ • −1605 True

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • • ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ −1668 Silence

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ −1591 Random

Fig. 8. Iterative improvement results when data are subsampled by a factor ofD = 2, 3 and4, respectively. For each factor

D, the top line shows the true configuration and the corresponding probability. The second line is the solution found by starting

from silence and the third line is starting from a random configuration drawn form the prior (best of3 independent runs).

importance of starting configuration) will depend on the details of the signal model.

B. Piano-Roll inference Problem: Joint Chord and Melody identification

The piano-roll estimation problem can be viewed as an extension of chord identification in that we

also detect onsets and offsets for each note within the analysis frame. A practical approach is to analyze

the signal in sufficiently short time windows and assume that for each note, at most one changepoint can

occur within the window.

Consider data in a short window, sayy1:W . We start iterative improvement from a configuration

r
(0)
1:M,1:W , where each time slicer(0)

1:M,t for t = 1 . . .W is equal to a “chord”r1:M,0. The chordr1:M,0

can be silence or, during a frame by frame analysis, the last time slice of the best configuration found

in the previous analysis window. Let the configuration ati − 1’th iteration be denoted asr(i−1)
1:M,1:W . At

each new iterationi, we evaluate the posterior probabilityp(y1,W , r1:M,1:W ), wherer1:M,1:W runs over

all neighbouring configuration ofr(i−1)
1:M,1:W . Each memberr1:M,1:W of the neighbourhood is generated as

follows: For eachj = 1 . . . M , we clamp all the other rows, i.e. we setrj′,1:W = r
(i−1)
j′,1:W for j′ 6= j.

For each time stept = 1 . . .W , we generate a new configuration such that the switches up to timet

are equal to the initial switchrj,0, and its opposite¬rj,0 after t, i.e. rj,t′rj,0[t′ < t] + ¬rj,0[t′ ≥ t]. This

is equivalent to saying that a sounding note may get muted, or a muted note may start to sound. The

computational advantage of allowing only one changepoint at each row is that the probability of all

neighbouring configurations for a fixedj can be computed by a single backward, forward pass [22], [32].

Finally, we pick the neighbour with the maximum probability. The algorithm is illustrated in Figure 9.
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The analysis for the whole sequence proceeds as follows: Consider two successive analysis windows

Yprev ≡ y1:W and Y ≡ yW+1:2W . Suppose we have obtained a solutionR∗
prev ≡ r∗1:M,1:W obtained by

iterative improvement. Conditioned onR∗
prev, we compute the posteriorp(s1:M,W |Yprev, R

∗
prev) by Kalman

filtering. This density is the prior ofs for the current analysis windowY . The search starts from a chord

equal to the last time slice ofR∗
prev. In Fig. 10 we show an illustrative result obtained by this algorithm

on synthetic data. In similar experiments with synthetic data, we are often able to identify the correct

piano-roll.

This simple greedy search procedure is somewhat sensitive to location of onsets within the analysis

window. Especially, when an onset occurs near the end of an analysis window, it may be associated with

an incorrect pitch. The correct pitch is often identified in the next analysis window, when a longer portion

of the signal is observed. However, since the basic algorithm does not allow for correcting the previous

estimate by retrospection, this introduces some artifacts. A possible method to overcome this problem is

to use a fixed lag smoothing approach, where we simply carry out the analysis on overlapping windows.

For example, for an analysis windowYprev≡ y1:W , we findr∗1:M,1:W . The next analysis window is taken

asyL+1:W+L whereL ≤ W . We find the priorp(s1:M,L|y1:L, r∗1:M,1:L) by Kalman filtering. On the other

hand, obviously, the algorithm becomes slower by a factor ofL/W .

An optimal choice forL andW will depend upon many factors such as signal characteristics, sampling

frequency, downsampling factorD, onset/offset positions, number of active sound generators at a given

time as well as the amount of CPU time available. In practice, these values may be critical and they

need to be determined by trial and error. On the other hand, it is important to note thatL and W just

determine how the approximation is made but not enter the underlying model.

V. L EARNING

In the previous sections, we assumed that the correct signal model parametersθ = (S, ρ, Q, R)

were known. These include in particular the damping coefficientsρsound, ρmute, transition noise variance

Q, observation noiseR and the initial prior covariance matrixS after an onset. In practice, for an

instrument class (e.g. plucked string instruments) a reasonable range forθ can be specified a-priori. We

may safely assume thatθ will be static (not time dependent) during a given performance. However,

exact values for these quantities will vary among different instruments (e.g. old and new strings) and

recording/performance conditions.

One of the well-known advantages of Bayesian inference is that, when uncertainty about parameters

is incorporated in a model, this leads in a natural way to the formulation of a learning algorithm. The

January 19, 2004 DRAFT



17

0 10 20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

 0  π/4 π/2 3π/4
0

50

100

150

200

(a)

1 −63276.7

2 −15831.1

3 −1848.5

4 19

5 57.2

6 90.3

7 130.5

True

(b)

Fig. 9. Iterative improvement with changepoint detection. The true piano-roll, the signal and its Fourier transform magnitude

are shown in Figure 9.(a). In Figure 9.(b), configurationsr(i) visited during iterative improvement steps. Iteration numbersi

are shown left and the corresponding probability is shown on the right. The initial configuration (i.e. “chord”)r1:M,0 is set to

silence. At the first step, the algorithm searches all single note configurations with a single onset. The winning configuration is

shown on top panel of Figure 9.(b). At the next iteration, we clamp the configuration for this note and search in a subset of two

note configurations. This procedure adds and removes notes from the piano-roll and converges to a local maxima. Typically, the

convergence is quite fast and the procedure is able to identify the true chord without making a “detour” as in (b).

piano-roll estimation problem, omitting the time indices, can be stated as follows:

r∗ = argmax
r

∫

θ

∫

s
p(y|s, θ)p(s|r, θ)p(θ)p(r) (13)

Unfortunately, the integration onθ can not be calculated analytically and approximation methods

must be used [34]. A crude but computationally cheap approximation replaces the integration onθ with

maximization:

r∗ = argmax
r

max
θ

∫

s
p(y|s, θ)p(s|r, θ)p(θ)p(r)

This leads to the following greedy coordinate ascent algorithm where the steps are iterated until

convergence

r(i) = argmax
r

∫

s
p(y|s, θ(i−1))p(s|r, θ(i−1))p(θ(i−1))p(r)

θ(i) = argmax
θ

∫

s
p(y|s, θ)p(s|r(i), θ)p(θ)p(r(i))

For a single note, conditioned onθ(i−1), r(i) can be calculated exactly, using the message propagation

algorithm derived in appendix I-B. Conditioned onr(i), calculation ofθ(i) becomes equivalent to parameter
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Fig. 10. A typical example for Polyphonic piano-roll inference from synthetic data. We generate a realistic piano-roll (top) and

render a signal using the polyphonic model (middle). Given only the signal, we estimate the piano-roll by iterative improvement

in successive windows (bottom). In this example, only the offset time of the lowest note is not estimated correctly. This is a

consequence that, for long notes, the state vectors converges to zero before the generator switches to the mute state.

estimation in a linear dynamical systems, which can be achieved by an expectation maximization (EM)

algorithm [32], [35]. In practice, we observe that for realistic starting conditionsθ(0), ther(i) are identical,

suggesting thatr∗ is not very sensitive to variations inθ near to a local optimum.

In Figure 11, we show the results of training the signal model based on a single note (a C from the

low register) of an electric bass. We use this model to transcribe a polyphonic segment performed on

the same instrument, see Figure 12. Ideally, one could train different parameter sets each different note

or each different register of an instrument. In practice, we observe that the transcription procedure is not

very sensitive to actual parameter settings; a rough parameter estimate, obtained by a few EM iterations,

leads often to the correct result. For example, the results in Figure 12 are obtained using a model that is

trained by only three EM iterations.

VI. D ISCUSSION

We have presented a model driven approach where transcription is viewed as a Bayesian inference

problem. In this respect, at least, our approach parallels the previous work of [18], [19], [36]. We believe,

however, that our formulation, based on a switching state space model, has several advantages. We can

remove the assumption of a frame based model and this enables us to analyse music online and to sample

precision. Practical approximations to an eventually intractable exact posterior can be carried out frame-

by-frame, such as by using a fixed time-lag smoother. This, however, is merely a computational issue

(albeit an important one). We may also discard samples to reduce computational burden, and account for

this correctly in our model.
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Fig. 11. Training the signal model with EM from a single note from an electric bass using a sampling rate of22050 Hz. The

original signal is downsampled by a factor ofD = 20. Given some crude first estimate for model parametersθ(0)(S, ρ, Q, R), we

estimater(1), shown in (a). Conditioned onr(1), we estimate the model parametersθ(1) and so on. LetSh denote the2×2 block

matrix from the diagonalS, corresponding to theh’th harmonic, similarly forQh. In (b), we show the estimated parameters for

each harmonic sum of diagonal elements, i.e.TrSh andTrQh. The damping coefficient is found asρsound= (det AhAT
h )1/4

where Ah is a 2 × 2 diagonal block matrix of transition matrixAsound. For reference, we also show the Fourier transform

modulus of the downsampled signal. We can see, that on the low frequency bands,S mimics the average energy distribution

of the note. However, transient phenomena, such as the strongly damped7’th harmonic with relatively high transition noise,

is hardly visible in the frequency spectrum. On the other hand for online pitch detection, such high frequency components are

important to generate a crisp estimate as early as possible.

An additional advantage of our formulation is that we can still deliver a pitch estimate even when the

fundamental and lower harmonics of the frequency band are missing. This is related to so calledvirtual

pitch perception [37]: we tend to associate notes with a pitch class depending on the relationship between

harmonics rather than the frequency of the fundamental component itself.

There is a strong link between model selection and polyphonic music transcription. In chord identi-

fication we need to compare models with different number of notes, and in melody identification we

need to deduce the number of onsets. Model selection becomes conceptually harder when one needs to

compare models of different size. We partially circumvent this difficulty by using switch variables, which

implicitly represent the number of components.
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Fig. 12. Polyphonic transcription of a short segment from a recording of a bass guitar. (Top) The signal, original sampling

rate of22050 Hz is downsampled with a factor ofD = 5. (Middle) Spectrogram (Short time Fourier transform modulus) of the

downsampled signal. Horizontal and vertical axes correspond to time and frequency, respectively. Grey level denotes the energy

in a logarithmic scale. The low frequency notes are not well resolved due to short window length. Taking a longer analysis

window would increase the frequency resolution but smear out onsets and offsets. (Bottom) Estimated piano-roll. The model

usedM = 30 sound generators where fundamental frequencies were placed on a chromatic scale that spanned the2.5 octave

interval between the low A (second open string on a bass) and a highD (highest note on the forth string). Model parameters

are estimated by a few EM iterations on a single note (similar to Figure 11) recorded from the same instrument. The analysis

is carried out using a window length ofW = 450 samples, without overlap between analysis frames (i.e.L = W ). The greedy

procedure was able to identify the correct pitch classes and their onsets to sample precision. For this example, the results were

qualitatively similar for different window lengthsW around300− 500 and downsampling factorsD up to 8.

Following the established signal processing jargon, we may call our approach a time-domain method,

since we are not explicitly calculating a discrete-time Fourier transform. On the other hand, the signal

model presented here has close links to the Fourier analysis and sinusoidal modelling. Our analysis can

be interpreted as a search procedure for a sparse representation on a set of basis vectors. In contrast to

Fourier analysis, where the basis vectors are simple sinusoids, we represent the observed signal implicitly

using signals drawn from a stochastic process which typically generates decaying periodic oscillations

(e.g. notes) with occasional changepoints. The sparsity of this representation is a consequence of the

onset mechanism, that effectively puts a mixture prior over the hidden state vectors. This prior is peaked

around zero and has broad tails, indicating that most of the sources are muted and only a few are sounding.
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A. Future work

Although our approach has many desirable features (automatically deducing number of correct notes,

high temporal resolution e.t.c.), one of the main disadvantage of our method is computational cost

associated with updating large covariance matrices in Kalman filtering. It would be very desirable

to investigate approximation schemas that employ fast transformations such as the FFT to accelerate

computations.

When transcribing music, human experts rely heavily on prior knowledge about the musical structure –

harmony, tempo or expression. Such structure can be captured by training probabilistic generative models

on a corpus of compositions and performances by collecting statistics over selected features (e.g. [38]).

One of the important advantages of our approach is that such prior knowledge about the musical structure

can be formulated as an informative prior on a piano-roll; thus can be integrated in signal analysis in

a consistent manner. We believe that investigation of this direction is important in designing robust and

practical music transcription systems.

Our signal model considered here is inspired by additive synthesis. An advantage of our linear

formulation is that we can use the Kalman filter recursions to integrate out the continuous latent state

analytically. An alternative would be to formulate a nonlinear dynamical system that implements a

nonlinear synthesis model (e.g. FM synthesis, waveshaping synthesis, or even a physical model[39]). Such

an approach would reduce the dimensionality of the latent state space but force us to use approximate

integration methods such as particle filters or EKF/UKF [40]. It remains an interesting open question

whether, in practice, one should trade-off analytical tractability versus reduced latent state dimension.

In this paper, for polyphonic transcription, we have used a relatively simple deterministic inference

method based on iterative improvement. The basic greedy algorithm, whilst still potentially useful in

practice, may occasionally get stuck in poor solutions. We believe that, using our model as a framework,

better polyphonic transcriptions can be achieved using more elaborate inference or search methods

(deterministic, stochastic or hybrids).

We have not yet tested our model for more general scenarios, such as music fragments containing

percussive instruments or bell sounds with inharmonic spectra. Our simple periodic signal model would

be clearly inadequate for such a scenario. On the other hand, we stress the fact that the framework

presented here is not only limited to the analysis of signals with harmonic spectra, and in principle

applicable to any family of signals that can be represented by a switching state space model. This is

already a large class since many real-world acoustic processes can be approximated well with piecewise
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linear regimes. We can also formulate a joint estimation schema for unknown parameters as in (13) and

integrate them out (e.g. see [19]). However, this is currently a hard and computationally expensive task.

If efficient and accurate approximate integration methods can be developed, our model will be applicable

to mixtures of many different types of acoustical signals and may be useful in more general auditory

scene analysis problems.

APPENDIX I

DERIVATION OF MESSAGE PROPAGATION ALGORITHMS

In the appendix, we derive several exact message propagation algorithms. Our derivation closely follows

the standard derivation of recursive prediction and update equations for the Kalman filter [41]. First we

focus on a single sound generator. In appendix I-A and I-B, we derive polynomial time algorithms for

calculating the evidencep(y1:T ) and MAP configurationr∗1:T = argmax
r1:T

p(y1:T , r1:T ) respectively. The

MAP configuration is useful for onset/offset detection. In the following section, we extend the onset/offset

detection algorithms to monophonic pitch tracking with constant frequency. We derive a polynomial time

algorithm for this case in appendix I-C. The case for varying fundamental frequency is derived in the

following appendix I-D. In appendix II we describe heuristics to reduce the amount of computations.

A. Computation of the evidencep(y1:T ) for a single sound generator by forward filtering

We assume a Markovian prior on the indicatorsrt wherep(rt = i|rt−1 = j) ≡ pi,j . For convenience,

we repeat the generative model for a single sound generator by omitting the note indexj.

rt ∼ p(rt|rt−1)

isonsett = (rt = sound∧ rt−1 = mute)

st ∼ [¬isonsett]N (Art
st−1, Q) + [isonsett]N (0, S)

yt ∼ N (Cst, R)

For simplicity, we will sometime use the labels1 and 2 to denote sound and mute respectively. We

enumerate the transition models asfrt
(st|st−1) = N (Art

st−1, Q). We define the filtering potential as

αt ≡ p(y1:t, st, rt, rt−1) =
∑

r1:t−2

∫

s0:t−1

p(y1:t, s0:t, r1:t)

We assume thaty is always observed, hence we use the term potential to indicate the fact thatp(y1:t, st, rt, rt−1)

is not normalized. The filtering potential is in general a conditional Gaussian mixture, i.e. a mixture of
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Gaussians for each configuration ofrt−1:t. We will highlight this data structure by using the following

notation

αt ≡




α1,1
t α1,2

t

α2,1
t α2,2

t





where eachαi,j
t = p(y1:t, st, rt = i, rt−1 = j) for i, j = 1 . . . 2 are also Gaussian mixture potentials. We

will denote the conditional normalization constants as

Zi
t ≡ p(y1:t, rt = i) =

∑
rt−1

∫

st

α
i,rt−1
t

Consequently the evidence is given by

Zt ≡ p(y1:t) =
∑
rt

∑
rt−1

∫

st

αt =
∑

i

Zi
t

We also define the predictive density

αt|t−1 ≡ p(y1:t−1, st, rt, rt−1) =
∑
rt−2

∫

st−1

p(st|st−1, rt, rt−1)p(rt|rt−1)αt−1

In general, for switching Kalman filters, calculating exact posterior features, such as the evidence

Zt = p(y1:t), is not tractable. This is a consequence of the fact that the number of mixture components to

required to represent the exact filtering densityαt grows exponentially with time stepk (i.e. one Gaussian

for each of the exponentially many configurationsr1:t). Luckily, for the model we are considering here,

the growth is polynomial ink only. See also [42].

To see this, suppose we have the filtering density available at timet−1 asαt−1. The transition models

can be organized also in a table wherei’th row andj’th column correspond top(st|st−1, rt = i, rt−1 = j)

p(st|st−1, rt, rt−1) =





f1(st|st−1) π(st)

f2(st|st−1) f2(st|st−1)





Calculation of the predictive potential is straightforward. First, summation overrk−2 yields

∑
rk−2

αt−1 =





α1,1
t−1 + α1,2

t−1

α2,1
t−1 + α2,2

t−1



 ≡





ξ1
t−1

ξ2
t−1





Integration overst−1 and multiplication byp(rt|rt−1) yields the predictive potential

αt|t−1 =





p1,1ψ
1
1(st) p1,2Z

2
t−1π(st)

p2,1ψ
1
2(st) p2,2ψ

2
2(st)





where we define

Z2
t−1 ≡

∫

st−1

ξ2
t−1 ψj

i (st) ≡
∫

st−1

fi(st|st−1)ξ
j
t−1
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The potentialsψj
i can be computed by applying the standard Kalman prediction equations to each

component ofξj
t−1. The updated potential is given byαt = p(yt|st)αt|t−1. This quantity can be computed

by applying standard Kalman update equations to each component ofαt|t−1.

From the above derivation, it is clear thatα1,2
t has only a single Gaussian component. This has the

consequence that the number of Gaussian components inα1,1
t increases only linearly (the first row-sum

termsξ1
t−1 propagated throughf1). The second row sum termξ2

t is more costly; it increases at every

time slice by the number of components inξ1
t−1. Since the size ofξ1

t−1 grows linearly, the size ofξ2
t

grows quadratically with timet.

B. Computation of MAP configurationr∗1:T

The MAP state is defined as

r∗1:T = argmax
r1:T

∫

s0:T

p(y1:T , s0:T , r1:T )

≡ argmax
r1:T

∫

s0:T

φ(s0:T , r1:T )

For finding the MAP state, we replace summations overrt by maximization. One potential technical

difficulty is that, unlike in the case for evidence calculation, maximization and integration do not commute.

Consider a conditional Gaussian potential

φ(s, r) ≡ {φ(s, r = 1), φ(s, r = 2)}

whereφ(s, r) are Gaussian potentials for each configuration ofr. We can compute the MAP configuration

r∗ = argmax
r

∫

s
φ(s, r) = argmax

{
Z1, Z2

}

whereZj =
∫
s φ(s, r = j). We evaluate the normalization of each component (i.e. integrate over the

continuous hidden variables first) and finally find the maximum of all normalization constants.

However, direct calculation ofr∗1:T is not feasible because of exponential explosion in the number

of distinct configurations. Fortunately, for our model, we can introduce a deterministic pruning schema

that reduces the number of kernels to a polynomial order and meanwhile guarantees that we will never

eliminate the MAP configuration. This exact pruning method hinges on the factorization of the posterior

for the assignment of variablesrt = 1, rt−1 = 2 (mute to sound transition) that breaks the direct link

betweenst andst−1:

φ(s1:T , r1:t−2, rt−1 = 2, rt = 1, rt+1:T ) = φ(s0:t−1, r1:t−2, rt−1 = 2)φ(st:T , rt+1:T , rt = 1|rt−1 = 2)

(14)
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In this case:

maxr1:T

∫
s0:T

φ(s0:T , r1:t−2, rt−1 = 2, rt = 1, rt+1:T )

= maxr1:t−1

∫
s0:t−1

φ(s0:t−1, r1:t−2, rt−1 = 2)

×maxrt:T

∫
st:T

φ(st:T , rt+1:T , rt = 1|rt−1 = 2)

= Z2
t ×maxrt+1:T

∫
st:T

φ(st:T , rt+1:T , rt = 1|rt−1 = 2) (15)

This Equation shows that whenever we have an onset, we can calculate the maximum over the past

and future configurations separately. Put differently, provided that the MAP configuration has the form

r∗1:T = [r∗1:t−3, rt−1 = 2, rt = 1, r∗t+1:T ], the prefix[r∗1:t−3, rt−1 = 2] will be the solution for the reduced

maximization problemarg maxr1:t−1

∫
s0:t−1

φ(s0:t−1, r1:t−1).

1) Forward pass:Suppose we have a collection of Gaussian potentials

δt−1 ≡




δ1,1
t−1 δ1,2

t−1

δ2,1
t−1 δ2,2

t−1



 ≡





δ1
t−1

δ2
t−1





with the property that the Gaussian kernel corresponding the prefixr∗1:t−1 of the MAP state is a member

of δt−1, i.e. φ(sk−1, r
∗
1:t−1) ∈ δt−1 s.t. r∗1:T = [r∗1:t−1, r

∗
t:T ]. We also define the subsets

δi,j
t−1 = {φ(sk−1, r1:t−1) : φ ∈ δt−1andrt−1 = i, rt−2 = j}

δi
t−1 =

⋃

j

δi,j
t−1

We show how we findδt. The prediction is given by

δt|t−1 =
∫

st−1

p(st|st−1, rt, rt−1)p(rt|rt−1)δt−1

The multiplication byp(rt|rt−1) and integration overst−1 yields the predictive potentialδt|t−1




p1,1

∫
st−1

f1(st|st−1)δ1
t−1 p1,2π(st)

∫
st−1

δ2
t−1

p2,1

∫
st−1

f2(st|st−1)δ1
t−1 p2,2

∫
st−1

f2(st|st−1)δ2
t−1





By the (15), we can replace the collection of numbers
∫
st−1

δ2
t−1 with with the scalarZ2

t−1 ≡ max
∫
st−1

δ2
t−1

without changing the optimum solution:

δ1,2
t|t−1 = p1,2Z

2
t−1π(st)

The updated potential is given byδt = p(yt|st)δt|t−1. The analysis of the number of kernels proceeds as

in the previous section.
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2) Decoding: During the forward pass, we tag each Gaussian component ofδt with its past history

of r1:t. The MAP state can be found by a simple search in the collection of polynomially many numbers

and reporting the associated tag:

r∗1:T = argmax
r1:T

∫

sT

δT

We finally conclude that the forward filtering and MAP (Viterbi path) estimation algorithms are essentially

identical with summation replaced by maximization and an additional tagging required for decoding.

C. Inference for monophonic pitch tracking

In this section we derive an exact message propagation algorithm for monophonic pitch tracking.

Perhaps surprisingly, inference in this case turns out to be still tractable. Even though the size of the

configuration spacer1:M,1:T is of size(M +1)KO(2K log M ), the space complexity of an exact algorithm

remains quadratic int. First, we define a “mega” indicator nodezt = (jt, rt) wherejt ∈ 1 . . . M indicates

the index of the active sound generator andrt ∈ {sound, mute} indicates its state. The transition model

p(zt|zt−1) is a large sparse transition table with probabilities



p1,1 p1,2/M . . . p1,2/M

. ..
...

...
...

p1,1 p1,2/M . . . p1,2/M

p2,1 p2,2

. .. ...

p2,1 p2,2




(16)

where the transitionsp(zt = (j, r)|zt−1 = (j′, r′)) are organized at then’th row andm’th column where

n = r ×M + j − 1 andm = r′ ×M + j′ − 1. (16). The transition modelsp(st|st−1, zt = (j, r), zt−1 =

(j′, r′)) can be organized similarly:



f1,1 π(st) . . . π(st)
...

...
...

...

f1,M π(st) . . . π(st)

f2,1 f2,1

... ...

f2,M f2,M




Here,fr,j ≡ fr,j(st|st−1) denotes the transition model of thej’th sound generator when in stater. The

derivation for filtering follows the same lines as the onset/offset detection model, with only slightly more
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tedious indexing. Suppose we have the filtering density available at timet−1 asαt−1. We first calculate

the predictive potential. Summation overzt−2 yields the row sums

ξ
(r,j)
t−1 =

∑

r′,j′

α
(r,j),(r′,j′)
t−1

Integration overst−1 and multiplication byp(zt|zt−1) yields the predictive potentialαt|t−1. The compo-

nents are given asα(r,j)(r′,j′)
t|t−1 =





(1/M)pr,r′π(st)Z
(r′,j′)
t−1 r = 1 ∧ r′ = 2

[j = j′]× pr,r′ψ
(r,j)(r′,j′)
t otherwise

(17)

where we define

Z
(r′,j′)
t−1 ≡

∫

st−1

ξ
(r′,j′)
t−1

ψ
(r,j)(r′,j′)
t ≡

∫

st−1

fr,j(st|st−1)ξ
(r′,j′)
t−1

The potentialsψ can be computed by applying the standard Kalman prediction equations to each

component ofξ. Note that the forward messages have the same sparsity structure as the prior, i.e.

α
(r,j)(r′,j′)
t−1 6= 0 whenp(rt = r, jt = j|rt−1 = r′, jt = j′) is nonzero. The updated potential is given by

αt = p(yt|st)αt|t−1. This quantity can be computed by applying standard Kalman update equations to

each nonzero component ofαt|t−1.

D. Monophonic pitch tracking with varying fundamental frequency

We model pitch drift by a sequence of transition models. We choose a grid such thatωj/ωj+1 = Q,

whereQ is close to one. Unfortunately, the subdiagonal terms introduced to the prior transition matrix

p(zt = (1, jt)|zt−1 = (1, jt−1))

p1,1 ×




(d0 + d1) d−1

d1 d0 d−1

d1
... ...
... d0 d−1

d1 (d0 + d−1)




(18)

render an exact algorithm exponential int. The recursive update equations, starting withαt−1, are obtained

by summing overzt−2, integration overst−1 and multiplication byp(zt|zt−1). The only difference is that
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the prediction equation (17) needs to be changed toα
(r,j)(r′,j′)
t|t−1 =





d(j − j′)× pr,r′ψ
(r,j)(r′,j′)
t r = 1 ∧ r′ = 1

(1/M)pr,r′π(st)Z
(r′,j′)
t−1 r = 1 ∧ r′ = 2

[j = j′]× pr,r′ψ
(r,j)(r′,j′)
t r = 2

whereψ andZ are defined in (18). The reason for the exponential growth is the following: Remember

that eachψ(r,j)(r′,j′) has as many components as an entire row sum ofξ
(r,j)
t−1 =

∑
r′,j′ α

(r,j),(r′,j′)
t−1 . Unlike

the inference for piecewise constant pitch estimation, now at some rows there are two or more messages

(e.g.α(1,j)(1,j)
t|t−1 andα

(1,j)(1,j+1)
t|t−1 ) that depend onψ.

APPENDIX II

COMPUTATIONAL SIMPLIFICATIONS

A. Pruning

Exponential growth in message size renders an algorithm useless in practice. Even in special cases,

where the message size increases only polynomially inT , this growth is still prohibitive for many

applications. A cheaper approximate algorithm can be obtained by pruning the messages. To keep the

size of messages bounded, we limit the number of components toN and store only components with

the highest evidence. An alternative is discarding components of a message that contribute less than a

given fraction (e.g.0.0001) to the total evidence. More sophisticated pruning methods with profound

theoretical justification, such as resampling [22] or collapsation [43], are viable alternatives but these

are computationally more expensive. In our simulations, we observe that using a simple pruning method

with the maximum number of components per message set toN = 100, we can obtain results very close

to an exact algorithm.

B. Kalman filtering in a reduced dimension

Kalman filtering with a large state dimension|s| at typical audio sampling ratesFs ≈ 40 kHz may be

prohibitive with generic hardware. This problem becomes more severe when the number of notesM is

large, (which is typically around50− 60), than even conditioned on a particular configurationr1:M , the

calculation of the filtering density is expensive. Hence, in an implementation, tricks of precomputing the

covariance matrices can be considered [41] to further reduce the computational burden.

Another important simplification is less obvious from the graphical structure and is a consequence of

the inherent asymmetry between the sound and mute states. Typically, when a note switches and stays
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for a short period in the mute state, i.e.rj,t = mute for some period, the marginal posterior over the state

vectorsj,t will converge quickly to a zero mean Gaussian with a small covariance matrixregardlessof

observationsy. We exploit this property to save computations by clamping the hidden states for sequences

of sj,t:t′ to zero forrj,t:t′ = “mute”. This reduces the hidden state dimension, since typically, only a few

sound generators will be in sound state.
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