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ABSTRACT

We introduce a framework for probabilistic modelling of time-
frequency energy distributions based on correlated Gamma and
inverse Gamma random variables. One advantage of the approach
is that the resulting class of models are conjugate which makes
inference easier. Moreover, both positivity and additivity follow
naturally in this framework. We illustrate how generic models (ap-
plicable to a broad class of signals) and more specialised models
can be designed to model harmonicity, spectral continuity and/or
changepoints. We show simulation results that illustrate the poten-
tial of the approach on a large spectrum of audio processing appli-
cations such as denoising, source separation and transcription.

1. INTRODUCTION

Time-Frequency energy distributions are of central importance in
analysis of nonstationary processes, and in particular for audio
and acoustical signal analysis. The Gabor transform and STFT
(short time Fourier transform) or the MDCT (modified discrete
cosine transform) are undoubtly among the most widely used ap-
proaches [1, 2, 3]. In all these representations, the signal y =
(y1, . . . , yn, . . . yN) is represented by a linear combination yn =P

ν,τ
φ

(ν,τ)
n sν,τ where the set of basis functions φ are windowed

sinusoidals indexed by the frequency ν and time shift τ . The very
popular and visually appealing spectrogram representation is ob-
tained by viewing the log-magnitude of the expansion coefficients
1
2

log s2
ν,τ as a function of frequencies ν and time indices τ . How-

ever, in many applications, the spectrogram is typically viewed as
a preprocessing or a feature extraction step.

In recent years, there has been a growing interest in modelling
time-frequency energy distributions. One implicit modelling ap-
proach has focused on non-negativity of the spectrogram S =
{s2

ν,τ} and enforcing a factorisation as S = WR where both W
and R are matrices with positive entries [4, 5]. These have a rough
interpretation as a codebook of templates and R is the matrix of
activations, somewhat analogous to a musical score. The primary
advantage of these methods is computational attractiveness due to
fast converging iterative matrix factorization techniques. How-
ever, lacking an explicit signal model, it is hard to incorporate
prior knowledge and one may have to resort to heuristics, since
the construction of the dictionary is entirely data driven. More-
over, this representation is physically unrealistic, since the energy
is a quadratic quantity; in general for two sources s1 and s2 we
have (s1 + s2)

2 �= s1
2 + s2

2.
At the other extreme of the spectrum are the dynamical system

models which explicitly model the time evolution of the phases,
amplitudes and discontinuities [6, 7, 8]. While these class of mod-
els are quite powerful and close to reality from a generative per-

spective, the computational requirements have somewhat limited
their use in data intensive applications.

An alternative and often effective approach is to model sources
directly in a transform domain. In audio processing, the energy
content of a signal is typically time-varying hence it is natural to
model audio with a process with a time varying power spectral
density on a time frequency plane using switches [9, 2, 10], a his-
togram [11] or source filter models in cepstral domain [12].

In this paper, we follow a transform domain modelling ap-
proach and focus on the following hierarchical source model

p(s|v)p(v) =

 Y
ν,τ

p(sν,τ |vν,τ )

!
p(v)

where s = s1:W,1:T are the collection of transform coefficients
sν,τ and v = v1:W,1:T are the associated variances . To lighten the
notation, we will denote each time-frequency atom by k ≡ (ν, τ )
and write 1 : K ≡ (1 : W, 1 : T ). In particular, we will assume
that the expansion coefficients sk are conditionally Gaussian and
the variances vk are nonnegative random variables assumed to be
distributed by an inverse-Gamma distribution1:

sk ∼ N (sk; 0, vkId) vk ∼ IG(vk, a(v−k), b(v−k))

where v−k is the collection of all v excluding vk. Id is an iden-
tity matrix that is taken 1 × 1 for MDCT (real coefficients) and
2 × 2 for a STFT representation (real and complex coefficients).
The inverse-Gamma distribution is the conjugate prior for the vari-
ance v of a Gaussian distribution2. This fact is the consequence of
a simple algebraic observation: when the prior p(v) is inverse-
Gamma, the posterior distribution p(v|s) can be represented as an
inverse-Gamma distribution since the logarithm of a Gaussian is a
polynomial in v−1 and log v−1.

Such a model is useful as a building block for many differ-
ent audio processing applications such as denoising, transcription
and source separation. For example, in single channel source sep-
aration, we write the observed signal yk as a superposition of J
source models yk =

PJ

j=1 sk,j . If all the latent variances vj for
j = 1 . . . J would have been known, by straightforward applica-
tion of the Bayes theorem, the source coefficients can be recon-
structed in closed form by

〈sk,j〉 = κk,jyk

˙
s2

k,j

¸
− 〈sk,j〉

2 = vk,j(1 − κk,j)

where κk,j = vk,j/(
P

j′
vk,j′ ) and 〈f(s)〉 denotes the expecta-

tion of the function f(s) under the posterior distribution p(s|y, v).

1IG(v; a, z) ≡ exp((a + 1) log v−1 − z−1v−1 + a log z−1 −

log Γ(a)) with Γ(a) being the Gamma (generalized factorial) function.
2N (s;µ, v) ≡ exp

`
−(s − µ)2v−1/2 + log v−1/2 − log(2π)/2

´
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Note that κk,j are nonnegative such that
P

j
κk,j = 1 for all k.

Intuitively, this means that each reconstructed source sk,j gets a
fraction κk,j of the observation yk. We name κ as responsibili-
ties (also know as Wiener filter factors). In reality, of course, the
variances vk,j are unknown but we can postulate realistic prior
structures by considering physical properties such as harmonicity,
damping e.t.c. Another appealing property of this approach is that
if we integrate out the unknown expansion coefficients s analyti-
cally, we obtain a model that is additive in variances as

Z
dsp(y|s1:J)p(s1:J |v1:J )p(v1:J) = N

 
y; 0,

JX
j=1

vj

!
p(v1:J)

Denoising is a special case of the above model: we just assign one
source (e.g. j = J) to be the “noise”. For example, when the noise
is additive and the stationary Gaussian we have vk = v for all k
where v is the noise variance to be estimated. Similarly, transcrip-
tion can be formulated by postulating additional indicator variables
r ≡ r1:T upper layers in the hierarchy p(v1:W,1:T |r1:T ) p(r1:T )
where each rτ is a discrete variable that selects a prior structure.
By computing the marginal MAP configuration arg maxr

R
dv

p(x|v) p(v|r)p(r), we can find the most likely score, e.t.c.
In all these applications, the main modelling issue is finding

appropriate prior structures on variances and this is the focus of
this paper.

2. GAMMA MODELS FOR VARIANCES

One possible approach for defining a prior distribution over vari-
ances is to define a Gaussian process {lτ}τ=1,2,..., e.g. a random
walk, in the log domain as

lτ ∼ N (lτ ; lτ−1, q
−1) vτ = exp(lτ )

It is easy to see that vτ will be strictly positive, the distribution
of p(vτ |lτ+1, lτ−1) will be log-normal and vτ and vτ−1 will be
marginally positively correlated. However, the joint distribution
will have non-convex terms such as log2 vτ that will render in-
ference harder and it will be necessary to resort to generic Monte
Carlo integration techniques. While this is in principle not an ob-
stacle, it is desirable to construct a model that retains some form
of conjugacy for fast inference since in audio applications that we
are interested in, K will be very large and p(v) will be typically
embedded into a hierarchical model.

It is possible to define a Markov chain on inverse-Gamma ran-
dom variables in a straightforward way by vτ |vτ−1 ∼ IG (vτ ;
a, vτ−1/a). The full conditional distribution p(vτ |vτ−1, vτ+1) is
conjugate, i.e. it is also inverse-Gamma. However, by this con-
struction it is not possible to attain positive correlation between
vτ and vτ−1. The basic idea is to introduce latent auxiliary vari-
ables zτ between vτ and vτ−1 such that when zτ are integrated out
we restore positive correlation between vτ and vτ−1 while retain-
ing conjugacy [13]. We define an Inverse-Gamma Markov chain
(IGMC) for k = 1 . . . K as follows

vτ |zτ ∼ IG(vτ ; a, zτ/a) zτ+1|vτ ∼ IG(zτ+1; az, vτ/az)

Here, zτ are auxiliary variables that ensure the full conditionals
p(vτ |zτ , zτ+1) and p(zτ |vτ , vτ−1) are inverse-Gamma. An equiv-
alent “mixed” construction is obtained by letting λτ = 1/vτ

λτ |zτ ∼ G(λτ ; a, zτ/a) zτ+1|λτ ∼ IG(zτ+1; az, 1/(azλτ ))
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Figure 1: A typical trajectory λτ sampled from the changepoint
process (1) (upper-left). Typical spectral templates from pitched
musical instruments (lower-left). A time frequency energy distri-
bution sampled from Eq.(2) scaled by λτ (right).

where G is a Gamma distribution3. By integrating out over the
auxiliary variable zτ we obtain the effective transition kernel of
the Markov chain, p(vτ |vτ−1), which has positive correlation for
various shape parameters az and a. The absolute value of az and
a control the strength of the correlation and the ratio az/a con-
trols the skewness. For az/a < 1 ( az/a > 1), the probability
mass is shifted towards the interval vτ < vτ−1 ( vτ > vτ−1)
hence, typical trajectories from a IGMC will exhibit a systematic
negative (positive) drift. The chain structure can be generalised
in a straightforward manner to 2-D random fields with arbitrary
connection topology [13].

Positive correlations between variances can be used for mod-
elling harmonic continuity observed for many acoustical sources.
Using this strategy, we can design generic prior structures that are
potentially useful for a broad class of audio signals. For example,
we can tie the energies in a time-frequency plane across time (to
model harmonic continuity) or across frequency (to model impul-
sive sources) or both.

The drift property can be exploited to model damping effects
and onsets. This path of modelling can lead to specific prior struc-
tures. We first extend the chain to a changepoint model as follows:
We introduce latent discrete variables o and let

λτ |zτ , oτ ∼


G(λτ ; a, zτ/a) oτ �= onset
G(λτ ; a, b0/a) oτ = onset

(1)

when an onset occurs, the chain is reinitialized from a prior. Given
λτ as a decaying positive process with occasional reinitializations,
we can interpret it as an average energy. Conditioned on λ, we
can define a model for time varying spectral energy for each time-
frequency bin

vν,τ |rτ , λτ ∼ IG(vν,τ ; a/2, 2/(λτσ(ν; rτ )a)) (2)

Here, σ(ν; r) is a positive spectral template function which rep-
resents the expected distribution of energy among frequency bins
ν and r is an index variable. For transcription, we can choose
r to correspond to individual pitch or chord labels. An applica-
tion of this model to score following is reported elsewhere [14].
A spectral template for a pitched instrument and a typical sample
generated from the model is shown in Figure 1.

3G(λ; a, b) ≡ exp((a − 1) log λ − b−1λ + a log b−1 − log Γ(a))
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3. INFERENCE

Exact inference in Gamma chains is difficult since the marginals
have complicated closed form expressions. Fortunately, various
powerful numerical integration methods can be employed, notably
based on sampling (Monte Carlo-stochastic) or analytic approx-
imation (Variational-deterministic). Here, we focus on sampling
based methods, in particular sequential Monte Carlo [15] and the
Gibbs sampler (e.g., see [16]). Algorithmically similar variational
methods to Gibbs sampling, notably variational Bayes [17], can be
derived easily by exploiting conjugacy [13].

The Gibbs sampler [16] is a particular Monte Carlo method
that relies on generating samples {ξ(t)}t=1,2,... via simulation of a
Markov chain with the desired target density p(ξ). The algorithm
proceeds by sampling each random variable i ∈ V from the full
conditional distribution p(ξi|ξ

(t−1)
−i ) where −i ≡ V \ i. For a

Gamma chain, the expressions are particularly simple; due to the
local connectivity structure, for each i, the conditional distribution
depends only on immediate neighbours of i. Moreover, since the
model is conjugate, this expression is readily available in closed
form as ξ

(t)
i ∼ p(ξi|ξ

(t−1)
i ) = IG(ξi; αi, βi) where αi and βi are

functions of ξ
(t−1)
i .

One problem with the Gibbs sampler is convergence speed. In
practice, the chain takes a prohibitively long time to converge and
occasionally becomes trapped in local maxima. To speed up con-
vergence, special strategies, such as tempering (gradually chang-
ing the target density) or blocking (grouping random variables)
need to be employed [16]. Additionally, for time series models
the algorithm is inherently a batch processing method. An alter-
native set of methods, known as sequential Monte Carlo (SMC)
[15] are based on sequential importance sampling (also known as
particle filtering) have proved to be quite powerful, especially for
time series models. SMC methods have the advantage that they are
inherently online, simple to implement and quite flexible. In many
applications, by merely increasing the amount of computation, the
estimation results tend to improve.

Sequential Monte Carlo methods [15] approximate a target
density (often the posterior of a time series model) p(x0:K |y0:K)
of a hidden Markov process x0:K as a set of N particle trajectories
{x(i)

0:K , i = 1, . . . , N} which are drawn from a importance func-

tion π, which allows the normalised importance weights w̃
(i)
k =

w
∗(i)
k /

PN

i=1 w
∗(i)
k , where

w
∗(i)
k =

p(y0:k|x0:k)p(x0:k)

π(x0:k|y0:k)
=

p(yk|xk)p(xk|xk−1)

π(xk|x0:k−1, y0:k)
w

∗(i)
k−1

to be computed sequentially. The particle trajectories x
(i)
0:k ≡“

x
(i)
0:k−1,x

(i)
k

”
are constructed sequentially by sampling the im-

portance function: x
(i)
k ∼ π(xk|x0:k−1, y0:k). To keep the ap-

proximation accurate over time (by keeping the variance of the
importance weights bounded), periodical resampling steps are ap-
plied. Here, particles are drawn according to a distribution based
on the importance weights and the importance weights are set to
1/N . The bootstrap filter [15] is the simplest SMC method, where
the importance function is simply the prior, i.e. π(x0:K |y0:K) =
p(x0:K) and resampling is carried out at every iteration by copying
each particle N

(i)
k times according to a multinomial distribution

with parameters w̃
(i)
k .

However, whilst the bootstrap filter works in many time se-
ries analysis problems, it is well known that when the latent state
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Figure 2: Signal-to-Noise ratio results for reconstructions obtained
from the audio clips in low, medium,high noise conditions.

dimension high, it can quickly become ineffective. To render the
SMC approach feasible many improvements are needed. One such
improvement is “Rao-Blackwellisation”, i.e. exploiting model struc-
ture for reducing the sampling dimension by analytically integrat-
ing out some of the variables, conditioned on some others. The
model described in equations (1) and (2) is a such one; given λ,
we can integrate out the variances v analytically so only indica-
tors o, indices r and scale variables λ need to be sampled.

4. RESULTS

In this section we present results with generic models for denoising
and single channel separation. We illustrate specific models, that
aim to model details of harmonic structure and onsets for transcrip-
tion and chord recognition. The audio extracts will be available on-
line at http://www-sigproc.eng.cam.ac.uk/∼php23/
publications/WASPAA.
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Figure 3: Single channel Source Separation example, left to right,
log-MDCT coefficients of the original signal and reconstruction
with horizontal and vertical IGMC models. The model seems to
be able to separate transients and harmonic components.

In denoising simulations, 5 audio clips are used. Independent
white Gaussian noise with variance r ∼ IG(r; ar, br) is added
onto the MDCT source coefficients (strue

(ν,τ)) and x(ν,τ) are ob-
tained. The noise has the same characteristics in time domain,
because MDCT is an orthonormal linear transform. Four IGMC
topologies are used as priors: vertical (energies tied across
frequency), horizontal (tied across time), grid (both) and
band (an auxiliary variable for each frequency bin). The SNR
results are presented in Figure 2.

We have used IGMCs for a single channel source separation as
explained in Section 2. We used a vertical and a horizontal IGMC
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Figure 4: Monophonic piano transcription. The marginal filtering
density over rτ and the minimum mean-squared-error estimate of
λτ are shown. The note pitch errors in the transcription can be
eliminated by imposing a prior on how notes transition over time.
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Figure 5: MDCT of a piano chord (left). Estimated λτ (r)
(Midinotes r = 40 . . . 69). The high energy onsets and subsequent
decay of the four piano notes are clearly distinguishable (right).

to model the transients and harmonic components of an instrument
sound separately. The results for a piano sound are shown in Fig-
ure 3.

If the variances are drawn according to the specific model (2)
for all times τ , then we obtain an exact expression for the likeli-
hood of the transform coefficients in frame τ as a Student-T dis-
tribution by integrating over v, see [14] for details. If we directly
observe the transform coefficients, for instance for a monophonic
music extract when we have only a single source J = 1, then
the inference of the filtering density over the unknown variables
p(rτ , λτ |sτ ) can be obtained by SMC. Figure 4 demonstrates the
performance of the bootstrap filter with N = 500 particles.

These templates are also useful for guided source separation.
Figure 5 shows the performance of Gibbs’ sampler when jointly
infering the energy distribution of 30 simultaneous sources at dif-
ferent note pitches, for a single piano chord with no changepoints.
When changepoints are included, needed in a polyphonic tran-
scription application for instance, Gibbs’ sampler becomes trapped
in local maxima, and more elaborate inference schemes, which
will form the basis of future work, are necessary.

5. CONCLUSIONS

We introduce a framework for probabilistic modelling of time-
frequency energy distributions based on correlated Gamma and
inverse Gamma random variables. The approach is quite flexible

in modelling a range of phenomena known to be present in gen-
eral audio, such as harmonicity, spectral continuity, onsets e.t.c.
Both positivity and additivity follow naturally in this framework
and resulting models turn out to be conjugate, a technical condi-
tion which when satisfied renders inference easier. Both generic
and more specific models can be designed. Using standard infer-
ence techniques such as sequential Monte Carlo, Gibbs sampling
or variational Bayes, we show simulation results that illustrate the
potential of the approach on denoising, source separation and tran-
scription. Future work will include detailed testing the viability of
this approach in terms of quality and computational cost in com-
parison to alternative approaches.

6. REFERENCES

[1] S. Mallat, A Wavelet Tour of Signal Processing. Academic Press,
1999.

[2] P. J. Wolfe, S. J. Godsill, and W. Ng, “Bayesian variable selection
and regularisation for time-frequency surface estimation,” Journal of
the Royal Statistical Society, Series B, vol. 66, no. 3, pp. 575–589,
August 2004.

[3] L. Daudet and M. Sandler, “MDCT analysis of sinusoids: exact re-
sults and applications to coding artifacts reduction,” IEEE Transac-
tions on Speech and Audio Processing, vol. 12, no. 3, pp. 302–312,
May 2004.

[4] P. Smaragdis and J. Brown, “Non-negative matrix factorization for
polyphonic music transcription,” in WASPAA, IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics, October
2003, pp. 177–180.

[5] S. A. Abdallah and M. D. Plumbley, “Unsupervised analysis of poly-
phonic music using sparse coding,” IEEE Transactions on Neural
Networks, vol. 17, no. 1, pp. 179–196, January 2006.

[6] Y. Qi, T. P. Minka, and R. W. Picard, “Bayesian spectrum estima-
tion of unevenly sampled nonstationary data,” MIT Media Lab, Tech.
Rep. Vismod-TR-556, 2002.

[7] A. T. Cemgil and S. J. Godsill, “Efficient Variational Inference for
the Dynamic Harmonic Model,” in Proc. of IEEE Workshop on Ap-
plications of Signal Processing to Audio and Acoustics, New Paltz,
NY, October 2005, pp. 271– 274.

[8] C. Dubois and M. Davy, “Joint detection and tracking of time-varying
harmonic components: a flexible Bayesian approach,” IEEE transac-
tions on Speech, Audio and Language Processing, vol. 15, no. 4, pp.
1283–1295, May 2007.

[9] M. Reyes-Gomez, N. Jojic, and D. Ellis, “Deformable spectrograms,”
in AI and Statistics Conference, Barbados, 2005.

[10] C. Févotte, L. Daudet, S. J. Godsill, and B. Torrésani, “Sparse regres-
sion with structured priors: Application to audio denoising,” in Proc.
ICASSP, Toulouse, France, May 2006.

[11] B. Raj and P. Smaragdis, “Latent variable decomposition of spectro-
grams for single channel speaker separation,” in IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA),
October 2005, pp. 17–20.

[12] A. Klapuri, “Analysis of musical instrument sounds by source-filter-
decay model,” in IEEE International Conference on Audio, Speech
and Signal Processing (ICASSP), Hawaii, USA, 2007.

[13] A. T. Cemgil and O. Dikmen, “Conjugate gamma Markov random
fields for modelling nonstationary sources,” in Submitted, 2007.

[14] P. Peeling, A. T. Cemgil, and S. J. Godsill, “A probabilistic frame-
work for matching music representations,” in Submitted, 2007.

[15] A. Doucet, N. de Freitas, and N. J. Gordon, Eds., Sequential Monte
Carlo Methods in Practice. Springer Verlag, 2001.

[16] J. S. Liu, Monte Carlo strategies in scientific computing. Springer,
2004.

[17] H. Attias, “Independent factor analysis,” Neural Computation,
vol. 11, no. 4, pp. 803–851, 1999.


