
2012 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 23–26, 2012, SANTANDER, SPAIN

PROBABILISTIC INTERPOLATIVE DECOMPOSITION

İsmail Arı, A. Taylan Cemgil, Lale Akarun

Bogazici University, Computer Engineering Department, 34342 Bebek, Istanbul, Turkey

ABSTRACT

Interpolative decomposition (ID) is a low-rank matrix de-
composition where the data matrix is expressed via a sub-
set of its own columns. In this work, we propose a novel
probabilistic method for ID where it is expressed as a sta-
tistical model within a Bayesian framework. The proposed
method considerably differs from other ID methods in the
literature: It handles the model selection automatically and
enables the construction of problem-specific interpolative
decompositions. We derive the analytical solution for the
normal distribution and we provide a numerical solution for
the generic case. Simulation results on synthetic data are
provided to illustrate that the method converges to the true
decomposition, independent of the initialization; and it can
successfully handle noise. In addition, we apply probabilistic
ID to the problem of automatic polyphonic music transcrip-
tion to extract important information from a huge dictionary
of spectrum instances. We supply comparative results with
the other proposed techniques in the literature and show that
it performs better. Probabilistic interpolative decomposition
serves as a promising feature selection and de-noising tool to
be exploited in big data problems.

Index Terms— Interpolative decomposition, CUR De-
composition, Bayesian inference, SVD, Simulated Anneal-
ing, Importance Sampling, Polyphonic Music Transcription.

1. INTRODUCTION

In interpolative decomposition (ID), the aim is to represent
a matrix by a subcollection of its columns [1]. In particular,
given a matrix with N columns, we would like to select k
linearly independent columns that span the column space of
the matrix. Hence, ID is also called spanning columns. It
is usually applied also on the rows of the matrix and so, two
IDs can be combined to construct the matrix using a subcol-
lection of its columns and a subcollection of its rows (CUR
decomposition) [1, 2].

The main motivation in interpolative decomposition
(and CUR decomposition) is to determine fewer number
of columns (rows) out of a huge collection of columns (rows)

This work has been supported by the TUBITAK project 108E161.
A.T.C. is funded by TUBITAK grant 110E292.

that approximate the range (corange) of the data matrix [1]. It
serves as a feature selection tool that extracts the essence and
enables working with big data which is originally too large
to fit into the RAM. In addition, it removes the non-relevant
parts of the data which consist of error and redundant in-
formation. Compared to SVD, CUR is better in terms of
reification issues since it uses the actual columns (rows) of
the matrix whereas SVD uses some artificial singular vectors
that may not represent physical reality [3]. Another important
advantage is that CUR maintains sparsity if the data is sparse.
Like SVD, CUR decomposition may be used as a tool for
data compression, feature extraction or data analysis in many
application areas [3, 4, 5].

As stated, ID is studied implicitly in CUR decomposition.
Thus we give related research in the context of CUR decom-
position which is studied extensively in the literature [1, 6, 7].
Proposed methods mainly differ in their way on the selec-
tion of column/row indices. Halko et al. use plain column-
pivoted Gram-Schmidt method based on the vector norms [1].
This algorithm selects the vector with the largest norm, then
it projects all the remaining vectors onto the complement of
the spanning space of this selected vector and selects the one
with the largest norm in this new space in an iterative manner.
Other methods can be grouped as Monte Carlo (MC) sam-
pling based methods where each column/row is assigned a
probability proportional to its Euclidean norm [8, 9], norm of
right singular vectors [3] or vector sparseness value [5]. Then,
corresponding indices are selected randomly from a multino-
mial distribution of these probabilities. In [10], Bien et al.
investigate CUR from a sparse optimization viewpoint. They
show that CUR is implicitly optimizing a sparse regression
objective, and compare it to sparse PCA. A randomized algo-
rithm for CUR approximation with controlled absolute error
is given in [8] and a relative error algorithm appears in [11].

On the other hand, matrix decompositions can also be
seen as statistical models where we seek for the decompo-
sition that gives the maximum marginal likelihood (MML)
for the underlying data [12]. Probabilistic interpretations are
investigated for many popular matrix decompositions in the
literature such as Non-negative Matrix Factorization (NMF)
[13] and Principal Component Analysis (PCA) [14], and gen-
eralized to tensor factorizations [15].

A better interpretation of ID (and CUR decomposition) is

978-1-4673-1026-0/12/$31.00 c©2012 IEEE

crucial for any sequent algorithm that makes use of the se-
lected indices. This work aims to express interpolative de-
composition as a statistical model within a Bayesian frame-
work. For the maximization of the MML, we use a Sim-
ulated Annealing technique. We derive the analytical solu-
tion for the normal distribution and we generalize the ap-
proach for other observation models by providing numerical
solution using importance sampling. The method can eas-
ily be adapted for problem-specific interpolative decomposi-
tions by giving prior knowledge about the data and choos-
ing suitable distributions. In addition, model order selection
(determination of the number of columns and rows) to rep-
resent the data is handled automatically within the proposed
system via Bayesian inference. Our work, in our knowledge,
is the first interpolative decomposition and CUR decomposi-
tion technique using Bayesian inference: Previous probabilis-
tic approaches use heuristics to select bases and the number
of bases is known a priori [1, 2, 5, 8, 9]. We do not explicitly
discuss error bounds since the proposed approach differs from
the works in the literature in the way that it already enables
modeling of the error. We perform experiments on synthetic
and real life data. We apply probabilistic ID to reduce the size
of the training data in the problem of polyphonic music tran-
scription by removing more than 99% of the samples and yet
maintain successful results.

2. PROBABILISTIC INTERPOLATIVE
DECOMPOSITION AND MODEL SELECTION

The aim in interpolative decomposition (ID) is to represent
the range of a matrix X ∈ R

d×N using k of its columns
(k � N). The selected vectors stand for the bases and the
remaining ones are expressed as linear combinations of them.
The decomposition can fully represent the matrix by select-
ing columns that span the whole column space of X as well
as approximating it with fewer number of columns than its
rank. That is,

X ≈ CZ (1)

where C is a submatrix of columns of X, and Z involves the
interpolation coefficients corresponding to each column in X.
Let J be the set of the indices of the selected columns. Then,
we write C = X(:, J) where the colon operator implies all
indices.

Let xn be the nth column of X and let r ∈ {0, 1}N be
the state vector with each element indicating the type of the
corresponding column. If rn = 1, then xn is a basis column.
If rn = 0, then xn is interpolated using the basis columns
plus some error term. In addition to J , let J̃ be the set of
indices of the remaining columns. The relation between r
and the index sets is simple; J = J(r) = {n|rn = 1}Nn=1 and
J̃ = J̃(r) = {n|rn = 0}Nn=1. The generative model for ID is
given in Fig 1: Columns J of the data matrix are the same as
the base matrix, that is X(:, J) = C. The remaining columns

are generated using as a linear combination of the bases plus
some error term: X(:, J̃) = CZ + E.

Fig. 1. Generative model for interpolative decomposition

We are interested in the state r∗ giving the maximum
marginal likelihood for the underlying data X:

r∗ = argmax
r

p(X, J(r)) (2)

= argmax
r

p(X|J(r))p(J(r)) (3)

Let each combination be equally likely and let us marginal-
ize the conditional probability using the generative model
given in Fig. 1 as follows and call it `:

` = p(X|J(r)) = p(XJ ,XJ̃) = p(XJ̃ |XJ)p(XJ)

=

∫∫
p(XJ̃ |C,Z)p(XJ |C)p(Z)p(C) dZ dC (4)

where XJ = X(:, J) and XJ̃ = X(:, J̃). With p(XJ |C) =
δ(XJ −C), we get:

` =

∫∫
p(XJ̃ |C,Z)δ(XJ −C)p(Z)p(C) dZ dC

=

∫
p(XJ̃ |XJ ,Z)p(Z)p(XJ) dZ (5)

2.1. Analytical Solution

We may choose particular distributions for the interacting fac-
tors to acquire different decompositions for the data. The
MML can be computed analytically for certain kinds of dis-
tributions. We give an example case here and give the generic
approach as a numerical technique in the next subsection. Let
j be the index traversing through the indices in J , and simi-
larly, j̃ be the index traversing through the indices in J̃ . As-
sume the columns are independent; then Eq. 5 becomes:

` =
∏
j̃∈J̃

(∫
p(xj̃ |XJ , z)p(z) dz

)∏
j∈J

p(xj) (6)

The interpolated vectors can be written in vector form as
xj̃ = XJzj̃ + εj̃ . Let xj , zj̃ , and εj̃ be distributed with zero
mean Gaussians and the variances be ΣJ = σ2

JI, Σz = σ2
zI,

and Σ = σ2I, respectively. The likelihood is computed on
the centralized data and is as follows:

` ∝
∏
j̃∈J̃

exp

(
−1

2
xᵀ
j̃
Σ−1

J̃
xj̃

)∏
j∈J

exp

(
− 1

2σ2
J

‖xj‖2
)

(7)

where ΣJ̃ = XJΣzX
ᵀ
J + Σ = σ2

zXJXᵀ
J + σ2I. The log-

likelihood, which is numerically more stable, is

L ∝
∑
j̃∈J̃

(
− 1

2
xᵀ
j̃
Σ−1

J̃
xj̃

)
+
∑
j∈J

(
− 1

2σ2
J

‖xj‖2
)

(8)

2.2. Numerical solution

We use Monte Carlo sampling to find an approximation when
we cannot find an analytical solution to precisely compute the
integral. We take Nz samples of z and compute the marginal
likelihood. Sampling z values directly from the distribution
with pdf p(z) can lead to a large variance in the computed
expected values. Instead, we use importance sampling where
we sample from another distribution with pdf q(z) and weigh
the values.

` ∝
∏
j̃∈J̃

(
1

Nz

Nz∑
i=1

p(xj̃ |zi,XJ)
p(zi)

q(zi)

)∏
j∈J

p(xj) (9)

In order to decrease the variance, a good way of sampling
zj̃ is to use the information of XJ and xj̃ values. A good pro-
posal distribution is zj̃ |XJ ,xj̃ where zj̃ comes from a normal
distribution with expectation E[zj̃] = X†Jxj̃ and covariance
matrix Cov(zj̃) = X†JΣ(X†J)

ᵀ for the given case.

2.3. Simulated annealing

The problem of finding the state {rt}Nt=1 giving the MML
is combinatorial; i.e., we have 2N different states to check.
When we have two candidate states, we can decide which one
is more likely the model. Simulated Annealing, which is a
Markov Chain Monte Carlo method, is used for finding the
state giving the MML in our setup. We start with a random
state r and check the likelihood values {`(ri)}ni=1 of its neigh-
bors. r′ is a state randomly chosen among the neighbors pro-
portional to their likelihoods. Acceptance probability in sim-
ulated annealing is taken as max{1, exp (−ρ (`(r′)− `(r))}
where the cooling coefficient ρ = i

m in the ith iteration, where
m is the maximum number of iterations. The algorithm lets
the search to branch into less likely states in the first runs but
it favors staying in the best state found in later stages. It is
stopped if the result converges or an allowed maximum num-
ber of iterations are passed [16].

The neighbors of a state are the states that can be accessed
by one column release and/or one column addition. For ex-
ample, for N = 3 and r = 010, the neighbors are 000 (a
release), 100 and 001 (an index change), and 110 and 011
(an addition). At each iteration we compute the likelihoods
for ki + ki(N − ki) + (N − ki) = N(ki + 1) − k2i states.
We can assume the expected value E(ki) ≈ k since ki values
converge to k, and thus, worst case complexity is O(mNk)
steps.

The model order k is determined automatically within the
algorithm. At each iteration, it stays the same or is incre-
mented/decremented by 1 according to the change in the like-
lihood. We first find the eigenvalues λi of X and the initial
number of dimensions is randomly assigned using probabili-
ties proportional to λi. So, smaller k values are more likely to
be given initially for matrices whose variation is concentrated
in the first few eigenvectors. For big data, we use randomized
PCA [17].

2.4. Probabilistic CUR Decomposition

To express X ≈ CUR, we apply ID on X to compute a
subcollection of columns C and similarly on Xᵀ to compute
a subcollection of rows R. Then, the small linkage matrix U
is found via solving a small least squares problem [1].

3. PROBABILISTIC ID BASED POLYPHONIC
MUSIC TRANSCRIPTION

As an example application, we work on automatic music tran-
scription that is one of the fundamental problems studied in
the field of audio processing. Given polyphonic music, the
aim is to recognize the notes and the time interval in which
they are active. In this section, we are interested in employ-
ing probabilistic ID to reduce the size of the big training data
while keeping the transcription algorithm unchanged. The
work is built up on our previous work [4]. Once the data
is reduced, other polyphonic music transcription algorithms
may make use of this reduction as well. We briefly summa-
rize the transcriber here and show how to make it efficient via
probabilistic ID.

Inspired partially by the idea that human listeners be-
come more successful with training in recognizing musical
constructs, Smaragdis has demonstrated that it is possible to
perform polyphonic pitch tracking successfully via a linear
model that tries to approximate the observed musical data as
a superposition of previously recorded monophonic musical
data [18]: Y ≈ XW where Y is the observed spectrogram,
X is the dictionary matrix obtained from the training data,
and W contains the corresponding weights. Let Xi, with
elements Xi(f, τi), denote the magnitude spectrogram of
monophonic music recordings belonging to I different notes.
Here, i = 1, . . . , I is the note index, f = 1, . . . , F is the
frequency index, and τi = 1, . . . , Ni is the time index where

F is the number of frequency bins and Ni is the number of
columns in Xi. We remove the effect of sound intensity by
normalizing each vector such that its elements sum up to 1
since we are interested only in the pitch of the data. We also
remove the samples below some loudness level. We obtain
the training data by concatenating all training vectors side by
side where there are a total number ofN =

∑I
i=1Ni training

samples. Test data are composed of polyphonic recordings.
Let Y, with values Y (f, t), be the spectrogram of the test
data where t = 1, . . . , T and T is the number of time frames.

The transcription algorithm uses a basic linear model that
describes the relationship between the observed and the train-
ing data where the observed spectrum is expressed as a super-
position of the training vectors:

Y ≈ Ŷ = XW (10)

The aim is to find the weight matrix W which minimizes
D [Y‖XW] whereD[·‖·] is a properly selected cost function.
KL divergence is used as the cost function as described in [4].
We start with random initialization of W, and continue with
the following step until convergence:

W←W �

(
Xᵀ Y

(XW)

Xᵀ1

)
(11)

The � symbol denotes element-wise multiplication and
the division operation is also done element-wise. 1 is a matrix
of all ones of the same size with Y. Active notes are selected
by thresholding. Additionally, each weight value is smoothed
by applying a median filter to remove sharp jumps (See [4]
for other details).

3.1. Improving efficiency via probabilistic ID

In real world applications the training data may be composed
of millions of columns, and it may not fit into the RAM.
Our aim is to make the method efficient in terms of both
time and space complexity. The key point is to determine
which columns of X carry the important information. We
first apply PCA on the unnormalized spectrogram matrix Xi

of each note and reduce the dimension by keeping only the co-
efficients corresponding to the eigenvectors representing 99%
variance of the data. Let X̃i involve the coefficients in the
transformed space. Then, we apply probabilistic ID on X̃i

and find Ji and Ci. Then, we merge Ci ∀i and get C. As a
result, we replace C with X in the rule:

W←W �

(
Cᵀ Y

(CW)

Cᵀ1

)
(12)

Since we discard most of the data and keep only the im-
portant information, the computational gain is very high in
practice. The number of columns sufficient to approximate
the range of the full matrix may be hundreds of times less the

the original size. For a realistic case, if we haveN ≈ 105, and
we choose k = 800, the algorithm becomes nearly 125 times
faster and we use only about 0.8% of the data. This method
can work in real time and handle large amount of data which
can not be handled by conventional methods. Alternatively,
C can be computed via other CUR methods in the literature.
The gain the space & time complexities will be the same, but
the success of the algorithm will vary. We conduct experi-
ments and provide comparative results in the next section.

4. EXPERIMENTS AND RESULTS

In order to evaluate our methods, we have conducted several
experiments. First, we perform experiments on synthetic data
to show that the technique converges to an approximation of
the desired decomposition independent of the initial state; i.e.,
it is stable. Second, we perform experiments on real mu-
sic data to show how to efficiently perform automatic poly-
phonic music transcription via probabilistic ID. Additionally,
we compare the proposed technique with two popular tech-
niques in the literature.

4.1. Experiments with synthetic data

A synthetic experiment is performed to show how probabilis-
tic ID can automatically determine k. We first create 10 vec-
tors using σJ = 1. Then, we interpolate 90 vectors using
σz = 0.3 and add noise using σ = 0.75. Fig. 2a shows the
normalized cumulative sum of eigenvalues,

∑i
j λj/

∑N
j λj ,

found on this matrix using Eq. 7. The rank is actually 10
but it is difficult to determine since the added error spans the
remaining space. Fig. 2b shows the selected number of in-
dices k where we observe that it converges to k = 10 after 30
iterations.

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
u

m
u

la
ti
v
e

 s
u

m
 o

f
e

ig
e

n
v
a

lu
e

s

eigenvectors

(a)

0 5 10 15 20 25 30 35 40

0

2

4

6

8

10

12

14

iteration number

(b)

Fig. 2. Simulation results on noisy data where rank is not
clear: (a) normalized cumulative sum of eigenvalues and (b)
mean and variance of the best estimates of the number of the
selected indices. This experiment is repeated 100 times and
the bars around the points indicate the 95% confidence inter-
vals for cumulative sum (a) and ki (b). The decomposition
gets stable after 30 iterations and the final value of k is found
as 10.

4.2. Polyphonic Music Transcription

In our real data experiments, we have used the MAPS (MIDI
Aligned Piano Sounds) data set [19]. The setup is similar to
[4]: The training set is obtained using 440 monophonic piano
sounds of 44.1 kHz sampling rate where we represent the au-
dio by its magnitude spectrogram which is computed via DFT.
The spectrogram is formed using overlapping Hanning win-
dows of dimension 2048 with a window shift of 512. While
constructing Xi(f, τi), we simply concatenated the spectra
corresponding to the ith note where i = 1, . . . , 88. Note that
88 is the number of keys on a piano. About one third of the
training data is removed due to low loudness and the obtained
final dictionary matrix is 1025 × 115600 and is around 860
MB.

A test set is formed by choosing random sections from five
different polyphonic pieces. It can be said that the test data
is predominantly polyphonic since he polyphony orders (the
number of notes played simultaneously at any time instant)
in the test data are observed to be nearly equally distributed
among the first five values.

In order to evaluate the performance of the methods we
used precision (fraction of retrieved instances that are rele-
vant), recall (fraction of relevant instances that are retrieved)
and f-measure = 2×precision×recall

precision+recall metrics.
The full solution is found using Eq. (11) and an f-measure

of 78.07% is obtained (See [4] for a discussion on the result
and a comparison with other polyphonic music transcription
methods in the literature).

Next, we compute the ID of the dictionary. Since all the
columns are valid spectrum vectors, we assumed the prior to
be uniform, i.e. p(xj) =

1
N for all j.

We observe that σz controls the selected number of in-
dices: The larger the σz , the smaller the k. Probabilistic ID
is performed for each note by taking σz = 0.2 and σ as the
quarter of the standard deviation of all data. After merging the
selected indices per note, a total number of 778 columns out
of 115600 are extracted. The algorithm is performed as given
in Eq. (12) and the result is given in Fig. 3. We only use about
0.8% of the data; the speed is nearly 125 times faster, and we
get an f-measure of 76.54% which is close to the result of the
full solution.

In addition to probabilistic ID, we performed the same
method using two alternative ID methods. First method is
the randomized CUR proposed by Mahoney and Drineas [3]
which is based on the norms of right singular vectors obtained
from the matrix to be decomposed. Their algorithm randomly
selects k vectors proportional to these norms. The aim here is
to sample the columns which reside on the large variation di-
rections and so, minimize the reconstruction error. Second al-
ternative is the column-pivoted Gram-Schmidt method given
in [1]. This algorithm selects the largest vector of the ma-
trix, then it projects all the vectors onto the complement of
the spanning space of this selected vector and selects the one

with the largest norm in this new space. It can be thought
as a greedy approach. As shown in Fig. 3, f-measure values
are found to be 75.18% and 74.70% for the two alternative
methods, respectively. For both methods, k should be given
explicitly. We use k = 9 for each note, and the total number
of columns in C is found as 9×88 = 792 which is close to the
number of columns found by probabilistic ID. These methods
are good candidates for constructing a low rank approxima-
tion to the full matrix in terms of l2 (or frobenius) norm. But
we see that this does not necessarily imply a good candidate
for feature selection. Probabilistic ID proves to be a good way
to determine which columns are more important.

precision recall f−measure

0.65

0.7

0.75

0.8

Full sol’n

Column−pivoted QR

Randomized CUR

Probabilistic ID

Fig. 3. Results obtained on the test set per approach: Prob-
abilistic ID seems to perform close to the full solution and
better than the alternative ones in the literature (Randomized
CUR [3] and column-pivoted QR [1]).

In addition to the overall results, we give the results for
each polyphony order in Fig. 4 for the probabilistic ID ap-
proach. As can be seen, recall rate is perfect in the mono-
phonic case but the precision is low. The precision gets better
while polyphony increases. Using a higher threshold on the
weights may lead to selection of fewer notes as active and this
can improve precision with a trade-off in recall rate if one is
more interested in precision.

1 2 3 4 5 6 Overall

0.4

0.6

0.8

1

Polyphony order

precision

recall

f−measure

Fig. 4. Precision, recall and f-measures for each polyphony
order: The figure shows the results for the probabilistic ID
approach. F-measure seems to be more than 60% for each
polyphony order.

5. CONCLUSION

In this work, a generic probabilistic approach to interpolative
decomposition and CUR decomposition is established and
supported with examples of analytical and numerical ways to
solve the problem. The method can easily be adapted to get
problem-specific interpolative decompositions and the num-
ber of selected columns is determined automatically within
the model. The advantage of ID is that the actual columns
are selected as bases instead of some artificial linear combi-
nations as in SVD. Furthermore, it favors sparsity if the given
matrix is sparse.

Experiments are conducted on both synthetic and real life
data to test the proposed method. It is shown that the method
is stable and it converges to the desired decomposition inde-
pendent of the initial state. The experiments on polyphonic
music transcription show that probabilistic ID stands to be
a good technique for determining the important instances
among the data and remove the redundant and non-relevant
parts. We keep only 0.8% of the data matrix and it performs
very close to the results obtained by using the full matrix.
Furthermore, it seems to perform better than the methods
used in the literature. Like other probabilistic approaches,
it suffers from the running time issues compared to the ran-
domized algorithms. But this is not a significant concern in
our case since the decomposition is done only in the training
phase and the selected instances are used during the test.

This work shows a novel approach to ID and CUR de-
composition using Bayesian inference. As a by-product, we
obtain a method for automatically selecting the rank of the
approximation of the data matrix. As future work, we aim
to analyze different distributions in this framework such as
gamma distribution to add non-negativity constraints on the
factors.

6. REFERENCES

[1] N. Halko, P. G. Martinsson, and J. A. Tropp, “Finding
Structure with Randomness: Probabilistic Algorithms
for Constructing Approximate Matrix Decompositions,”
SIAM Review, 2011.

[2] M. W. Mahoney, “Randomized Algorithms for Matrices
and Data,” Foundations and Trends in Machine Learn-
ing, pp. 123–234, 2011.

[3] M. W. Mahoney and P. Drineas, “CUR Matrix Decom-
positions for Improved Data Analysis,” Proc. of the Na-
tional Acad. of Sci., vol. 106, no. 3, pp. 697–702, 2009.

[4] İ. Arı, U. Şimşekli, A. T. Cemgil, and L. Akarun, “Large
Scale Polyphonic Music Transcription Using Random-
ized Matrix Decompositions,” in EUSIPCO, 2012.

[5] H. Lee and S. Choi, “CUR+NMF for Learning Spectral
Features from Large Data Matrix,” in IEEE Int’l Joint
Conf. on Neural Networks, 2008, pp. 1592–1597.

[6] S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zama-
rashkin, “A Theory of Pseudoskeleton Approxima-
tions,” Linear Alg. and its App., vol. 261, no. 1-3, 1997.

[7] G. W. Stewart, “Four Algorithms for the Efficient Com-
putation of Truncated Pivoted QR Approximations to a
Sparse Matrix,” Num. Mathematik, vol. 83, no. 2, 1999.

[8] P. Drineas, R. Kannan, and M. W Mahoney, “Fast Monte
Carlo Algorithms for Matrices III: Computing a Com-
pressed Approximate Matrix Decomposition,” SIAM
Journal on Computing, vol. 36, pp. 184–206, 2007.

[9] A. Frieze, R. Kannan, and S. Vempala, “Fast Monte-
Carlo Algorithms for Finding Low-rank Approxima-
tions,” Journal of the ACM, pp. 1025–1041, 2004.

[10] J. Bien, Y. Xu, and M. W. Mahoney, “CUR from a
Sparse Optimization Viewpoint,” in Advances in Neu-
ral Information Processing Systems, 2010.

[11] P. Drineas, M. W. Mahoney, and S. Muthukrishnan,
“Relative-Error CUR Matrix Decompositions,” SIAM
Journal on Matrix Analysis and Appl., vol. 30, 2008.

[12] C. M. Bishop, Pattern Recognition and Machine Learn-
ing, Springer, 2007.

[13] C. Févotte and A. T. Cemgil, “Nonnegative Matrix
Factorizations as Probabilistic Inference in Composite
Models,” in EUSIPCO, 2009, pp. 1913–1917.

[14] M. E. Tipping and C. M. Bishop, “Probabilistic Princi-
pal Component Analysis,” Journal of the Royal Statisti-
cal Society. Series B (Statistical Methodology), vol. 61,
no. 3, pp. 611–622, 1999.

[15] Y. K. Yilmaz and A. T. Cemgil, “Algorithms for Proba-
bilistic Latent Tensor Factorization,” Signal Processing,
vol. 92, no. 8, pp. 1853–1863, 2012.

[16] C. Robert and G. Casella, Monte Carlo Statistical Meth-
ods, Springer, 2 edition, 2004.

[17] N. Halko, P. G. Martinsson, Y. Shkolnisky, and
M. Tygert, “An Algorithm for the Principal Compo-
nent Analysis of Large Data Sets,” SIAM Journal on
Scientific Computing, vol. 33, no. 5, pp. 2580, 2011.

[18] P. Smaragdis, “Polyphonic Pitch Tracking by Example,”
in IEEE WASPAA, 2011, pp. 125–128.

[19] V. Emiya, R. Badeau, and B. David, “Multipitch Estima-
tion of Piano Sounds Using a New Probabilistic Spectral
Smoothness Principle,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 18, no. 6, pp.
1643–1654, 2010.

