6.2 SOLVING EASY RECURRENCES

We identify a type of recurrence that can be solved by special methods.

DEF: A recurrence relation

$$
a_{n}=f\left(a_{0}, \ldots, a_{n-1}\right)
$$

has degree k if the function f depends on the term a_{n-k} and if it depends on no terms of lower index. It is linear of degree k if it has the form

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}+g(n)
$$

where each c_{k} is a real function and $c_{k} \neq 0$. It is homogenous if $g(n)=0$.

Example 6.2.1: The recurrence system with initial condition

$$
a_{0}=0
$$

and recurrence relation

$$
a_{n}=a_{n-1}+2 n-1
$$

is linear of degree one and non-homogeneous.

Remark: Similarly, the interest recursion and the Tower of Hanoi recursion are linear of degree one and non-homogeneous.

Example 6.2.2: Fibonacci Numbers
$f_{0}=1 \quad f_{1}=1$
$f_{n}=f_{n-1}+f_{n-2}$
The Fibonacci recurrence is linear of degree two and homogeneous.

Example 6.2.3: Catalan Recursion
$c_{0}=1$
$c_{n}=c_{0} c_{n-1}+c_{1} c_{n-2}+\cdots+c_{n-1} c_{0}$ for $n \geq 1$. The Catalan recusion is quadratic, homogeneous, and not of fixed degree.

Remark: Solving the Catalan recursion is well beyond the level of this course.

SOLVING HOMOG LINEAR RR's with CONST COEFF'S

DEF: The special method for solving an homogeneous linear RR with constant coeff's

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}
$$

is as follows:

1. Assume there exists a solution of the form $a_{n}=r^{n}$ and substitute it into the recurrence:

$$
r^{n}=c_{1} r^{n-1}+c_{2} r^{n-2}+\cdots+c_{k} r^{n-k}
$$

Cancelling the excess powers of r and normalizing yields what is called the characteristic equation:

$$
r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\cdots-c_{k}=0
$$

2. Find the roots $r_{1}, r_{2}, \ldots, r_{k}$ of the char eq, which are called the characteristic roots. 3. Form the general solution

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}+\cdots+\alpha_{k} r_{k}^{n}
$$

4. Use initial conditions to form k simultaneous linear equations in $\alpha_{1}, \ldots, \alpha_{k}$ and solve for them.

DEGREE ONE, LINEAR HOMOGENEOUS

Example 6.2.4: General RR of Degree 1 $a_{0}=d$ initial condition
$a_{n}=c a^{n-1}$ recurrence
char eq: $r-c=0$ has root $r=c$
general solution: $a_{n}=\alpha_{1} c^{n}$
simultaneous linear equations: $d=\alpha_{1} c^{0}=\alpha_{1}$
solution to simult lin eq: $\alpha_{1}=d$
problem solution: $a_{n}=d c^{n}$

Example 6.2.5: Compound Interest again Deposit $\$ 3$ to be compounded annually at rate r.
$p_{0}=3 \quad p_{n}=(1+r) p_{n-1}$
Solution: $p_{n}=3(1+r)^{n}$

DEGREE TWO, LINEAR HOMOGENEOUS

Example 6.2.6: Easy degree two recurrence. $a_{0}=1 \quad a_{1}=4$ initial conditions
$a_{n}=5 a_{n-1}-6 a_{n-2}$ recurrence
char eq: $r^{2}-5 r+6=0$ has roots $r_{1}=3 \quad r_{2}=2$.
gen sol: $a_{n}=\alpha_{1} 3^{n}+\alpha_{2} 2^{n}$
simult lin eqns

$$
\begin{aligned}
& a_{0}=1=\alpha_{1}+\alpha_{2} \\
& a_{1}=4=3 \alpha_{1}+2 \alpha_{2}
\end{aligned}
$$

have solution: $\alpha_{1}=2 \quad \alpha_{2}=-1$.
\Rightarrow problem solution: $a_{n}=2 \cdot 3^{n}-2^{n}$

Consider changing the initial conditions to $a_{0}=2 \quad a_{1}=5$. Then the
simult lin eqns

$$
\begin{aligned}
& a_{0}=2=\alpha_{1}+\alpha_{2} \\
& a_{1}=5=3 \alpha_{1}+2 \alpha_{2}
\end{aligned}
$$

have solution: $\alpha_{1}=1 \quad \alpha_{2}=1$.
\Rightarrow problem solution: $a_{n}=3^{n}+2^{n}$

Example 6.2.7: Fibonacci Numbers again $f_{0}=0 \quad f_{1}=1$
$f_{n}=f_{n-1}+f_{n-2}$
char eq: $r^{2}-r-1=0$ has roots

$$
\frac{1+\sqrt{5}}{2} \text { and } \frac{1-\sqrt{5}}{2}
$$

Etc. The complete solution is

$$
\begin{aligned}
& \begin{aligned}
f_{n} & =\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n} \\
& =\frac{1}{2^{n} \sqrt{5}}\left[(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}\right] \\
& =\frac{1}{2^{n}} \sum_{j=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 j+1} \\
\text { e.g. } f_{5} & =\frac{1}{16}\left[\binom{5}{1}+\binom{5}{3} 5+\binom{5}{5} 5^{2}\right] \\
& =\frac{1}{16}[5+50+25]=\frac{80}{16}=5
\end{aligned},
\end{aligned}
$$

DEGREE THREE, LINEAR HOMOGENEOUS

Example 6.2.8: $\quad a_{n}=6 a_{n-1}-11 a_{n-2}+6 a_{n-3}$
init conds: $a_{0}=2, a_{1}=5, a_{2}=15$
char eq:
$0=r^{3}-6 r^{2}+11 r-6=(r-1)(r-2)(r-3)$ char roots:

$$
r=1,2,3
$$

gen sol:

$$
a_{n}=\alpha_{1} \cdot 1^{n}+\alpha_{2} \cdot 2^{n}+\alpha_{3} \cdot 3^{n}
$$

simult lin eq:

$$
\begin{aligned}
a_{0}=2 & =\alpha_{1}+\alpha_{2}+\alpha_{3} \\
a_{1}=5 & =\alpha_{1}+\alpha_{2} \cdot 2+\alpha_{3} \cdot 3 \\
a_{2}=15 & =\alpha_{1}+\alpha_{2} \cdot 4+\alpha_{3} \cdot 9
\end{aligned}
$$

coeff solns:
$\alpha_{1}=1, \quad \alpha_{2}=-1, \quad \alpha_{3}=2$
unique sol:
$a_{n}=1-2^{n}+2 \cdot 3^{n}$

NONHOMOGENEOUS LINEAR RECURRENCES

We split the solution into a homogeneous part and a particular part.

Example 6.2.9: Tower of Hanoi, again $h_{0}=0$ initial condition
$h_{n}=2 h_{n-1}+1$ recurrence
assoc homog relation $\hat{h}_{n}=2 \hat{h}_{n-1}$ has
homogeneous solution $\hat{h}_{n}=\alpha 2^{n}$
assoc partic relation $\dot{h}_{n}=2 \dot{h}_{n-1}+1$ has
particular solution $\dot{h}_{n}=-1$
simult lin eqn:

$$
h_{0}=0=\hat{h}_{0}+\dot{h}_{0}=\alpha 2^{0}-1
$$

has solution $\alpha=1$
problem solution: $h_{n}=2^{n}-1$.
Remark: The form of the particular solution usually resembles the function of n. In this case

$$
g(n)=1
$$

is a constant function. So we tried $\dot{h}_{n}=K$, and we solved the equation $K=2 K+1$, and obtained $K=-1$.

Example 6.2.10: $a_{n}=3 a_{n-1}+2 n$ init cond: $a_{1}=3$
homog soln:
$\hat{a}_{n}=\alpha 3^{n}$
partic rec rel:
$\hat{a}_{n}=3 \hat{a}_{n-1}+2 n$
trial soln:
$\hat{a}_{n}=c n+d$
Then $c n+d=3[c(n-1)+d]+2 n$,
i.e., $0=n(2 c+2)+(2 d-3 c)$
$\Rightarrow c=-1, d=-3 / 2$
partic soln:
$\hat{a}_{n}=-n-3 / 2$
general soln:

$$
a_{n}=\alpha 3^{n}-n-3 / 2
$$

simult eq:

$a_{1}=3=\alpha 3-1-3 / 2=3 \alpha-5 / 2$ coeff solns:
$\alpha=11 / 6$
unique sol:

$$
a_{n}=\frac{11}{6} 3^{n}-n-\frac{3}{2}
$$

REPEATED ROOTS

Example 6.2.11: A recurrence system $a_{0}=-2 \quad a_{1}=2$ initial conditions
$a_{n}=4 a_{n-1}-4 a_{n-2}$ recurrence char eq: $r^{2}-4 r+4=0$ has roots 2,2 . gen sol: $a_{n}=\alpha_{1} 2^{n}+\alpha_{2} n 2^{n}$
simult lin eqns

$$
\begin{aligned}
& a_{0}=-2=\alpha_{1} \\
& a_{1}=2=2 \alpha_{1}+2 \alpha_{2}
\end{aligned}
$$

have solution: $\alpha_{1}=-2 \quad \alpha_{2}=3$. problem solution: $a_{n}=(-2) \cdot 2^{n}+3 \cdot n 2^{n}$

