6.2 SOLVING EASY RECURRENCES

We identify a type of recurrence that can be solved by special methods.

DEF: A recurrence relation

$$a_n = f(a_0, \dots, a_{n-1})$$

has **degree** k if the function f depends on the term a_{n-k} and if it depends on no terms of lower index. It is **linear of degree** k if it has the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + g(n)$$

where each c_k is a real function and $c_k \neq 0$. It is **homogenous** if g(n) = 0.

Example 6.2.1: The recurrence system with initial condition

$$a_0 = 0$$

and recurrence relation

$$a_n = a_{n-1} + 2n - 1$$

is linear of degree one and non-homogeneous.

Remark: Similarly, the interest recursion and the Tower of Hanoi recursion are linear of degree one and non-homogeneous.

Example 6.2.2: Fibonacci Numbers

$$f_0 = 1 \quad f_1 = 1 f_n = f_{n-1} + f_{n-2}$$

The Fibonacci recurrence is linear of degree two and homogeneous.

Example 6.2.3: Catalan Recursion

$$c_0 = 1$$

 $c_n = c_0 c_{n-1} + c_1 c_{n-2} + \dots + c_{n-1} c_0 \text{ for } n \ge 1.$
The Catalan recusion is quadratic, homogeneous,
and not of fixed degree.

Remark: Solving the Catalan recursion is well beyond the level of this course.

SOLVING HOMOG LINEAR RR's with CONST COEFF'S

DEF: The **special method** for solving an homogeneous linear RR with constant coeff's

 $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$

is as follows:

1. Assume there exists a solution of the form $a_n = r^n$ and substitute it into the recurrence:

$$r^{n} = c_{1}r^{n-1} + c_{2}r^{n-2} + \dots + c_{k}r^{n-k}$$

Cancelling the excess powers of r and normalizing yields what is called the *characteristic equation:*

$$r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - \dots - c_{k} = 0$$

2. Find the roots r_1, r_2, \ldots, r_k of the char eq, which are called the **characteristic roots.**

3. Form the general solution

$$a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \dots + \alpha_k r_k^n$$

4. Use initial conditions to form k simultaneous linear equations in $\alpha_1, \ldots, \alpha_k$ and solve for them.

DEGREE ONE, LINEAR HOMOGENEOUS

Example 6.2.4: General RR of Degree 1 $a_0 = d$ initial condition $a_n = ca^{n-1}$ recurrence char eq: r - c = 0 has root r = cgeneral solution: $a_n = \alpha_1 c^n$ simultaneous linear equations: $d = \alpha_1 c^0 = \alpha_1$ solution to simult lin eq: $\alpha_1 = d$ problem solution: $a_n = dc^n$

Example 6.2.5: Compound Interest again Deposit \$3 to be compounded annually at rate r. $p_0 = 3$ $p_n = (1+r)p_{n-1}$ Solution: $p_n = 3(1+r)^n$

DEGREE TWO, LINEAR HOMOGENEOUS

Example 6.2.6: Easy degree two recurrence. $a_0 = 1$ $a_1 = 4$ initial conditions $a_n = 5a_{n-1} - 6a_{n-2}$ recurrence char eq: $r^2 - 5r + 6 = 0$ has roots $r_1 = 3$ $r_2 = 2$. gen sol: $a_n = \alpha_1 3^n + \alpha_2 2^n$

simult lin eqns
$$a_0 = 1 = \alpha_1 + \alpha_2$$
$$a_1 = 4 = 3\alpha_1 + 2\alpha_2$$

have solution: $\alpha_1 = 2$ $\alpha_2 = -1$. \Rightarrow problem solution: $a_n = 2 \cdot 3^n - 2^n$

Consider changing the initial conditions to $a_0 = 2$ $a_1 = 5$. Then the

simult lin eqns
$$a_0 = 2 = \alpha_1 + \alpha_2$$
$$a_1 = 5 = 3\alpha_1 + 2\alpha_2$$

have solution: $\alpha_1 = 1$ $\alpha_2 = 1$. \Rightarrow problem solution: $a_n = 3^n + 2^n$

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.

Example 6.2.7: Fibonacci Numbers again $f_0 = 0$ $f_1 = 1$ $f_n = f_{n-1} + f_{n-2}$ char eq: $r^2 - r - 1 = 0$ has roots $\frac{1 + \sqrt{5}}{2}$ and $\frac{1 - \sqrt{5}}{2}$

Etc. The complete solution is

$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$
$$= \frac{1}{2^n \sqrt{5}} \left[(1+\sqrt{5})^n - (1-\sqrt{5})^n \right]$$
$$= \frac{1}{2^n} \sum_{j=0}^{\lfloor \frac{n}{2} \rfloor} {n \choose 2j+1}$$

e.g.
$$f_5 = \frac{1}{16} \left[\binom{5}{1} + \binom{5}{3} 5 + \binom{5}{5} 5^2 \right]$$

= $\frac{1}{16} \left[5 + 50 + 25 \right] = \frac{80}{16} = 5$

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.

DEGREE THREE, LINEAR HOMOGENEOUS

Example 6.2.8: $a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$ init conds: $a_0 = 2, a_1 = 5, a_2 = 15$

char eq: $0 = r^3 - 6r^2 + 11r - 6 = (r - 1)(r - 2)(r - 3)$ char roots:

r = 1, 2, 3

gen sol:

 $a_n = \alpha_1 \cdot 1^n + \alpha_2 \cdot 2^n + \alpha_3 \cdot 3^n$ simult lin eq:

$$a_{0} = 2 = \alpha_{1} + \alpha_{2} + \alpha_{3}$$
$$a_{1} = 5 = \alpha_{1} + \alpha_{2} \cdot 2 + \alpha_{3} \cdot 3$$
$$a_{2} = 15 = \alpha_{1} + \alpha_{2} \cdot 4 + \alpha_{3} \cdot 9$$

coeff solns:

 $\alpha_1 = 1, \quad \alpha_2 = -1, \quad \alpha_3 = 2$ unique sol:

 $a_n = 1 - 2^n + 2 \cdot 3^n$

6.2.7

NONHOMOGENEOUS LINEAR RECURRENCES

We split the solution into a homogeneous part and a particular part.

Example 6.2.9: Tower of Hanoi, again $h_0 = 0$ initial condition $h_n = 2h_{n-1} + 1$ recurrence **assoc homog relation** $\hat{h}_n = 2\hat{h}_{n-1}$ has **homogeneous solution** $\hat{h}_n = \alpha 2^n$

assoc partic relation $\dot{h}_n = 2\dot{h}_{n-1} + 1$ has

particular solution $\dot{h}_n = -1$ simult lin eqn:

$$h_0 = 0 = \hat{h}_0 + \dot{h}_0 = \alpha 2^0 - 1$$

has solution $\alpha = 1$

problem solution: $h_n = 2^n - 1$.

Remark: The form of the particular solution usually resembles the function of n. In this case g(n) = 1is a constant function. So we tried $\dot{h}_n = K$, and we solved the equation K = 2K+1, and obtained K = -1. **Example 6.2.10:** $a_n = 3a_{n-1} + 2n$ init cond: $a_1 = 3$ homog soln: $\hat{a}_n = \alpha 3^n$ partic rec rel: $\hat{a}_n = 3\hat{a}_{n-1} + 2n$ trial soln: $\hat{a}_n = cn + d$ Then cn + d = 3[c(n - 1) + d] + 2n, i.e., 0 = n(2c+2) + (2d-3c) $\Rightarrow c = -1, d = -3/2$ partic soln: $\hat{a}_n = -n - 3/2$ general soln: $a_n = \alpha 3^n - n - 3/2$ simult eq: $a_1 = 3 = \alpha 3 - 1 - 3/2 = 3\alpha - 5/2$ coeff solns: $\alpha = 11/6$

unique sol:

$$a_n = \frac{11}{6}3^n - n - \frac{3}{2}$$

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.

REPEATED ROOTS

Example 6.2.11: A recurrence system $a_0 = -2$ $a_1 = 2$ initial conditions $a_n = 4a_{n-1} - 4a_{n-2}$ recurrence char eq: $r^2 - 4r + 4 = 0$ has roots 2, 2. gen sol: $a_n = \alpha_1 2^n + \alpha_2 n 2^n$

simult lin eqns $a_0 = -2 = \alpha_1$ $a_1 = 2 = 2\alpha_1 + 2\alpha_2$

have solution: $\alpha_1 = -2$ $\alpha_2 = 3$. problem solution: $a_n = (-2) \cdot 2^n + 3 \cdot n2^n$