6.1 **RECURRENCE RELATIONS**

DEF: A recurrence system is a finite set of *initial conditions*

 $a_0 = c_0, \quad a_1 = c_1, \quad \dots, \quad a_d = c_d$

and a formula (called a *recurrence relation*)

$$a_n = f(a_0, \dots, a_{n-1})$$

that expresses a subscripted variable as a function of lower-indexed values. A sequence

 $< a_n > = a_0, a_1, a_2, \dots$

satisfying the initial conditions and the recurrence relation is called a *solution*.

Example 6.1.1: The recurrence system with initial condition

$$a_0 = 0$$

and recurrence relation

$$a_n = a_{n-1} + 2n - 1$$

has the sequence of squares as its solution:

$$< a_n > = 0, 1, 4, 9, 16, 25, \dots$$

NÄIVE METHOD OF SOLUTION

Step 1. Use the recurrence to calculate a few more values beyond the given initial values.

Step 2. Spot a pattern and guess the right answer.

Step 3. Prove your answer is correct (by induction).

Example 6.1.1, continued:

Step 1.	Start	ing from $a_0 = 0$, we	calculate
a_1	=	$a_0 + 2 \cdot 1 - 1$	=	0 + 1 = 1
a_2	=	$a_1 + 2 \cdot 2 - 1$	=	1 + 3 = 4
a_1	=	$a_0 + 2 \cdot 3 - 1$	=	4 + 5 = 9
a_1	=	$a_0 + 2 \cdot 4 - 1$	=	9 + 7 = 16

Step 2. Looks like $f(n) = n^2$. Step 3. BASIS: $a_0 = 0 = 0^2 = f(0)$. IND HYP: Assume that $a_{n-1} = (n-1)^2$. IND STEP: Then

$$a_n = a_{n-1} + 2n - 1 \quad \text{from the recursion}$$
$$= (n-1)^2 + 2n - 1 \quad \text{by IND HYP}$$
$$= (n^2 - 2n + 1) + 2n - 1 \quad = \quad n^2 \quad \diamondsuit$$

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.

APPLICATIONS

Example 6.1.2: Compound Interest Deposit \$1 to compound at annual rate r. $p_0 = 1$ $p_n = (1+r)p_{n-1}$

EARLY TERMS: $1, 1 + r, (1 + r)^2, (1 + r)^3, \dots$ APPARENT PATTERN: $p_n = (1 + r)^n$

BASIS: True for n = 0. IND HYP: Assume that $p_{n-1} = (1 + r)^{n-1}$ IND STEP: Then

$$p_n = (1+r)p_{n-1}$$
 by the recursion
= $(1+r)(1+r)^{n-1}$ by IND HYP
= $(1+r)^n$ by arithmetic \diamondsuit

Example 6.1.3: Tower of Hanoi

RECURRENCE SYSTEM $h_0 = 0$ $h_n = 2h_{n-1} + 1$ SMALL CASES: 0, 1, 3, 7, 15, 31, ...APPARENT PATTERN: $h_n = 2^n - 1$ BASIS: $h_0 = 0 = 2^0 - 1$ IND HYP: Assume that $h_{n-1} = 2^{n-1} - 1$ IND STEP: Then $h_n = 2h_{n-1} + 1$ by the recursion

$$h_n = 2h_{n-1} + 1$$
 by the recursion
= $2(2^{n-1} - 1) + 1$ by IND HYP
= $2^n - 1$ by arithmetic \diamondsuit

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.

However, the näive method has limitations:

• It can be non-trivial to spot the pattern.

• It can be non-trivial to prove that the apparent pattern is correct.

Example 6.1.4: Fibonacci Numbers $f_0 = 0$ $f_1 = 1$ $f_n = f_{n-1} + f_{n-2}$ Fibo seq: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, APPARENT PATTERN (ha ha) $f_n = \frac{1}{2^n \sqrt{5}} \left[(1 + \sqrt{5})^n - (1 - \sqrt{5})^n \right]$

It is possible, but not uncomplicated, to simplify this with the binomial expansion and to then use induction. Sometimes there is no fixed limit on the number of previous terms used by a recursion.

Example 6.1.5: Catalan Recursion

$$c_{0} = 1$$

$$c_{n} = c_{0}c_{n-1} + c_{1}c_{n-2} + \dots + c_{n-1}c_{0} \text{ for } n \ge 1.$$
SMALL CASES
$$c_{1} = c_{0}c_{0} = 1 \cdot 1 = 1$$

$$c_{2} = c_{0}c_{1} + c_{1}c_{0} = 1 \cdot 1 + 1 \cdot 1 = 2$$

$$c_{3} = c_{0}c_{2} + c_{1}c_{1} + c_{2}c_{0} = 1 \cdot 2 + 1 \cdot 1 + 2 \cdot 1 = 5$$

$$c_{4} = 1 \cdot 5 + 1 \cdot 2 + 2 \cdot 1 + 5 \cdot 1 = 14$$

$$c_{5} = 1 \cdot 14 + 1 \cdot 5 + 2 \cdot 2 + 5 \cdot 1 + 14 \cdot 1 = 42$$

Catalan seq: $1, 1, 2, 5, 14, 42, \ldots$

SOLUTION:
$$c_n = \frac{1}{n+1} \binom{2n}{n}$$

The Catalan recursion counts binary trees and other objects in computer science.

ADMONITION

- Most recurrence relations have no solution.
- Most sequences have no representation as a recurrence relation. (they are random)