6.1 RECURRENCE RELATIONS

DEF: A recurrence system is a finite set of initial conditions

$$
a_{0}=c_{0}, \quad a_{1}=c_{1}, \quad \ldots, \quad a_{d}=c_{d}
$$

and a formula (called a recurrence relation)

$$
a_{n}=f\left(a_{0}, \ldots, a_{n-1}\right)
$$

that expresses a subscripted variable as a function of lower-indexed values. A sequence

$$
<a_{n}>=a_{0}, a_{1}, a_{2}, \ldots
$$

satisfying the initial conditions and the recurrence relation is called a solution.

Example 6.1.1: The recurrence system with initial condition

$$
a_{0}=0
$$

and recurrence relation

$$
a_{n}=a_{n-1}+2 n-1
$$

has the sequence of squares as its solution:

$$
<a_{n}>=0,1,4,9,16,25, \ldots
$$

NÄIVE METHOD OF SOLUTION

Step 1. Use the recurrence to calculate a few more values beyond the given initial values.

Step 2. Spot a pattern and guess the right answer.

Step 3. Prove your answer is correct (by induction).

Example 6.1.1, continued:

Step 1. Starting from $a_{0}=0$, we calculate

$$
\begin{aligned}
& a_{1}=a_{0}+2 \cdot 1-1=0+1=1 \\
& a_{2}=a_{1}+2 \cdot 2-1=1+3=4 \\
& a_{1}=a_{0}+2 \cdot 3-1=4+5=9 \\
& a_{1}=a_{0}+2 \cdot 4-1=9+7=16
\end{aligned}
$$

Step 2. Looks like $f(n)=n^{2}$.
Step 3. BASIS: $a_{0}=0=0^{2}=f(0)$.
IND HYP: Assume that $a_{n-1}=(n-1)^{2}$.
IND STEP: Then

$$
\begin{aligned}
a_{n} & =a_{n-1}+2 n-1 \quad \text { from the recursion } \\
& =(n-1)^{2}+2 n-1 \quad \text { by IND HYP } \\
& =\left(n^{2}-2 n+1\right)+2 n-1 \quad=\quad n^{2}
\end{aligned}
$$

APPLICATIONS

Example 6.1.2: Compound Interest
Deposit $\$ 1$ to compound at annual rate r.
$p_{0}=1 \quad p_{n}=(1+r) p_{n-1}$
EARLY TERMS: $1,1+r,(1+r)^{2},(1+r)^{3}, \ldots$ APPARENT PATTERN: $p_{n}=(1+r)^{n}$
BASIS: True for $\mathrm{n}=0$.
IND HYP: Assume that $p_{n-1}=(1+r)^{n-1}$
IND STEP: Then

$$
\begin{aligned}
p_{n} & =(1+r) p_{n-1} \quad \text { by the recursion } \\
& =(1+r)(1+r)^{n-1} \quad \text { by IND HYP } \\
& =(1+r)^{n} \quad \text { by arithmetic } \diamond
\end{aligned}
$$

Example 6.1.3: Tower of Hanoi

RECURRENCE SYSTEM

$h_{0}=0$
$h_{n}=2 h_{n-1}+1$
SMALL CASES: $0,1,3,7,15,31, \ldots$
APPARENT PATTERN: $h_{n}=2^{n}-1$
BASIS: $h_{0}=0=2^{0}-1$
IND HYP: Assume that $h_{n-1}=2^{n-1}-1$
IND STEP: Then

$$
\begin{aligned}
h_{n} & =2 h_{n-1}+1 \quad \text { by the recursion } \\
& =2\left(2^{n-1}-1\right)+1 \quad \text { by IND HYP } \\
& =2^{n}-1 \text { by arithmetic } \diamond
\end{aligned}
$$

However, the näive method has limitations:

- It can be non-trivial to spot the pattern.
- It can be non-trivial to prove that the apparent pattern is correct.

Example 6.1.4: Fibonacci Numbers $f_{0}=0 \quad f_{1}=1$
$f_{n}=f_{n-1}+f_{n-2}$
Fibo seq: $0,1,1,2,3,5,8,13,21,34,55, \ldots$. APPARENT PATTERN (ha ha)

$$
f_{n}=\frac{1}{2^{n} \sqrt{5}}\left[(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}\right]
$$

It is possible, but not uncomplicated, to simplify this with the binomial expansion and to then use induction.

Sometimes there is no fixed limit on the number of previous terms used by a recursion.

Example 6.1.5: Catalan Recursion
$c_{0}=1$
$c_{n}=c_{0} c_{n-1}+c_{1} c_{n-2}+\cdots+c_{n-1} c_{0}$ for $n \geq 1$.
SMALL CASES

$$
\begin{aligned}
& c_{1}=c_{0} c_{0}=1 \cdot 1=1 \\
& c_{2}=c_{0} c_{1}+c_{1} c_{0}=1 \cdot 1+1 \cdot 1=2 \\
& c_{3}=c_{0} c_{2}+c_{1} c_{1}+c_{2} c_{0}=1 \cdot 2+1 \cdot 1+2 \cdot 1=5 \\
& c_{4}=1 \cdot 5+1 \cdot 2+2 \cdot 1+5 \cdot 1=14 \\
& c_{5}=1 \cdot 14+1 \cdot 5+2 \cdot 2+5 \cdot 1+14 \cdot 1=42
\end{aligned}
$$

Catalan seq: $1,1,2,5,14,42, \ldots$
SOLUTION: $\quad c_{n}=\frac{1}{n+1}\binom{2 n}{n}$
The Catalan recursion counts binary trees and other objects in computer science.

ADMONITION

- Most recurrence relations have no solution.
- Most sequences have no representation as a recurrence relation. (they are random)

