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6.1 RECURRENCE RELATIONS

def: A recurrence system is a finite set of
initial conditions

a0 = c0, a1 = c1, . . . , ad = cd

and a formula (called a recurrence relation)

an = f(a0, . . . , an−1)

that expresses a subscripted variable as a
function of lower-indexed values. A sequence

< an > = a0, a1, a2, . . .

satisfying the initial conditions and the recur-
rence relation is called a solution.

Example 6.1.1: The recurrence system with
initial condition

a0 = 0

and recurrence relation

an = an−1 + 2n − 1

has the sequence of squares as its solution:

< an > = 0, 1, 4, 9, 16, 25, . . .
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NÄIVE METHOD OF SOLUTION

Step 1. Use the recurrence to calculate a few
more values beyond the given initial values.

Step 2. Spot a pattern and guess the right
answer.

Step 3. Prove your answer is correct
(by induction).

Example 6.1.1, continued:
Step 1. Starting from a0 = 0, we calculate

a1 = a0 + 2 · 1 − 1 = 0 + 1 = 1
a2 = a1 + 2 · 2 − 1 = 1 + 3 = 4
a1 = a0 + 2 · 3 − 1 = 4 + 5 = 9
a1 = a0 + 2 · 4 − 1 = 9 + 7 = 16

Step 2. Looks like f(n) = n2.

Step 3. BASIS: a0 = 0 = 02 = f(0).
IND HYP: Assume that an−1 = (n − 1)2.
IND STEP: Then

an = an−1 + 2n − 1 from the recursion

= (n − 1)2 + 2n − 1 by IND HYP

= (n2 − 2n + 1) + 2n − 1 = n2 ♦
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APPLICATIONS

Example 6.1.2: Compound Interest
Deposit $1 to compound at annual rate r.
p0 = 1 pn = (1 + r)pn−1

EARLY TERMS: 1, 1 + r, (1 + r)2, (1 + r)3, . . .
APPARENT PATTERN: pn = (1 + r)n

BASIS: True for n = 0.
IND HYP: Assume that pn−1 = (1 + r)n−1

IND STEP: Then
pn = (1 + r)pn−1 by the recursion

= (1 + r)(1 + r)n−1 by IND HYP
= (1 + r)n by arithmetic ♦
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Example 6.1.3: Tower of Hanoi

RECURRENCE SYSTEM
h0 = 0
hn = 2hn−1 + 1

SMALL CASES: 0, 1, 3, 7, 15, 31, . . .

APPARENT PATTERN: hn = 2n − 1

BASIS: h0 = 0 = 20 − 1
IND HYP: Assume that hn−1 = 2n−1 − 1

IND STEP: Then
hn = 2hn−1 + 1 by the recursion

= 2(2n−1 − 1) + 1 by IND HYP
= 2n − 1 by arithmetic ♦
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However, the näive method has limitations:
• It can be non-trivial to spot the pattern.
• It can be non-trivial to prove that the
apparent pattern is correct.

Example 6.1.4: Fibonacci Numbers
f0 = 0 f1 = 1
fn = fn−1 + fn−2

Fibo seq: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . .

APPARENT PATTERN (ha ha)

fn =
1

2n
√

5

[
(1 +

√
5)n − (1 −

√
5)n

]

It is possible, but not uncomplicated, to simplify
this with the binomial expansion and to then use
induction.
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Sometimes there is no fixed limit on the number
of previous terms used by a recursion.

Example 6.1.5: Catalan Recursion
c0 = 1
cn = c0cn−1 + c1cn−2 + · · · + cn−1c0 for n ≥ 1.

SMALL CASES
c1 = c0c0 = 1 · 1 = 1
c2 = c0c1 + c1c0 = 1 · 1 + 1 · 1 = 2
c3 = c0c2 + c1c1 + c2c0 = 1 · 2 + 1 · 1 + 2 · 1 = 5
c4 = 1 · 5 + 1 · 2 + 2 · 1 + 5 · 1 = 14
c5 = 1 · 14 + 1 · 5 + 2 · 2 + 5 · 1 + 14 · 1 = 42

Catalan seq: 1, 1, 2, 5, 14, 42, . . ..

SOLUTION: cn =
1

n + 1

(
2n

n

)

The Catalan recursion counts binary trees and
other objects in computer science.

ADMONITION

• Most recurrence relations have no solution.

• Most sequences have no representation as a
recurrence relation. (they are random)
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