
Section 3.4 Recursive Definitions 3.4.1

3.4 RECURSIVE DEFINITIONS

Functions can be defined recursively. The
simplest form of recursive definition of a
function f on the natural numbers specifies a
basis rule

(B) the value f(0)

and a recursion rule

(R) how to obtain f(n) from f(n − 1), ∀n ≥ 1

Example 3.4.1: n-factorial n!
0! = 1(B)

(n + 1)! = (n + 1) · n!(R)

However, recursive definitions often take some-
what more general forms.

Example 3.4.2: mergesort (A[1 . . . 2n]: real)
if n = 0

return(A)
otherwise

return(merge (m’sort(1st half), m’sort(2nd half)))
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Since a sequence is defined to be a special kind
of a function, some sequences can be specified
recursively.

Example 3.4.3: Hanoi sequence
0, 1, 3, 7, 15, 31, . . .
h0 = 0
hn = 2hn−1 + 1 for n ≥ 1

Example 3.4.4: Fibonacci seq
1, 1, 2, 3, 5, 8, 13, . . .
f0 = 1
f1 = 1
fn = fn−1 + fn−2 for n ≥ 2

Example 3.4.5: partial sums of sequences
n∑

j=0

aj =
{

a0 if n = 0∑n−1
j=0 aj + an otherwise

Example 3.4.6: Catalan sequence
1, 1, 2, 5, 14, 42, . . .
c0 = 1
cn = c0cn−1 + c1cn−2 + · · · + cn−1c0 for n ≥ 1
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RECURSIVE DEFINITION of SETS

def: A recursive definition of a set S com-
prises the following:

(B) a basis clause that specifies a set of
primitive elements;

(R) a recursive clause that specifies how ele-
ments of the set may be constructed from ele-
ments already known to be in set S; there may
be several recursive subclauses;

(E) an implicit exclusion clause that anything
not in the set as a result of the basis clause or
the recursive clause is not in set S.

Backus Normal Form (BNF) is an example of
a context-free grammar that is useful for giving
resursive definitions of sets. In W3261, you will
learn that context-free languages are recognizable
by pushdown automata.
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Example 3.4.7: a rec. def. set of integers

(B) 7, 10 ∈ S

(R) if r ∈ S then r + 7, r + 10 ∈ S

This reminds us of the postage stamp problem.

Claim (∀n ≥ 54)[n ∈ S]

Basis: 54 = 2 · 7 + 4 · 10

Ind Hyp: Assume n = r · 7 + s · 10 with n ≥ 54.

Ind Step: Two cases.

Case 1: r ≥ 7. Then n+1 = (r−7) ·7+(s+5) ·10.

Case 2: r < 7 ⇒ r · 7 ≤ 42 ⇒ s ≥ 2.

Then n + 1 = (r + 3) · 7 + (s − 2) · 10.

In computer science, we often use recursive
definitions of sets of strings.
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RECURSIVE DEFINITION of STRINGS

notation: The set of all strings in the alphabet
Σ is generally denoted Σ∗.

Example 3.4.8: {0, 1}∗ denotes the set of all
binary strings.

def: string in an alphabet Σ

(B) (empty string) λ is a string;

(R) If s is a string and b ∈ Σ, then sb is a string.

Railroad Normal Form for strings

Example 3.4.9: BNF for strings

〈string〉 ::= λ | 〈string〉〈character〉
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RECURSIVE DEFINITION of IDENTIFIERS

def: An identifier is (for some programming
languages) either
(B) a letter, or
(R) an identifier followed by a digit or a letter.

Example 3.4.10: BNF for identifiers

〈lowercase letter〉 ::= a | b | · · · | z

〈uppercase letter〉 ::= A | B | · · · | Z

〈letter〉 ::= 〈lowercase letter〉 | 〈uppercase letter〉
〈digit〉 ::= 0 | 1 | · · · | 9

〈identifier〉 ::= 〈letter〉 | 〈identifier〉〈letter〉
| 〈identifier〉〈digit〉
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ARITHMETIC EXPRESSIONS

def: arithmetic expressions

(B) A numeral is an arithmetic expression.

(R) If e1 and e2 are arithmetic expressions, then
all of the following are arithmetic expressions:

e1 + e2, e1 − e2, e1 ∗ e2, e1/e2, e1 ∗ ∗e2, (e1)

Example 3.4.11: Backus Normal Form

〈expression〉 ::= 〈numeral〉
| 〈expression〉 + 〈expression〉
| 〈expression〉 − 〈expression〉
| 〈expression〉 ∗ 〈expression〉
| 〈expression〉/〈expression〉
| 〈expression〉 ∗ ∗〈expression〉
| (〈expression〉)
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SUBCLASSES of STRINGS

Example 3.4.12: binary strings of even length
(B) λ ∈ S
(R) If b ∈ S, then b00, b01, b10, b11 ∈ S.

Example 3.4.13: binary strings of even length
that start with 1
(B) 10, 11 ∈ S
(R) If b ∈ S, then b00, b01, b10, b11 ∈ S.

def: A strict palindrome is a character string
that is identical to its reverse. (In natural lan-
guage, blanks and other punctuation are ignored,
as is the distinction between upper and lower
case letters.)

Able was I ere I saw Elba.

Madam, I’m Adam.
Eve.

Example 3.4.14: set of binary palindromes
(B) λ, 0, 1 ∈ S
(R) If x ∈ S then 0x0, 1x1 ∈ S.
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LOGICAL PROPOSITIONS

def: propositional forms

(B) p, q, r, s, t, u, v, w are propositional forms

(R) If x and y are propositional forms, then so
are ¬x, x ∧ y, x ∨ y, x → y, x ↔ y and (x).

Propositional forms under basis clause (B) are
called atomic.

Remark: Recursive definition of a set
facilitates proofs by induction about properties
of its elements.

Proposition 3.4.1. Every proposition has an
even number of parentheses.

Proof: by induction on the length of the
derivation of a proposition.

Basis Step. All the atomic propositions have
evenly many parentheses.

Ind Step. Assume that propositions x and y have
evenly many parentheses. Then so do proposi-
tions ¬x, x ∧ y, x ∨ y, x → y, x ↔ y and (x).
♦
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CIRCULAR DEFINITIONS

def: A would-be recursive definition is
circular if the sequence of iterated
applications it generates fails to terminate in
applications to elements of the basis set.

Example 3.4.15: a circular definition from
Index and Glossary of Knuth, Vol 1.

Circular Definition, 260
see Definition, circular

Definition, circular,
see Circular definition
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