3.4 RECURSIVE DEFINITIONS

Functions can be defined recursively. The simplest form of recursive definition of a function f on the natural numbers specifies a basis rule
(B) the value $f(0)$
and a recursion rule
(R) how to obtain $f(n)$ from $f(n-1), \forall n \geq 1$

Example 3.4.1: n-factorial n !
(B)
$0!=1$
(R)

$$
(n+1)!=(n+1) \cdot n!
$$

However, recursive definitions often take somewhat more general forms.

Example 3.4.2: mergesort $\left(A\left[1 \ldots 2^{n}\right]\right.$: real $)$ if $\mathrm{n}=0$
return (A)
otherwise
return(merge (m'sort(1st half), m'sort(2nd half)))

Since a sequence is defined to be a special kind of a function, some sequences can be specified recursively.

Example 3.4.3: Hanoi sequence
$0,1,3,7,15,31, \ldots$
$h_{0}=0$
$h_{n}=2 h_{n-1}+1$ for $n \geq 1$
Example 3.4.4: Fibonacci seq
$1,1,2,3,5,8,13, \ldots$
$f_{0}=1$
$f_{1}=1$
$f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 2$
Example 3.4.5: partial sums of sequences

$$
\sum_{j=0}^{n} a_{j}= \begin{cases}a_{0} & \text { if } n=0 \\ \sum_{j=0}^{n-1} a_{j}+a_{n} & \text { otherwise }\end{cases}
$$

Example 3.4.6: Catalan sequence

$1,1,2,5,14,42, \ldots$
$c_{0}=1$
$c_{n}=c_{0} c_{n-1}+c_{1} c_{n-2}+\cdots+c_{n-1} c_{0}$ for $n \geq 1$

RECURSIVE DEFINITION of SETS

DEF: A recursive definition of a set S comprises the following:
(B) a basis clause that specifies a set of primitive elements;
(R) a recursive clause that specifies how elements of the set may be constructed from elements already known to be in set S; there may be several recursive subclauses;
(E) an implicit exclusion clause that anything not in the set as a result of the basis clause or the recursive clause is not in set S.
Backus Normal Form (BNF) is an example of a context-free grammar that is useful for giving resursive definitions of sets. In W3261, you will learn that context-free languages are recognizable by pushdown automata.

Example 3.4.7: a rec. def. set of integers
(B) $7,10 \in S$
(R) if $r \in S$ then $r+7, r+10 \in S$

This reminds us of the postage stamp problem.
Claim ($\forall n \geq 54$) $[n \in S]$
Basis: $54=2 \cdot 7+4 \cdot 10$
Ind Hyp: Assume $n=r \cdot 7+s \cdot 10$ with $n \geq 54$.
Ind Step: Two cases.
Case 1: $r \geq 7$. Then $n+1=(r-7) \cdot 7+(s+5) \cdot 10$.
Case 2: $r<7 \Rightarrow r \cdot 7 \leq 42 \Rightarrow s \geq 2$.
Then $n+1=(r+3) \cdot 7+(s-2) \cdot 10$.
In computer science, we often use recursive definitions of sets of strings.

RECURSIVE DEFINITION of STRINGS

notation: The set of all strings in the alphabet Σ is generally denoted Σ^{*}.

Example 3.4.8: $\quad\{0,1\}^{*}$ denotes the set of all binary strings.

DEF: string in an alphabet Σ
(B) (empty string) λ is a string;
(R) If s is a string and $b \in \Sigma$, then $s b$ is a string.

Railroad Normal Form for strings

Example 3.4.9: BNF for strings \langle string $\rangle::=\lambda \mid\langle$ string $\rangle\langle$ character \rangle

RECURSIVE DEFINITION of IDENTIFIERS

DEF: An identifier is (for some programming languages) either
(B) a letter, or
(R) an identifier followed by a digit or a letter.

Example 3.4.10: BNF for identifiers

$$
\begin{gathered}
\langle\text { lowercase_letter }\rangle::=a|b| \cdots \mid z \\
\langle\text { uppercase_letter }\rangle::=A|B| \cdots \mid Z \\
\langle\text { letter }\rangle::=\langle\text { lowercase_letter }\rangle \mid\langle\text { uppercase_letter }\rangle \\
\langle\text { digit }\rangle::=0|1| \cdots \mid 9 \\
\langle\text { identifier }\rangle::=\langle\text { letter }\rangle \mid\langle\text { identifier }\rangle\langle\text { letter }\rangle \\
\mid\langle\text { identifier }\rangle\langle\text { digit }\rangle
\end{gathered}
$$

ARITHMETIC EXPRESSIONS

DEF: arithmetic expressions

(B) A numeral is an arithmetic expression.
(R) If e_{1} and e_{2} are arithmetic expressions, then all of the following are arithmetic expressions:

$$
e_{1}+e_{2}, e_{1}-e_{2}, e_{1} * e_{2}, e_{1} / e_{2}, e_{1} * * e_{2},\left(e_{1}\right)
$$

Example 3.4.11: Backus Normal Form

$$
\begin{aligned}
\langle\text { expression }\rangle:= & \langle\text { numeral }\rangle \\
& \mid\langle\text { expression }\rangle+\langle\text { expression }\rangle \\
& \mid\langle\text { expression }\rangle-\langle\text { expression }\rangle \\
& \mid\langle\text { expression }\rangle *\langle\text { expression }\rangle \\
& \mid\langle\text { expression }\rangle /\langle\text { expression }\rangle \\
& \mid\langle\text { expression }\rangle * *\langle\text { expression }\rangle \\
& \mid(\langle\text { expression }\rangle)
\end{aligned}
$$

SUBCLASSES of STRINGS

Example 3.4.12: binary strings of even length (B) $\lambda \in S$
(R) If $b \in S$, then $b 00, b 01, b 10, b 11 \in S$.

Example 3.4.13: binary strings of even length that start with 1
(B) $10,11 \in S$
(R) If $b \in S$, then $b 00, b 01, b 10, b 11 \in S$.

DEF: A strict palindrome is a character string that is identical to its reverse. (In natural language, blanks and other punctuation are ignored, as is the distinction between upper and lower case letters.)
Able was I ere I saw Elba.
Madam, I'm Adam.
Eve.
Example 3.4.14: set of binary palindromes (B) $\lambda, 0,1 \in S$
(R) If $x \in S$ then $0 x 0,1 x 1 \in S$.

LOGICAL PROPOSITIONS

DEF: propositional forms

(B) p, q, r, s, t, u, v, w are propositional forms
(R) If x and y are propositional forms, then so are $\neg x, x \wedge y, x \vee y, x \rightarrow y, x \leftrightarrow y$ and (x).
Propositional forms under basis clause (B) are called atomic.

Remark: Recursive definition of a set facilitates proofs by induction about properties of its elements.

Proposition 3.4.1. Every proposition has an even number of parentheses.

Proof: by induction on the length of the derivation of a proposition.
Basis Step. All the atomic propositions have evenly many parentheses.
Ind Step. Assume that propositions x and y have evenly many parentheses. Then so do propositions $\neg x, x \wedge y, x \vee y, x \rightarrow y, x \leftrightarrow y$ and (x). \diamond

CIRCULAR DEFINITIONS

DEF: A would-be recursive definition is
circular if the sequence of iterated applications it generates fails to terminate in applications to elements of the basis set.

Example 3.4.15: a circular definition from Index and Glossary of Knuth, Vol 1.

Circular Definition, 260 see Definition, circular
Definition, circular, see Circular definition

