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3.3 MATHEMATICAL INDUCTION

From modus ponens:

p basis assertion
p → q conditional assertion

q conclusion

we can easily derive “double modus ponens”:

p0 basis assertion
p0 → p1 conditional assertion
p1 → p2 conditional assertion

p2 conclusion

We might also derive triple modus ponens,
quadruple modus ponens, and so on. Thus, we
have no trouble proving assertions about arbi-
trarily large integers. For instance,

The initial domino falls.
If any of the first 999 dominoes falls,

then so does its successor.
Therefore, the first 1000 dominoes all fall down.
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0 n n+1

and

basis induction hypothesis

imply

 •  •  •  •  •

0 1 2 3 4

(∀ n)

Chapter 3 MATHEMATICAL REASONING 3.3.2

The induction axiom for the integers may be
characterized as

THE GREAT LEAP TO INFINITY

Given a countably infinite row of dominoes,
suppose that:
(1) The initial domino falls.
(2) If domino n, then so domino n + 1.

Conclusion: All the dominoes all fall down.
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Example 3.3.1: a proof by induction
Calculate the sum of the first k odd numbers:

1 + 3 + 5 + · · · + (2k − 1)

Practical Method for General Problem Solving.
Special Case: Deriving a Formula
Step 1. Calculate the result for some small cases.
Step 2. Guess a formula to match all those cases.
Step 3. Verify your guess in the general case.

Step 1. examine small cases
(empty sum) = 0

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

Step 2. It sure looks like 1+3+ ...+(2k−1) = k2.

Step 3. Try to prove this assertion by induction.

(∀k)




k∑
j=1

(2j − 1) = k2




(see next page for proof)
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Chapter 3 MATHEMATICAL REASONING 3.3.4

Basis Step.




k∑
j=1

(2j − 1) = k2


 when k = 0

Ind Hyp.




k∑
j=1

(2j − 1) = k2


 when k = n

Ind Step. Consider the case k = n + 1.

n+1∑
j=1

(2j − 1) =
n∑

j=1

(2j − 1) + [2(n + 1) − 1]

=
n∑

j=1

(2j − 1) + 2n + 1

= n2 + 2n + 1 by ind. hyp.

= (n + 1)2 by factoring ♦

Why is induction important to CS majors?

It is the method used to prove that a loop or a
recursively defined function correctly calculates
the intended result. (just for a start)
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Section 3.3 Mathematical Induction 3.3.5

Example 3.3.2: another proof by induction
Calculate the sum of the first k numbers:

1 + 2 + 3 + · · · + k

Step 1. examine small cases

(empty sum) = 0 =
0 · 1
2

1 = 1 =
1 · 2
2

1 + 2 = 3 =
2 · 3
2

1 + 2 + 3 = 6 =
3 · 4
2

1 + 2 + 3 + 4 = 10 =
4 · 5
2

Step 2. Infer pattern:
k∑

j=1

j =
k(k + 1)

2
.

Step 3. Use induction proof to verify pattern.

See next page.
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Chapter 3 MATHEMATICAL REASONING 3.3.6

Proposition 3.3.1.
k∑

j=1

j =
k(k + 1)

2
.

Basis Step.
k∑

j=1

j =
k(k + 1)

2
=

0 · 1
2

when k = 0.

Ind Hyp.
k∑

j=1

j =
k(k + 1)

2
when k = n.

Ind. Step.
n+1∑
j=1

j =
n∑

j=1

j + (n + 1)

=
n(n + 1)

2
+ (n + 1) by ind hyp

=
n(n + 1)

2
+

2(n + 1)
2

by arithmetic

=
n(n + 1) + 2(n + 1)

2
by arithmetic

=
(n + 2)(n + 1)

2
distrib in numerator

=
(n + 1)(n + 2)

2
commutativity ♦
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Section 3.3 Mathematical Induction 3.3.7

NONALGEBRAIC APPLICATIONS of INDUCTION

Consider tiling a 2k-by-2k chessboard.
(k = 3 in the figure below)

with L-shaped tiles, so that one corner-square is
left uncovered.

Basis Step. You can do this when k = 0.

Ind Hyp. Assume you can do this for k = n.

Ind. Step. Prove you can do it for k = n+1.
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Chapter 3 MATHEMATICAL REASONING 3.3.8

ALTERNATIVE FORMS of INDUCTION

In a proof by induction, verifying the inductive
premise means you show that the antecedent of
the quantified statement implies the conclusion.

def: In a proof by mathematical induction, the
inductive hypothesis is the antecedent of the
inductive premise.

Standard 0-based inductive rule of inference:

0 ∈ S basis premise
(∀n)[n ≥ 0 ∧ n ∈ S ⇒ n + 1 ∈ S] ind prem

(∀n)[n ≥ 0 ⇒ n ∈ S] conclusion

Alternative Form 1. Using an integer other than
zero as a basis.

b ∈ S basis premise
(∀n)[n ≥ b ∧ n ∈ S ⇒ n + 1 ∈ S] ind prem

(∀n)[n ≥ b ⇒ n ∈ S] conclusion
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Example 3.3.3: using 5 as the basis
n2 > 2n + 1 for all n ≥ 5

Basis Step. 52 > 2 · 5 + 1

Ind Hyp. Assume k2 > 2k + 1 for k ≥ 5.

Ind. Step.

(k + 1)2 = k2 + 2k + 1 by arithmetic
> (2k + 1) + 2k + 1 by ind hyp
= 4k + 2 by arithmetic
= 2(k + 1) + 2k by arithmetic
≥ 2(k + 1) + 10 since k ≥ 5
≥ 2(k + 1) + 1 since 10 ≥ 1 ♦
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Chapter 3 MATHEMATICAL REASONING 3.3.10

Example 3.3.4: 2n > n2 for all n ≥ 5.

Basis Step. 25 > 52

Ind Hyp. Assume 2k > k2 for k ≥ 5

Ind. Step.

2k+1 = 2 · 2k arithmetic

= 2k + 2k arithmetic

> k2 + k2 ind. hyp.

> k2 + (2k + 1) by Example 3.3.3

= (k + 1)2 arithmetic ♦

Example 3.3.5: Prove that any postage of
8 cents or more can be created from nothing but
3-cent and 5-cent stamps.

Basis Step. 8 = 1 · 3/c + 1 · 5/c

Ind Hyp. Assume n/c possible from 3’s and 5’s.

Ind. Step. Try to make (n + 1)/c postage.

Suppose that n = r · 3/c + s · 5/c

Case 1: s ≥ 1. Then n + 1 = . . .

Case 2: s = 0. Then n + 1 = . . .
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Alternative Form 2. Inductive hyposthesis is that
the first n dominoes all fall down.

b ∈ S basis premise
(∀n)[n ≥ b ∧ (∀k ≤ n)[k ∈ S] ⇒ n + 1 ∈ S] ind p

(∀n)[n ≥ b ⇒ n ∈ S] conclusion

Example 3.3.6: Prove that every integer n > 0
is the product of finitely many primes.

Basis Step. 1 is the empty product.

Ind Hyp. Assume that 1, . . . , n are each a prod-
uct of finitely many primes.

Ind Step.
(1) Either n + 1 is prime, or ∃b, c ∈ Z such that
n + 1 = bc. (law of excl middle, def of prime)
(2) But b and c are the products of finitely many
primes. (by Ind Hyp)
(3) Thus, so is bc. ♦
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Chapter 3 MATHEMATICAL REASONING 3.3.12

Mind-Benders re Induction

1. 2/3 ancestry

2. All solid billiard balls are the same color.

3. Everyone is essentially bald.
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