3.2 SEQUENCES AND SUMMATIONS

DEF: A sequence in a set A is a function ffrom a subset of the integers (usually $\{0, 1, 2, ...\}$ or $\{1, 2, 3, ...\}$) to A. The values of a sequence are also called **terms** or **entries**.

NOTATION: The value f(n) is usually denoted a_n . A sequence is often written a_0, a_1, a_2, \ldots

Example 3.2.1: Two sequences.

$$a_n = \frac{1}{n}$$
 $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$
 $b_n = (-1)^n$ $1, -1, 1, -1, \dots$

Example 3.2.2: Five ubiquitous sequences.

$$n^{2} \quad 0, 1, 4, 9, 16, 25, 36, 49, \dots$$

$$n^{3} \quad 0, 1, 8, 27, 64, 125, 216, 343, \dots$$

$$2^{n} \quad 1, 2, 4, 8, 16, 32, 64, 128, \dots$$

$$3^{n} \quad 1, 3, 9, 27, 81, 243, 729, 2187, \dots$$

$$n! \quad 1, 1, 2, 6, 24, 120, 720, 5040, \dots$$

STRINGS

DEF: A set of characters is called an **alphabet**.

Example 3.2.3: Some common alphabets:

 $\{0,1\}$ the binary alphabet

 $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ the decimal digits

 $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}$ the hexadecimal digits

 $\{A, B, C, D, \dots, X, Y, Z\}$ English uppercase ASCII

DEF: A *string* is a sequence in an alphabet.

NOTATION: Usually a string is written without commas, so that consecutive characters are jux-taposed.

Example 3.2.4: If f(0) = M, f(1) = A, f(2) = T, and f(3) = H, then write "MATH".

SPECIFYING a RULE

Problem: Given some initial terms $a_0, a_1, ..., a_k$ of a sequence, try to construct a rule that is consistent with those initial terms.

Approaches: There are two standard kinds of rule for calculating a generic term a_n .

DEF: A **recursion** for a_n is a function whose arguments are earlier terms in the sequence.

DEF: A **closed form** for a_n is a formula whose argument is the subscript n.

Example 3.2.5: 1, 3, 5, 7, 9, 11, ... recursion: $a_0 = 1$; $a_n = a_{n-1} + 2$ for $n \ge 1$ closed form: $a_n = 2n + 1$

The differences between consecutive terms often suggest a recursion. Finding a recursion is usually easier than finding a closed formula.

Example 3.2.6: 1, 3, 7, 13, 21, 31, 43, ... recursion: $b_0 = 1$; $b_n = b_{n-1} + 2n$ for $n \ge 1$ closed form: $b_n = n^2 + n + 1$ Sometimes, it is significantly harder to construct a closed formula.

Example 3.2.7: 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

recursion:
$$c_0 = 1, c_1 = 1;$$

 $c_n = c_{n-1} + c_{n-2} \text{ for } n \ge 1$

closed form: $c_n = \frac{1}{\sqrt{5}} \left[G^{m+1} - g^{m+1} \right]$ where $G = \frac{1+\sqrt{5}}{2}$ and $g = \frac{1-\sqrt{5}}{2}$

INFERRING a RULE

The ESSENCE of science is inferring rules from partial data.

Example 3.2.8: Sit under apple tree. Infer gravity.

Example 3.2.9: Watch starlight move 0.15 arc-seconds in total eclipse. Infer relativity.

Example 3.2.10: Observe biological species. Infer DNA.

Important life skill: Given a difficult general problem, start with special cases you can solve.

Example 3.2.11: Find a recursion and a closed form for the arithmetic progression:

 $c, c+d, c+2d, c+3d, \ldots$

recursion: $a_0 = c$; $a_n = a_{n-1} + d$ closed form: $a_n = c + nd$.

Q: How would you decide that a given sequence is an arithmetic progression?

A: Calculate differences betw consec terms.

DEF: The **difference sequence** for a sequence a_n is the sequence $a'_n = a_n - a_{n-1}$ for $n \ge 1$. Example 3.2.5 redux: $\begin{array}{ccc} a_n : & 1 & 3 & 5 & 7 & 9 & 11 \\ a'_n : & 2 & 2 & 2 & 2 & 2 \end{array}$

Analysis: Since a'_n is constant, the sequence is specified by this recursion:

 $a_0 = 1; a_n = a_{n-1} + 2$ for $n \ge 1$.

Moreover, it has this closed form:

$$a_n = a_0 + a'_1 + a'_2 + \dots + a'_n$$

= $a_0 + 2 + 2 + \dots + 2 = 1 + 2n$

If you don't get a constant sequence on the first difference, then try reiterating.

Revisit Example 1.7.6: $1, 3, 7, 13, 21, 31, 43, \ldots$

Analysis: Since b''_n is constant, we have $b'_n = 2 + 2n$

Therefore,

$$b_n = b_0 + b'_1 + b'_2 + \dots + b'_n$$

= $b_0 + 2\sum_{j=1}^n j = 1 + (n^2 + n) = n^2 + n + 1$

Consolation Prize: Without knowing about finite sums, you can still extend the sequence:

b_n :	1	3	7	13	21	31	43	$\underline{57}$
b'_n :	2	4	6	8	10	12	<u>14</u>	
b_n'' :	2	2	2	2	2	<u>2</u>		

SUMMATIONS

DEF: Let a_n be a sequence. Then the **big-sigma** notation

 $\sum_{j=m}^{n} a_j$

means the sum

$$a_m + a_{m+1} + a_{m+2} + \dots + a_{n-1} + a_n$$

TERMINOLOGY: j is the index of summation TERMINOLOGY: m is the lower limit TERMINOLOGY: n is the upper limit TERMINOLOGY: a_j is the summand

Theorem 3.2.1. These formulas for summing falling powers are provable by induction (see $\S 3.3$):

$$\sum_{j=1}^{n} j^{\underline{1}} = \frac{1}{2}(n+1)^{\underline{2}} \qquad \sum_{j=1}^{n} j^{\underline{2}} = \frac{1}{3}(n+1)^{\underline{3}}$$
$$\sum_{j=1}^{n} j^{\underline{3}} = \frac{1}{4}(n+1)^{\underline{4}} \qquad \sum_{j=1}^{n} j^{\underline{k}} = \frac{1}{k+1}(n+1)^{\underline{k+1}}$$

Example 3.2.12: True Love and Thm 3.2.1 On the j^{th} day ... True Love gave me $j + (j-1) + \dots + 1 = \frac{(j+1)^2}{2}$ gifts.

$$= \frac{1}{2} \sum_{j=2}^{13} j^2 = \frac{1}{2} \left[2^2 + \dots + 13^2 \right]$$
$$= \frac{1}{2} \left[2 + 6 + \dots + 78 \right] = 364 \text{ slow}$$
$$= \frac{1}{2} \cdot \frac{14^3}{3} = 364 \text{ fast}$$

Corollary 3.2.2. High-powered look-ahead to formulas for summing $j^k : j = 0, 1, ..., n$.

$$\sum_{j=1}^{n} j^{2} = \sum_{j=1}^{n} (j^{2} + j^{1}) = \frac{1}{3}(n+1)^{3} + \frac{1}{2}(n+1)^{2}$$
$$\sum_{j=1}^{n} j^{3} = \sum_{j=1}^{n} (j^{3} + 3j^{2} + j^{1}) = \cdots$$

POTLATCH RULES for CARDINALITY

DEF: nondominating cardinality: Let A and B be sets. Then $|A| \leq |B|$ means that \exists one-to-one function $f: A \to B$.

DEF: Set A and B have **equal cardinality** (write |A| = |B|) if \exists bijection $f : A \to B$, which obviously implies that $|A| \leq |B|$ and $|B| \leq |A|$.

DEF: strictly dominating cardinality: Let A and B be sets. Then |A| < |B| means that $|A| \le |B|$ and $|A| \ne |B|$.

DEF: The **cardinality** of a set A is n if $|A| = |\{1, 2, ..., n\}|$ and 0 if $A = \emptyset$. Such cardinalities are called **finite**. NOTATION: |A| = n.

DEF: The **cardinality** of \mathcal{N} is ω ("omega"), or alternatively, \aleph_0 ("aleph null").

DEF: A set is **countable** if it is finite or ω .

Remark: \aleph_0 is the smallest infinite cardinality. The real numbers have cardinality \aleph_1 ("aleph one"), which is larger than \aleph_0 , for reasons to be given.

INFINITE CARDINALITIES

Proposition 3.2.3. There are as many even nonnegative numbers as non-negative numbers.

Proof: f(2n) = n is a bijection.

Theorem 3.2.4. There are as many positive integers as rational fractions.

$$\frac{1}{1} \quad \frac{1}{2} \quad \frac{1}{3} \quad \frac{1}{4} \quad \frac{1}{5} \quad \frac{1}{6} \quad \cdots \\
\frac{2}{1} \quad \frac{2}{2} \quad \frac{2}{3} \quad \frac{2}{4} \quad \frac{2}{5} \quad \frac{2}{6} \quad \cdots \\
\frac{3}{1} \quad \frac{3}{2} \quad \frac{3}{3} \quad \frac{3}{4} \quad \frac{3}{5} \quad \frac{3}{6} \quad \cdots \\
\frac{4}{1} \quad \frac{4}{2} \quad \frac{4}{3} \quad \frac{4}{4} \quad \frac{4}{5} \quad \frac{4}{6} \quad \cdots \\
\frac{5}{1} \quad \frac{5}{2} \quad \frac{5}{3} \quad \frac{5}{4} \quad \frac{5}{5} \quad \frac{5}{6} \quad \cdots \\
\vdots \quad \ddots \\
\mathbf{Proof:} \quad f\left(\frac{p}{q}\right) = \frac{(p+q-1)(p+q-2)}{2} + p \quad \diamondsuit \\
\mathbf{Example 3.2.13:} \quad f\left(\frac{2}{3}\right) = \frac{(4)(3)}{2} + 2 = 8$$

Theorem 3.2.5. (G. Cantor) There are more positive real numbers than positive integers.

Semi-proof: A putative bijection $f : \mathbb{Z}^+ \to \mathbb{R}^+$ would generate a sequence in which each real number appears somewhere as an infinite decimal fraction, like this:

> $f(1) = .\underline{8}841752032669031...$ $f(2) = .1\underline{4}15926531424450...$ $f(3) = .32\underline{0}2313932614203...$ $f(4) = .167\underline{9}888138381728...$ $f(5) = .0452\underline{9}98136712310...$...f(?) = .73988...

Let $f(n)_k$ be the *k*th digit of f(n), and let π be the permutation $0 \mapsto 9, 1 \mapsto 0, \dots 9 \mapsto 8$. Then the infinite decimal fraction whose *k*th digit is $\pi(f(n)_k)$ is not in the sequence. Therefore, the function *f* is not onto, and accordingly, not a bijection.