3.2 SEQUENCES AND SUMMATIONS

DEF: A sequence in a set A is a function f from a subset of the integers (usually $\{0,1,2, \ldots\}$ or $\{1,2,3, \ldots\}$) to A. The values of a sequence are also called terms or entries.
notation: The value $f(n)$ is usually denoted a_{n}. A sequence is often written $a_{0}, a_{1}, a_{2}, \ldots$.

Example 3.2.1: Two sequences.

$$
\begin{array}{cl}
a_{n}=\frac{1}{n} & 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \\
b_{n}=(-1)^{n} & 1,-1,1,-1, \ldots
\end{array}
$$

Example 3.2.2: Five ubiquitous sequences.

$$
\begin{array}{ll}
n^{2} & 0,1,4,9,16,25,36,49, \ldots \\
n^{3} & 0,1,8,27,64,125,216,343, \ldots \\
2^{n} & 1,2,4,8,16,32,64,128, \ldots \\
3^{n} & 1,3,9,27,81,243,729,2187, \ldots \\
n! & 1,1,2,6,24,120,720,5040, \ldots
\end{array}
$$

STRINGS

DEF: A set of characters is called an alphabet.
Example 3.2.3: Some common alphabets:
$\{0,1\}$ the binary alphabet
$\{0,1,2,3,4,5,6,7,8,9\}$ the decimal digits
$\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}$
the hexadecimal digits
$\{A, B, C, D, \ldots, X, Y, Z\}$ English uppercase ASCII

DEF: A string is a sequence in an alphabet. nOTATION: Usually a string is written without commas, so that consecutive characters are juxtaposed.

Example 3.2.4: If $f(0)=M, f(1)=A$, $f(2)=T$, and $f(3)=H$, then write "MATH".

SPECIFYING a RULE

Problem: Given some initial terms $a_{0}, a_{1}, \ldots, a_{k}$ of a sequence, try to construct a rule that is consistent with those initial terms.
Approaches: There are two standard kinds of rule for calculating a generic term a_{n}.

DEF: A recursion for a_{n} is a function whose arguments are earlier terms in the sequence.

DEF: A closed form for a_{n} is a formula whose argument is the subscript n.

Example 3.2.5: $1,3,5,7,9,11, \ldots$
recursion: $a_{0}=1 ; \quad a_{n}=a_{n-1}+2$ for $n \geq 1$
closed form: $a_{n}=2 n+1$
The differences between consecutive terms often suggest a recursion. Finding a recursion is usually easier than finding a closed formula.

Example 3.2.6: $1,3,7,13,21,31,43, \ldots$
recursion: $b_{0}=1 ; \quad b_{n}=b_{n-1}+2 n$ for $n \geq 1$ closed form: $b_{n}=n^{2}+n+1$

Sometimes, it is significantly harder to construct a closed formula.

Example 3.2.7: $1,1,2,3,5,8,13,21,34, \ldots$
recursion: $c_{0}=1, c_{1}=1$;

$$
c_{n}=c_{n-1}+c_{n-2} \text { for } n \geq 1
$$

closed form: $c_{n}=\frac{1}{\sqrt{5}}\left[G^{m+1}-g^{m+1}\right]$ where $G=\frac{1+\sqrt{5}}{2}$ and $g=\frac{1-\sqrt{5}}{2}$

INFERRING a RULE

The ESSENCE of science is inferring rules from partial data.

Example 3.2.8: Sit under apple tree. Infer gravity.

Example 3.2.9: Watch starlight move 0.15 arc-seconds in total eclipse. Infer relativity.

Example 3.2.10: Observe biological species. Infer DNA.

Important life skill: Given a difficult general problem, start with special cases you can solve.

Example 3.2.11: Find a recursion and a closed form for the arithmetic progression:

$$
c, c+d, c+2 d, c+3 d, \ldots
$$

recursion: $a_{0}=c ; \quad a_{n}=a_{n-1}+d$
closed form: $a_{n}=c+n d$.
Q: How would you decide that a given sequence is an arithmetic progression?
A: Calculate differences betw consec terms.
DEF: The difference sequence for a sequence a_{n} is the sequence $a_{n}^{\prime}=a_{n}-a_{n-1}$ for $n \geq 1$. Example 3.2.5 redux: $\begin{gathered}a_{n}: \\ a_{n}^{\prime}:\end{gathered} 1 \begin{array}{llllll}2 & 3 & 5 & 7 & 9 & 11\end{array}$

$$
a_{n}^{\prime}: \begin{array}{lllll}
2 & 2 & 2 & 2 & 2
\end{array}
$$

Analysis: Since a_{n}^{\prime} is constant, the sequence is specified by this recursion:

$$
a_{0}=1 ; a_{n}=a_{n-1}+2 \text { for } n \geq 1 .
$$

Moreover, it has this closed form:

$$
\begin{aligned}
a_{n} & =a_{0}+a_{1}^{\prime}+a_{2}^{\prime}+\cdots+a_{n}^{\prime} \\
& =a_{0}+2+2+\cdots+2=1+2 n
\end{aligned}
$$

If you don't get a constant sequence on the first difference, then try reiterating.

Revisit Example 1.7.6: $1,3,7,13,21,31,43, \ldots$

$$
\begin{array}{cccccccc}
b_{n}: & 1 & 3 & 7 & 13 & 21 & 31 & 43 \\
b_{n}^{\prime}: & 2 & 4 & 6 & 8 & 10 & 12 & \\
b_{n}^{\prime \prime}: & 2 & 2 & 2 & 2 & 2 & &
\end{array}
$$

Analysis: Since $b_{n}^{\prime \prime}$ is constant, we have

$$
b_{n}^{\prime}=2+2 n
$$

Therefore,

$$
\begin{aligned}
b_{n} & =b_{0}+b_{1}^{\prime}+b_{2}^{\prime}+\cdots+b_{n}^{\prime} \\
& =b_{0}+2 \sum_{j=1}^{n} j=1+\left(n^{2}+n\right)=n^{2}+n+1
\end{aligned}
$$

Consolation Prize: Without knowing about finite sums, you can still extend the sequence:

$$
\begin{array}{ccccccccc}
b_{n}: & 1 & 3 & 7 & 13 & 21 & 31 & 43 & \underline{57} \\
b_{n}^{\prime}: & 2 & 4 & 6 & 8 & 10 & 12 & \underline{14} & \\
b_{n}^{\prime \prime}: & 2 & 2 & 2 & 2 & 2 & \underline{2} & &
\end{array}
$$

SUMMATIONS

DEF: Let a_{n} be a sequence. Then the big-sigma notation

$$
\sum_{j=m}^{n} a_{j}
$$

means the sum

$$
a_{m}+a_{m+1}+a_{m+2}+\cdots+a_{n-1}+a_{n}
$$

TERMINOLOGY: j is the index of summation TERMINOLOGY: m is the lower limit TERMINOLOGY: n is the upper limit TERMINOLOGY: a_{j} is the summand

Theorem 3.2.1. These formulas for summing falling powers are provable by induction (see §3.3):

$$
\begin{gathered}
\sum_{j=1}^{n} j^{\underline{1}}=\frac{1}{2}(n+1)^{\underline{2}} \quad \sum_{j=1}^{n} j^{2}=\frac{1}{3}(n+1)^{\underline{3}} \\
\sum_{j=1}^{n} j^{\frac{3}{2}}=\frac{1}{4}(n+1)^{\underline{4}} \quad \sum_{j=1}^{n} j^{\underline{k}}=\frac{1}{k+1}(n+1)^{\frac{k+1}{}}
\end{gathered}
$$

Example 3.2.12: True Love and Thm 3.2.1 On the $j^{\text {th }}$ day ... True Love gave me $j+(j-1)+\cdots+1=\frac{(j+1)^{\underline{2}}}{2}$ gifts.
$=\frac{1}{2} \sum_{j=2}^{13} j^{\underline{2}}=\frac{1}{2}\left[2^{\underline{2}}+\cdots+13^{\underline{2}}\right]$
$=\frac{1}{2}[2+6+\cdots+78]=364$ slow
$=\frac{1}{2} \cdot \frac{14^{\underline{3}}}{3}=364$ fast
Corollary 3.2.2. High-powered look-ahead to formulas for summing $j^{k}: j=0,1, \ldots, n$.

$$
\begin{aligned}
& \sum_{j=1}^{n} j^{2}=\sum_{j=1}^{n}\left(j^{\underline{2}}+j^{\underline{1}}\right)=\frac{1}{3}(n+1)^{\underline{3}}+\frac{1}{2}(n+1)^{\underline{2}} \\
& \sum_{j=1}^{n} j^{3}=\sum_{j=1}^{n}\left(j^{\underline{3}}+3 j^{\underline{2}}+j^{\underline{1}}\right)=\cdots
\end{aligned}
$$

POTLATCH RULES for CARDINALITY

DEF: nondominating cardinality: Let A and B be sets. Then $|A| \leq|B|$ means that \exists one-toone function $f: A \rightarrow B$.

DEF: Set A and B have equal cardinality
(write $|A|=|B|$) if \exists bijection $f: A \rightarrow B$, which obviously implies that $|A| \leq|B|$ and $|B| \leq|A|$.

DEF: strictly dominating cardinality: Let A and B be sets. Then $|A|<|B|$ means that $|A| \leq|B|$ and $|A| \neq|B|$.

DEF: The cardinality of a set A is n if $|A|=|\{1,2, \ldots, n\}|$ and 0 if $A=\emptyset$. Such cardinalities are called finite. notation: $|A|=n$.

DEF: The cardinality of \mathcal{N} is ω ("omega"), or alternatively, \aleph_{0} ("aleph null").

DEF: A set is countable if it is finite or ω.
Remark: \aleph_{0} is the smallest infinite cardinality. The real numbers have cardinality \aleph_{1} ("aleph one"), which is larger than \aleph_{0}, for reasons to be given.

INFINITE CARDINALITIES

Proposition 3.2.3. There are as many even nonnegative numbers as non-negative numbers.
Proof: $\quad f(2 n)=n$ is a bijection.
Theorem 3.2.4. There are as many positive integers as rational fractions.

Example 3.2.13: $\quad f\left(\frac{2}{3}\right)=\frac{(4)(3)}{2}+2=8$

Theorem 3.2.5. (G. Cantor) There are more positive real numbers than positive integers.

Semi-proof: A putative bijection $f: \mathcal{Z}^{+} \rightarrow \mathcal{R}^{+}$ would generate a sequence in which each real number appears somewhere as an infinite decimal fraction, like this:

$$
\begin{aligned}
f(1) & =. \underline{8} 841752032669031 \ldots \\
f(2) & =.1 \underline{4} 15926531424450 \ldots \\
f(3) & =.32 \underline{0} 2313932614203 \ldots \\
f(4) & =.167 \underline{9} 888138381728 \ldots \\
f(5) & =.0452 \underline{\underline{g}} 98136712310 \ldots \\
\ldots & \\
f(?) & =.73988 \ldots
\end{aligned}
$$

Let $f(n)_{k}$ be the k th digit of $f(n)$, and let π be the permutation $0 \mapsto 9,1 \mapsto 0, \ldots 9 \mapsto 8$. Then the infinite decimal fraction whose k th digit is $\pi\left(f(n)_{k}\right)$ is not in the sequence. Therefore, the function f is not onto, and accordingly, not a bijection.

