
CMPE 300 ANALYSIS OF ALGORITHMS
MIDTERM ANSWERS

1.
a) f(n) ϵ Θ(g(n)) since log n2 = 2 log n.
b) f(n) ϵ Ω(g(n)) since nc grows faster than c log n for any c.
c) f(n) ϵ Ω(g(n)). Dividing both sides by log n, we see that log n grows faster than 1.
d) f(n) ϵ Ω(g(n)). If we take both f(n) and g(n) as exponents for 2, we get 2n on one side

and (2log n)2 = n2 on the other, and n2 grows slower than 2n.
e) f(n) ϵ Ω(g(n)). Dividing both sides by log n and throwing away the low order terms, we

see that n grows faster than 1.
f) f(n) ϵ O(g(n)). f(n) = 2 log n. Dividing both sides by log n, we see that log n grows

faster than 2.
g) f(n) ϵ Θ(g(n)) since log 10 and 10 are both constants.
h) f(n) ϵ Ω(g(n)) since exponential function 2n grows faster than polynomial function

10n2.
i) f(n) ϵ Ω(g(n)). Take logarithm of both sides. f(n) = log 2n = n, g(n) = log (n log n) =

log n + log log n. Throwing away the low order terms, we see that n grows faster than
log n.

j) f(n) ϵ O(g(n)). 3n = 1.5n 2n, and if we divide both sides by 2n, we see that 1.5n grows
faster than 1.

2.
a) Master Theorem: Let x(n) be an eventually nondecreasing function that satisfies the

recurrence relation
x(n) = a x(n/b) + f(n),   n=bk, k is a positive integer, x(1)=c

where a≥1, b≥2, c>0. If f(n) ϵ Ө(nd), where d≥0, then
Ө(nd) if a<bd

x(n) ϵ Ө(nd log n) if a=bd for all n.
Ө(nlog a) if a>bd

b) According to the theorem, a=3, b=5, d=2. Since 3<52, T(n) ϵ Ө(n2).
c) According to the theorem, a=2, b=2, d=1. Since 2=21, T(n) ϵ Ө(n log n).
d) By backward substitution,

T(n) = 2 T(n/2) + n
= 2 [2 T(n/4) + n/2] + n = 22 T(n/4) + 2 n/2 + n
= 22 [2 T(n/8) + n/4] + 2 n/2 + n = 23 T(n/23) + 22 n/22 + 2 n/2 + n
...
= 2log n/2 T(2) + 2log n/2 – 1 (n/2log n/2 – 1) + ... + 2 n/2 + n

So, ( ) = ∑ 2 2 = ∑ 2 = ∑ = n (log n+1) ϵ Ө(n log n)

3. (See the lecture notes)



4.
function CountSort (L[1:n], Out[1:n], k)

for i=1 to k do // initialize count array
count [i] = 0

endfor

for i=1 to n do // calculate frequency for each list value
count [ L[i] ] = count [ L[i] ] + 1 (*)

endfor

total = 1
for i=1 to k do // calculate the starting index for each value

temp = count [i]
count [i] = total (*)
total = total + temp

endfor

for i=1 to n do // copy the elements to output array
Out [count [ L[i] ] ] = L[i] (*)
count [ L[i] ] = count [ L[i] ] + 1

endfor
end

Complexity analysis:
We can take the assignments marked with (*) as the basic operation. So, the complexity is
f(n) = 2n+k ϵ Ө(n+k)

This algorithm is efficient if k is not very large. For instance, when k<n, this is a linear
sorting algorithm. However, for instance if k≈n2, then it is a quadratic algorithm.


