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CMPE 300 ANALYSISOF ALGORITHMS
MIDTERM ANSWERS

f(n) € ©(g(n)) since log n? = 2 log n.

f(n) € Q(g(n)) since n° grows faster than ¢ log n for any c.

f(n) € Q(g(n)). Dividing both sides by log n, we see that log n grows faster than 1.
f(n) € Q(g(n)). If we take both f(n) and g(n) as exponents for 2, we get 2" on one side
and (2'°°™? = n? on the other, and n? grows slower than 2".

f(n) € Q(g(n)). Dividing both sides by log n and throwing away the low order terms, we
see that n grows faster than 1.

f(n) € O(g(n)). f(n) = 2 log n. Dividing both sides by log n, we see that log n grows
faster than 2.

f(n) € ©(g(n)) since log 10 and 10 are both constants.

f(n)ze Q(g(n)) since exponential function 2" grows faster than polynomial function
10n°.

f(n) € Q(g(n)). Take logarithm of both sides. f(n) = log 2" = n, g(n) = log (n log n) =
log n + log log n. Throwing away the low order terms, we see that n grows faster than
log n.

f(n) e O(g(n)). 3" = 1.5" 2", and if we divide both sides by 2", we see that 1.5" grows
faster than 1.

Master Theorem: Let x(n) be an eventually nondecreasing function that satisfies the
recurrence relation

x(n) = a x(n/b) + f(n), n=b* k is a positive integer, x(1)=c

where a>1, b>2, c>0. If f(n) € ©(n°), where d=0, then

b)

c)
d)

e(nY if a<b’
x(n)e ©(n%logn) ifa=b? foralln.

e(n'9? if a>b®
According to the theorem, a=3, b=5, d=2. Since 3<5%, T(n) € ©(n?).
According to the theorem, a=2, b=2, d=1. Since 2=2*, T(n) € ©(n log n).

By backward substitution,
T(n)=2T(n/2) +n
=2[2T(n/4) +n/2] +n=2*T(n/4) + 2 n/2 + n
=22[2T(n/8) + n/4] + 2 n/2 +n =2 T(n/2%) + 2° n/2° + 2 n/2 + n

— 90802 9y 4 Phenz-1 (n/2'~"'-’“-- hte  +2n2+n

So, T'(n) = X181 glplogn—i — yIOEM ylogn — $IOBT 0 (199 n+1) € O(n log n)

i=0 =0 i=0

3. (See the lecture notes)



| function CountSort (L[1:n], Out[1:n], k)

fori=1to k do /[ initialize count array
count[i]=0

endfor

fori=1tondo /[ calculate frequency for each list value
count[L[i]]=count[L[i]]+1 (*)

endfor

total =1

fori=1to k do /[ calculate the starting index for each value

temp = count [i]

count [i] = total (*)

total = total + temp
endfor

fori=1tondo Il copy the elements to output array
Out [count [ L[I]]1]1=L[i] (*
count[L[i]]=count[L[i]]+1
endfor
end

Complexity analysis:
We can take the assignments marked with (*) as the basic operation. So, the complexity is
f(n) = 2n+k € ©(n+k)

This algorithm is efficient if k is not very large. For instance, when k<n, this is a linear
sorting algorithm. However, for instance if k=n, then it is a quadratic algorithm.



