CMPE 300 ANALYSIS OF ALGORITHMS
FINAL ANSWERS
1. function Sort2DMesh (L, n)

Model: 2-dimensional mesh Mq,q with p=n=q2 processors

Input: L (a list of size n), range: Pi,j, 1(i,j(q

Output: L (sorted in snake order), range: Pi,j, 1(i,j(q

for Step=1 to
[image: image1.wmf]é

ù

n

2

log

+1 do

// executes for logn+1 steps

if odd(Step) then

// rows are sorted at odd-numbered steps

for k=1 to q do

// sorting each row in parallel takes q steps

for Pi,j, 1(i(q, 1(j<q and (j mod 2=k mod 2) do in parallel
// even-odd transposition sort

Pi,j:Temp (Pi,j+1:L

// odd-numbered rows sorted in ascending order,

// even-numbered rows sorted in descending order

if ((Pi,j:L > Pi,j:Temp) and (odd(i))) or ((Pi,j:L < Pi,j:Temp) and (even(i))) then

Pi,j+1:L (Pi,j:L

Pi,j:L = Pi,j:Temp

endif

end in parallel

endfor

else

// columns are sorted at even-numbered steps

for k=1 to q do

// sorting each column in parallel takes q steps

for Pi,j, 1(i<q, 1(j(q and (i mod 2=k mod 2) do in parallel
// even-odd transposition sort

Pi,j:Temp (Pi+1,j:L

if (Pi,j:L > Pi,j:Temp) then
// all columns sorted in ascending order

Pi+1,j:L (Pi,j:L

Pi,j:L = Pi,j:Temp

endif

end in parallel

endfor

endif

endfor

Basic operations: parallel assignments

W(n) =
[image: image2.wmf]é

ù

(

)

1

log

2

2

+

n

n

 (((
[image: image3.wmf]n

n

log

)

C(n) = p(n)*W(n) =
[image: image4.wmf]é

ù

(

)

1

log

2

*

2

+

n

n

n

 (((
[image: image5.wmf]n

n

log

2

/

3

)
S(n) = W*(n)/W(n) =
[image: image6.wmf](

)

é

ù

(

)

(

)

1

log

2

/

log

2

+

n

n

n

n

 (((
[image: image7.wmf]n

)
E(n) = W*(n)/C(n) =
[image: image8.wmf](

)

é

ù

(

)

(

)

1

log

2

/

log

2

2

/

3

+

n

n

n

n

 ≈
[image: image9.wmf]n

/

1

2. Lower bound L(n) of a problem states that “any” algorithm for solving this problem has at least L(n) complexity. That is, there can be no algorithm with a complexity less than L(n).

Lower bound is a concept for problems, not for algorihms. And, complexity is a concept for algorithms, not for problems. Formally, we cannot say something like “lower bound of this algorithm is ...” or “complexity of this problem is ...”.

The importance of lower bounds is twofold:

- The lower bound concept provides us with a base for evaluating the goodness of algorithms.

Suppose that we have an algorithm with some complexity. How can we know that it is a good (with respect to running time) algorithm or not?

We can answer this question only if we know the lower bound of the corresponding problem. For example, the classical Towers of Hanoi algorithm is a good algorithm although its complexity is exponential (((2n)), because the lower bound of this problem is also ((2n). On the other hand, the selection sort algorithm is not a good algorithm although its complexity is ((n2), because the lower bound of this problem is ((n*logn).

- Suppose that we have an algorithm with some complexity f(n). Should we try to find a better algorithm for this problem?

Again, we can answer this question only if we know the lower bound of the corresponding problem. For instance, we should not try to find an algorithm better than the classical Towers of Hanoi algorithm to solve this problem, because it is the best algorithm. However, for the sorting problem, we should try to find an algorithm better than selection sort, because the lower bound of this problem is much lower than the complexity of this algorithm.

A good lower bound is a lower bound which is close to the “actual” (maybe unknown) lower bound of the problem. If a lower bound is very far from the actual lower bound, then it is not so good. Consider the problem of searching in a list of size n. We can say that the lower bound of searching is ((1) or ((n/2) or ((n). All of these statements are correct and can easily be proven. However, a lower bound like ((1) is a very bad lower bound (it does not give us any information), whereas a lower bound like ((n) is a very good lower bound.

Lower bounds are improved in time by making them higher and complexities are improved by making them lower. For example, if the currently known best lower bound for a problem is ((n), then later proving a lower bound of ((n2) is an improvement. If the currently known best algorithm for a problem is ((n3), then later designing a ((n2*logn) algorithm is an improvement.

For some problems, there may be a gap between the best lower bound known L(n) and the complexity of the best algorithm known A(n). In such cases, two things are possible. Either we can find better algorithms or we can prove better lower bounds. For some problems and algorithms, we have the situation L(n)=A(n). In this case, L(n) is called a sharp (tight) lower bound.

An algorithm for a problem is called optimal if its complexity is equal to the lower bound for the problem. If its complexity has the same order as the lower bound, then it is called an order optimal algorithm.
3. function Majority (L, n)

Random ({1,…,n}, j)

count = 0

for i=1 to n

if L[i] = L[j] then

count = count+1

endif

endfor

if (count > n/2)

then return (true)

else return (false)

end

This algorithm is true-biased. If it returns true, it means that the majority element was found, so the answer is always correct. But if it returns false, it is possible that a wrong element was picked at random and there still is a majority element, so the answer may be incorrect.

If it returns false when there is a majority element, the probability of error is at most
[image: image10.wmf]é

ù

n

n

1

2

/

-

 (i.e. there can be at most
[image: image11.wmf]é

ù

1

2

/

-

n

 elements different from the majority element). Thus, it returns the correct answer with probability at least
[image: image12.wmf]é

ù

ë

û

n

n

n

n

1

2

/

1

2

/

1

+

=

-

-

. Thus, the algorithm is
[image: image13.wmf]ë

û

correct

n

n

-

+

1

2

/

. Since
[image: image14.wmf]ë

û

2

1

1

2

/

>

+

n

n

, it is also ½-correct.

There is one loop from 1 to n. The execution of the random function takes constant time. So, the algorithm is O(n).

_1247318989.unknown

_1247319182.unknown

_1247319310.unknown

_1247319359.unknown

_1247319266.unknown

_1247319027.unknown

_1103354122.unknown

_1247318861.unknown

_1247318950.unknown

_1247315551.unknown

_1103354156.unknown

_1103354037.unknown

_1103354072.unknown

_1103354009.unknown

