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Basic Definition
->The set of real numbers include all the rational numbers, such as the integer −7 
and the fraction 5/3, and all the irrational numbers, such as √2 (1.41421356…), π 
(3.14159265…)

 In the 17th century, Descartes  distinguished between real and imaginary roots of 
polynomials, then he used  adjective “real” in this context. 
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Some explicit construction models
 1) Construction from Cauchy sequences
 2) Construction by Dedekind cuts
 3) Stevin's construction
 4) Construction using hyperreal numbers
 5) Construction from surreal numbers
 6) Construction from Z (Eudoxus reals)
 7) Other methods



Current Formal Definition

The current standard axiomatic definition is that real numbers form the unique 
complete totally ordered field (R ; + ; x ; <)
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The synthetic approach axiomatically defines the real number system as a complete 
ordered field. This model  for the real number system consists of a set R, two binary 
operations + and × on R (called addition and multiplication, respectively), and a binary 
relation ≤ on R, satisfying the following properties:
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Synthetic approach

Let ℝ denote the set of all real numbers. Then:

● The set ℝ is a field, meaning that addition and multiplication are defined and have the usual 
properties.

● The field ℝ is ordered, meaning that there is a total order ≥ such that, for all real numbers x, y and 
z:

● if x ≥ y then x + z ≥ y + z;
● if x ≥ 0 and y ≥ 0 then xy ≥ 0.

● The order is Dedekind-complete; that is: every non-empty subset S of ℝ with an upper bound in ℝ 
has a least upper bound (also called supremum) in ℝ.

The last property is what differentiates the reals from the rationals. For example, the set of rationals with 
square less than 2 has a rational upper bound (e.g., 1.5) but no rational least upper bound, because the 
square root of 2 is not rational.
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Field Properties
1)(R, +, ×) forms a field. In other words,

● For all x, y, and z in R, x + (y + z) = (x + y) + z and x × (y × z) = (x × y) × z. (associativity of 
addition and multiplication)

● For all x and y in R, x + y = y + x and x × y = y × x. (commutativity of addition and 
multiplication)

● For all x, y, and z in R, x × (y + z) = (x × y) + (x × z). (distributivity of multiplication over 
addition)

● For all x in R, x + 0 = x. (existence of additive identity)
● 0 is not equal to 1, and for all x in R, x × 1 = x. (existence of multiplicative identity)
● For every x in R, there exists an element −x in R, such that x + (−x) = 0. (existence of 

additive inverses)
● For every x ≠ 0 in R, there exists an element x−1 in R, such that x × x−1 = 1. (existence of 

multiplicative inverses)
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Ordered Set Properties
2) (R, ≤) forms a totally ordered set.

● For all x in R, x ≤ x. (reflexivity)
● For all x and y in R, if x ≤ y and y ≤ x, then x = y. (antisymmetry)
● For all x, y, and z in R, if x ≤ y and y ≤ z, then x ≤ z. (transitivity)
● For all x and y in R, x ≤ y or y ≤ x. (totalness)
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3)The field operations + and × on R are compatible with the order ≤.
● For all x, y and z in R, if x ≤ y, then x + z ≤ y + z. (preservation of order under addition)
● For all x and y in R, if 0 ≤ x and 0 ≤ y, then 0 ≤ x × y (preservation of order under multiplication)

4)The order ≤ is complete in the following sense: every non-empty subset of R bounded above has a least 
upper bound. In other words,

● If A is a non-empty subset of R, and if A has an upper bound, then A has a least upper bound u, 
such that for every upper bound v of A, u ≤ v.
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